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Abstract

Successful pregnancy requires carefully-coordinated communications between the mother and 

fetus. Immune cells and cytokine signaling pathways participate as mediators of these 

communications to promote healthy pregnancy. At the same time, certain infections or 

inflammatory conditions in pregnant mothers cause severe disease and have detrimental impacts 

on the developing fetus. In this review, we examine evidence for the role of maternal and fetal 

immune responses affecting pregnancy and fetal development, both under homeostasis and 

following infection. We discuss immune responses that are necessary to promote healthy 

pregnancy and those that lead to congenital disorders and pregnancy complications, with a 

particular emphasis on the role of interferons and cytokines. Understanding the contributions of 

the immune system in pregnancy and fetal development provides important insights into the 

pathogenesis underlying maternal and fetal diseases and sheds insights on possible targets for 

therapy.
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Introduction

By the age of 5, approximately 8% of children are diagnosed with some form of birth 

defects (Moore et al., 2017b). Genetic abnormalities and environmental exposures such as 

smoking, alcohol, medications, and infections in utero are important causes of birth defects. 

However, the majority of birth defects (approximately 50–60%) have no known genetic or 

environmental causes (Moore et al., 2017b). The rate of failed pregnancies and pregnancies 
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with complications is also remarkably high. The early stages of pregnancy have the high rate 

of failure of approximately 30% (Wilcox et al., 1988). About half of early pregnancy loss is 

due to abnormal chromosome numbers caused by meiotic failure, but many have no clear 

explanations (Moore et al., 2017b). Intrauterine growth restriction (IUGR) and preterm birth, 

the leading causes of perinatal mortality, are found in nearly 10% of pregnancies, each 

(Nardozza et al., 2017; Purisch and Gyamfi-Bannerman, 2017).

The immune system evolved to protect the host against invading pathogens. Protection of the 

developing fetus is critical for the success of a species. In mammals, immune protection of 

the fetus must be carried out without harming the mother harboring the fetus. Conversely, 

mothers carrying a semiallogeneic fetus need to tolerate and prevent immune-mediated 

damage of the fetus while protecting against pathogens. Thus, pregnancy is accompanied by 

dynamic alterations in the maternal and fetal immune responses dependent on the stage of 

pregnancy or development – a topic covered by previous reviews (Kollmann et al., 2017; 

Pazos et al., 2012). For species that spend a long gestational period with each pregnancy, the 

quality of the fetus must be ensured for its survival and reproductive success. Yet, the 

checkpoint mechanisms for ensuring quality control for the developing fetus is not well 

understood.

In this review, we examine the role of the immune system in both promoting successful 

pregnancy and in mediating congenital disorders and complications. Signaling pathways 

engaged by cytokines have a powerful ability to rapidly remodel tissue and alter cellular 

behavior. For example, upon binding to their receptor, the interferons (IFNs) induce 

hundreds of effectors, or interferon stimulated genes (ISGs), that act to restrict viral 

infections (Sadler and Williams, 2008). There are three types of IFNs: Type I IFNs 

(including IFN-α, β, ε, τ, and δ), type II IFN (IFN-γ), and type III IFNs (IFN- λ1, λ2 and 

λ3) (Sadler and Williams, 2008). These IFNs differ in both the cellular source and cellular 

targets based on receptor expressions (Schneider et al., 2014). Many of these IFNs are 

employed in normal pregnancy and development, as well as in defense against pathogens. 

Alterations or aberrant activation of immune responses during pregnancy can lead to 

pregnancy complications and congenital abnormalities. In this review, we put forth the 

hypothesis that aberrant expression of cytokines and IFNs is a common and critical mediator 

of congenital disorders and fetal loss that occurs in the settings of infections, chromosomal 

abnormalities, metabolic and autoimmune diseases.

Pregnancy complications during implantation and placental development

All stages of pregnancy, from implantation to parturition (Fig. 1), are susceptible to 

complications that result from fetal-intrinsic or extrinsic aberrations. Implantation and 

placental development are key vulnerability points during which pregnancy loss and 

complications arise. Implantation occurs at about day 8–9 in humans and day 4–5 after 

conception in mice. Just after hatching from the zona pellucida, the blastocyst, which is 

surrounded by a layer of trophoectoderm, adheres to the uterine epithelium (Aplin and 

Ruane, 2017) (Fig. 1A). This initial attachment is followed by trophoblast differentiation and 

invasion of the endometrium. There are high rates of implantation failure, both after natural 

conception and with in vitro fertilization treatments (Aplin and Ruane, 2017), which may be 
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due to genetic abnormalities and failure to hatch, and maternal factors, including 

endometrial abnormalities, immunological imbalance at the endometrium, and abnormal 

blood clotting (Simon and Laufer, 2012).

The first trimester is the critical period of placental development, and the origins of many 

common pregnancy complications can be traced back to abnormal placental development in 

the first trimester (Kroener et al., 2016). The two key processes of placental development are 

the villous and extravillous trophoblast formations. The chorionic villi are the site of gas and 

nutrient exchange between the maternal blood and fetal blood. This exchange occurs at the 

interface between fetal endothelial cells, which run through the core of the villi, and the 

maternal blood, in which the villi are bathed (Fig. 2A). The villi are covered with a layer of 

multinucleated fused syncytiotrophoblasts (SYN), which directly contact the maternal blood. 

Abnormal villous development can lead to early pregnancy loss, IUGR, and preeclampsia 

(defined clinically as elevated blood pressure and proteinuria or other signs of organ damage 

including impaired liver function, renal insufficiency, cerebral/ visual symptoms, or 

thrombocytopenia) (Huppertz et al., 2014).

The fetal extravillous trophoblasts invade the decidua and uterine myometrium, infiltrating 

the uterine vessels and glands to direct nutrients to the developing fetus (Fig 2B) (Moser and 

Huppertz, 2017). At the spiral arteries, they remodel the smooth muscles and elastic fibers 

and ultimately replace the endothelium of the blood vessels (Tessier et al., 2014). By 10–12 

weeks, maternal blood is directed to the villous space, whereby nutrient and gas exchange 

between the mother and fetus occurs. Insufficient maternal artery remodeling can lead to 

preeclampsia, IUGR, and recurrent pregnancy loss (Tessier et al., 2014). Conversely, 

excessive placental invasion is associated with maternal anemia and postpartum hemorrhage 

(Tantbirojn et al., 2008; Tessier et al., 2014). We will discuss how immune cells and immune 

effectors play an important role in in regulating the extravillous trophoblast invasion, and 

inflammatory insults such as infections can disrupt placental development.

Mechanisms that protect the embryo against microbial threats

Despite some of the devastating effects of certain congenital infections, which we will 

discuss later, most pathogens are not able to reach the fetus (Arora et al., 2017; Robbins and 

Bakardjiev, 2012). The placenta provides a powerful physical barrier that protects the fetus 

against infection by pathogens. The SYNs are multinucleated cells that make up the barrier 

between maternal and fetal blood in the placenta (Arora et al., 2017). Upon differentiation, 

SYNs become highly resistant to viral infections: they do not express the entry receptors for 

viral pathogens including herpes simplex virus (HSV) and cytomegalovirus (CMV), and 

they have a dense cytoskeleton network of actin that help them to physically resist bacterial 

invasion such as Listeria monocytogenes (Robbins and Bakardjiev, 2012; Zeldovich et al., 

2013). SYNs also constitutively produce exosomes and type III IFNs (IFN-λ) which confer 

antiviral resistance within themselves and in surrounding cells (Fig. 2A) (Bayer et al., 2016; 

Delorme-axford et al., 2013; Jagger et al., 2017). An alternative route by which pathogens 

may reach the fetus is from the uterus - infecting the extravillous trophoblasts and invading 

the anchoring villi (Tabata et al., 2016). Blocking this route of pathogen entry likely requires 

a different set of immunoprotective mechanisms. Effector-memory CD8+ T cells are present 

Yockey and Iwasaki Page 3

Immunity. Author manuscript; available in PMC 2019 September 18.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



in the human endometrium, and some of these are pathogen-specific (van Egmond et al., 

2016). While they are generally less cytotoxic than their peripheral counterparts, decidual 

natural killer (NK) cells are capable of killing human cytomegalovirus (HCMV)- infected 

cells, and decidual CD8+ T cells can degranulate and proliferate after in vitro activation (Fig. 

2B) (Siewiera et al., 2013; van der Zwan et al., 2018). The mechanisms by which some 

pathogens are able to reach the fetus despite these barriers are still poorly understood.

In addition to providing a barrier to infection, the maternal immune response may provide 

further protection at the fetus. Maternal IgG antibodies are directly transferred to the fetus 

by FcRn receptors expressed by SYNs (Jennewein et al., 2017) (Fig. 2A). IgG transfer 

begins around 13 weeks of gestation, the beginning of the second trimester in humans 

(Palmeira et al., 2012). Whether transfer of innate inflammatory mediators from the mother 

to the fetus occurs is less well understood. Ex-vivo studies of term placentas indicate that 

transplacental transfer of most cytokines does not occur (Aaltonen et al., 2005). However, 

chronic maternal infection by human immunodeficiency virus 1 (HIV-1) and hepatitis B can 

lead to higher cytokine concentrations in the cord blood and altered fetal immune responses, 

indicating that the maternal immune responses can influence the fetus, perhaps due to 

placental cytokine production (Bunders et al., 2014; Hong et al., 2015). As we will discuss 

later, maternal IL-17 can directly affect fetal brain development (Choi et al., 2016).

The developing embryo also has cell-intrinsic mechanisms to protect itself from infection. 

One intriguing demonstration of this is that pluripotent stem cells, including embryonic stem 

cells, are resistant to viral infection due to constitutive expression of a subset of interferon 

stimulated genes (ISGs), including IFITM1 and IFITM3 (Wu et al., 2017). The developing 

embryo must not only protect itself from exogenous pathogens but also against endogenous 

genomic threats. Transposable elements, which make up 40% of the genome in mice and 

44% of the genome in humans, must be actively suppressed to maintain genomic integrity 

(Rowe and Trono, 2011). The transposable elements can be classified as long terminal repeat 

(LTR) elements, including endogenous retroviruses (ERVs), and non-LTR elements, 

including long interspersed nuclear elements (LINEs). Gametes and early embryos are 

susceptible to transposable elements reactivation as the genome is globally demethylated 

during genome reprogramming (Rowe and Trono, 2011). PIWI-associated RNAs (piRNAs) 

are essential for suppressing transcription of transposable elements, particularly in the 

gonads and embryo (Siomi et al., 2011). piRNAs are 23–30 nucleotide small silencing 

RNAs that interact with the PIWI proteins, PIWI, AUB, and AGO3 to cleave their target 

mRNAs and impose transcriptional silencing by DNA methylation (Siomi et al., 2011). Loss 

of PIWI protein expression results in upregulation of transposable elements, subsequent 

double stranded DNA breaks, and a loss of fertility (Klattenhoff et al., 2007; Siomi et al., 

2011). In Drosophila, PIWI protein expression is required for both oogenesis and 

spermatogenesis (Lin and Spradling, 1997). However, in mice, PIWI proteins are required 

for only spermatogenesis, and piRNA expression is low during oogenesis (Carmell et al., 

2007). Moreover, expression of piRNAs and PIWI proteins in humans, macaques, and cows 

indicates that there may be a species-specific role for piRNAs in mammalian oogenesis 

(Roovers et al., 2015). ERVs are a collection of previously integrated exogenous retroviruses 

that accumulate over time in the genome of vertebrates. Recent studies identify a class of 

small RNAs, tRNA-derived fragments (tRFs), as another small RNA-mediated mechanism 
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of suppressing ERV retrotransposition in the mouse pre-implantation embryo (Schorn et al., 

2017). Two distinct classes of tRFs block translation and reverse transcription of retroviral 

RNAs (Schorn et al., 2017). Specific epigenetic silencing mechanisms are employed for 

ERV silencing during embryogenesis. Embryonic stem cells use ZFP809 to silence retroviral 

proviral transcription (Wolf and Goff, 2009). Other KRAB-ZFPs are also likely involved 

specifically during embryonic development in recruiting epigenetic machinery to silence 

ERV (Wiznerowicz et al., 2007). Thus, ISGs, epigenetic- and small RNA-mediated 

repression orchestrates intrinsic antiviral control in early stages of embryo development.

Immune pathways and cell types that promote normal pregnancy

Emerging evidence indicates a central role of the immune system in mediating successful 

pregnancy, from implantation to parturition. We will discuss a few examples of immune-

mediated pregnancy processes. Implantation elicits an inflammatory reaction, where 

upregulation of inflammatory cytokines, including interleukin-6 (IL-6), IL-1, and leukemia 

inhibitory factor (LIF), are highly conserved across the therian mammals, including 

placental mammals and marsupials (Griffith et al., 2017) (Fig. 1A). LIF expression in the 

mother is essential for implantation in mice (Stewart et al., 1992). Various leukocytes are 

found in the decidua, including maternal NK cells, DCs, macrophages and lymphocytes (Liu 

et al., 2017). These cells directly interact with trophoblasts of the developing placenta, and 

deviations in cell numbers and functions are associated with pregnancy loss, preeclampsia, 

and preterm birth (Zenclussen and Hammerling, 2015). CD11 b+ macrophages are necessary 

for the maintenance of the corpus luteum in the ovary, which maintains early pregnancy by 

the secretion of progesterone (Fig. 1A): depletion of macrophages using CD11b-DTR mice 

results in failure of early implantation that can be rescued by progesterone (Care et al., 

2013). Additionally, in vitro evidence shows that macrophages and trophoblasts interact 

closely and reciprocally regulate each other: macrophages promote trophoblast survival and 

differentiation, and trophoblasts regulate monocyte migration and cytokine production (Fest 

et al., 2007; Rozner et al., 2016). Dendritic cells (DCs) are also essential for early events of 

pregnancy: depletion of these cells using CD11c-DTR in mice leads to embryo resorption 

due to a failure of the decidua to develop, including impaired angiogenesis and decidual cell 

proliferation (Plaks et al., 2008). TGFβ and sFlt1 are two factors produced predominately by 

DCs and may be responsible for the impaired angiogenesis seen in the CD11 c-DTR mice. 

These functions are independent of the immune tolerance function of DCs, as the early 

implantation failure occurs in syngeneic pregnancy and when T cells are depleted. Thus, 

mouse models demonstrate that macrophages and DCs play distinct and essential roles in 

early pregnancy (Fig. 1A, B). While they are present in human pregnancy, whether they have 

similar roles in humans is unknown.

Remodeling of the maternal spiral arteries also requires immune cells. NK cells make up the 

predominant leukocyte population in the human decidua, and the NK cells are located in 

close proximity to the invading extravillous trophoblasts and surrounding the spiral arteries 

(Liu et al., 2017) (Fig. 1B). Mice that lack NK cells, IFN-γ, IFN-γ receptor (IFNGR), or 

STAT1 (transcription factor downstream of IFNγ receptor), do not have spiral artery 

remodeling, indicating an essential role for NK cells and IFNγ in this process (Ashkar et al., 

2000). Mice lacking type I IFN receptor (IFNAR) also lack spiral artery remodeling, 
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indicating a non-redundant roles of type I and type II IFNs (Murphy et al., 2009). Despite 

the abnormal spiral artery remodeling, pups of mice lacking IL-15, NK cells, IFNGR, or 

IFNAR have only mild growth restriction, but pregnancies are otherwise minimally affected 

(Barber and Pollard, 2003; Murphy et al., 2009). Uterine NK cells are essential for control of 

trophoblast invasion and produce a number of angiogenic factors (Hanna et al., 2006). A 

recent study also shows that a subset of NK cells may directly interact with the developing 

fetus by secreting growth-promoting factors including peiotrophin, osteoglycin, and 

osteopontin (Fu et al., 2017). Additionally, the Kitwsh/wsh mice, which are deficient in mast 

cells, have abnormal implantation sites and lack spiral artery remodeling (Woidacki et al., 

2013). NK cells and mast cells are key regulators of uterine spiral artery remodeling, as 

demonstrated in mouse studies, a process that becomes aberrant in many pregnancy 

complications.

Interferons play central roles in pregnancy in distinct species. A prime example of this is the 

role of interferon-τ (IFNτ), a unique type I IFN, that is essential for pregnancy recognition 

in ungulates (Roberts, 2007). IFNτ is expressed by the early trophoectoderm and acts as a 

hormone of pregnancy recognition to rescue the corpus luteum. It is also thought to be 

important for implantation. While IFNτ expression is controlled transcriptionally by Ets2 

and not by the IRF transcription factors downstream of viral sensors, it binds to IFNAR and 

has antiviral activity (Ealy et al., 2001). IFNα exposure of the endometrium in ewes is 

sufficient to prolong the estrous cycle with similar efficacy as IFNτ (Green et al., 2005). 

While no equivalent of IFNτ exists in humans, some IFNs are upregulated during 

implantation, indicating that there may be a common role for IFNs in some aspects of 

implantation (Roberts, 2007).

Post implantation, the maternal-fetal interface undergoes dynamic immunological changes 

(Prabhudas et al., 2015). Decidual stromal cells (DSCs) are a defining cell type in species 

with extended gestational periods and are critical for maintaining the unique immune 

environment of the decidua: they silence the chemokines CXCL9 and CXCL10 which 

recruit cytotoxic T cells, and they secrete IL-15 which is responsible for converting decidual 

NK cells and macrophages to decidual phenotypes, including reduced cytotoxicity and 

secretion of angiogenic factors (Ashkar et al., 2003; Chavan et al., 2016). Additional 

mechanisms exist in the uterus to prevent anti-fetal immune responses. DCs in the decidua 

are restricted from migrating to the lymph node (LN), likely due to their unresponsiveness to 

CCL21, the chemokine responsible for their migration to the LN (Collins et al., 2009). 

Meanwhile, regulatory T (Treg) cells expand during pregnancy in both humans and 

allogeneic mouse models, and these Treg cells have been shown to be fetus-specific in 

mouse models (Aluvihare et al., 2004; Feyaerts et al., 2017). Partial and transient ablation of 

Treg cells at midgestation is sufficient to lead to expansion of fetus-specific CD4 and CD8 T 

cells and loss of allogenic fetuses in mice (Rowe et al., 2011). Thus, the specialized local 

microenvironment of the placenta and developing fetus promotes tolerance to fetal antigens 

and downregulation of specific chemokines and cytokines.

Parturition is another key event in pregnancy that utilizes the immune system and is 

associated with a proinflammatory environment (Fig. 1C). Parturition during normal term 

pregnancy is associated with neutrophil and macrophage infiltration into the myometrium, 
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an upregulation of inflammatory cytokines including IL-1β and IL-8 in the maternal-fetal 

tissues, and transcriptional changes in the decidua including upregulation of TNF signaling 

pathway, Nod-like receptors, and NFκB activation (Christiaens et al., 2008; Rinaldi et al., 

2017). Cytokines including IL-1β may directly induce smooth muscle contraction in the 

uterus: in vitro studies show that it can induce calcium influx into myometrial smooth 

muscle, phosphodiesterase activity, and prostaglandin F2a production, all of which can 

contribute to muscle contraction (Oger et al., 2002; Tribe et al., 2003). Cervical remodeling 

and dilation are also accompanied by infiltrating leukocytes into the cervix (Yellon, 2017). 

Immunological changes in the decidua and myometrium may coordinate the timing of 

parturition, which requires integration of multiple signals from the mother and fetus (Menon 

et al., 2016). As seen during embryo implantation, uterine artery remodeling, and 

parturition, leukocytes and cytokines (Table 1) are essential mediators of coordinated tissue 

remodeling necessary for successful pregnancy.

Host immune responses contribute to pregnancy complications associated with infections

The “TORCH” pathogens encompass a range of infectious agents that are known to cause 

congenital defects. They include protozoa (Toxoplasma gondii), bacteria (Listeria 
monocytogenes and Treponema pallidum), and viruses (rubella, CMV, HSV, varicella zoster 

virus, HIV, enteroviruses, parvovirus B19, and ZIKV) (Coyne and Lazear, 2016). In addition 

to congenital defects which we will discuss later, TORCH infections cause a number of 

different pregnancy complications including pregnancy loss, IUGR, and preterm birth 

(Cappelletti et al., 2017a; Goldenberg et al., 2010; Pereira et al., 2014) One of the newest 

TORCH pathogens, ZIKV, has raised public fear as it spread across the Americas in 2015–

2017, resulting in over 3,000 estimated cases of microcephaly as well as miscarriage and 

fetal growth restriction (PAHO and WHO, 2017; Simões et al., 2016). Mouse models of 

ZIKV infection in pregnant dams have shown similar complications, with growth restriction, 

fetal demise, and placenta damage being most pronounced (Cugola et al., 2016; Miner et al., 

2016; Szaba et al., 2018; Yockey et al., 2016). Recent studies in mouse and human tissue 

explant models indicate that other emerging neurotropic viruses related to ZIKV, including 

West Nile Virus and Powassan virus have the capacity to infect the placenta and fetal brain, 

leading to fetal demise (Platt et al., 2018). Thus, other viruses may have the potential to 

impact fetal development at an epidemic level.

Animal models of these infections indicate that pregnancy complications may be, at least in 

part, mediated by the immune response induced by the pathogen. A recent study has shown 

that type I IFN signaling through IFNAR within the fetus and fetal- derived placenta mediate 

the severe complications, including fetal demise and severe growth restriction following 

ZIKV infection of pregnant mice (Yockey et al., 2018). The detrimental effect of IFNAR 

signaling is mostly due to a block in placental development. Type II IFN, IFN-γ, may play a 

similar role: fetal resorption induced by Toxoplasma gondii infection is less severe in mice 

that lack IFNGR (Senegas et al., 2009). Infection can also lead to a break in the immune-

tolerance towards the fetus. In mouse models of Listeria monocytogenes, infection is 

sufficient to recruit fetal-specific CD8+ T cells to the placenta and cause fetal demise 

(Chaturvedi et al., 2015). Thus, both innate and adaptive immune responses can contribute to 

fetal demise after congenital infection.
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Malaria is another prevalent pathogen associated with poor pregnancy outcomes: women 

infected with P. falciparum or P. vivax are at an elevated risk of growth restriction and 

preterm birth (Moore et al., 2017a). Other studies show a correlation between poor 

pregnancy outcomes and systemic concentrations of cytokines and chemokines including 

TNF-α, IFN-γ, IL-10, and CXCL9 in women infected with malaria (Fried et al., 2017). 

Consistent with these findings, mouse models show that TLR4 signaling and IFN-γ 
signaling are mediators of abnormal development of the placenta labyrinth vasculature and 

fetal growth restriction caused by malaria infection (Barboza et al., 2017; Niikura et al., 

2017). Thus, the inflammatory response to malaria appears to be a key mediator of malaria-

related pregnancy complications.

Intrauterine infection and inflammation are important contributors to preterm birth, which is 

defined by birth before 37 weeks (Romero et al., 2014a). Around 25% of preterm births are 

associated with intrauterine infection, usually with vaginal microbes, indicating an 

ascending infection (Romero et al., 2014a). Extrauterine infections in the mother including 

pneumonia, pyelonephritis, and periodontal disease are also associated with preterm labor 

(Agrawal and Hirsch, 2012). Whether or not clinically-detectable infection is present, 

elevated concentrations of cytokines including IL-6, IL-1, IL-8, and TNF in amniotic fluid 

or in cervicovaginal lavage of patients is predictive of the onset of preterm labor (Agrawal 

and Hirsch, 2012; Holst et al., 2009). Recent studies have shown that a vaginal microbiome 

not dominated by Lactobacillus is associated with increased risk for preterm labor, but these 

findings are not consistent across all studies (Digiulio et al., 2015; Romero et al., 2014b). 

While the role of viral infections on preterm births are less clear, experimental evidence 

shows that coinfection with herpes viruses can lead to both ascending bacterial infection and 

an enhanced inflammatory responses to bacterial stimulation (Cross et al., 2017; Racicot et 

al., 2013). Collectively, emerging evidence indicates that the host immune response elicited 

by infection and possibly the vaginal microbiome of the pregnant mother may be an 

important contributor to the detrimental outcomes of congenital infections.

Innate immune activation is sufficient to cause fetal loss and preterm birth in animal 
models

Mouse models show that innate immune signals, independent of infectious pathogens, are 

sufficient to cause miscarriage and preterm birth. A number of studies show that injection of 

PAMPs or recombinant cytokines in pregnant mice leads to fetal demise and preterm birth 

and has been a tool to study some of the mechanisms underlying pregnancy complications. 

Injection of poly(I:C), a double stranded RNA viral mimic, in early pregnancy (E6.5) in 

mice reveals that uterine NK (uNK) cells induce fetal demise in an NKG2D-dependent 

manner (Thaxton et al., 2013). Poly(I:C) induces proliferation and activation of uNK cells 

and expression of the activating ligand, NKG2D, on uterine macrophages, resulting in 

abnormal trophoblast migration, increased apoptosis of placental cells, and fetal resorption. 

Of interest, we found that this model of poly(I:C)- induced fetal death is also dependent on 

IFNAR expression by the mother (Yockey et al., 2018). It is unclear where IFN signaling is 

acting on this NK-mediated pathway. In contrast, intraperitoneal LPS injection during early 

pregnancy (E7.0) shows a role for nitric oxide, presumably produced by infiltrating 

macrophages, in fetal resorption (Ogando et al., 2003). LPS, a component of the cell wall of 
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gram negative bacteria, is recognized by the maternal tissues (via TLR4) to induce TNFα, 

which acts on the placenta and/or fetus to induce placenta necrosis in mice (Carpentier et al., 

2011). The immunomodulatory cytokine IL-10, on the other hand, plays a protective role in 

preventing fetal resorption after intraperitoneal injection of LPS or CpG (TLR9 agonist) 

(Murphy et al., 2005; Thaxton et al., 2009). NK cells or F4/80+ macrophages mediate the 

fetal resorption after LPS or CpG treatment, respectively, in IL-10-deficient mice, indicating 

distinct cellular mechanisms based on the type inflammatory of stimulus. Prior to 

implantation, cytokines may also directly impact the embryo: TNF-α, IFN-γ, and TRAIL, 

have been shown to be toxic to the early embryo, inducing apoptosis and impaired growth 

(Robertson et al., 2018).

Microbial ligands or cytokines, used experimentally to mimic infections or conditions found 

in preterm labor, are sufficient to induce preterm labor when injected later in pregnancy 

(Agrawal and Hirsch, 2012). Direct intramniotic infusion of IL-1β and TNF-α, but not IL-6 

or IL-8, are also sufficient to induce preterm labor in non-human primate models (Sadowsky 

et al., 2006). In pregnant mice inoculated intravaginally with LPS, complement activation 

leads to macrophage-mediated remodeling of the cervix and preterm birth (Gonzalez et al., 

2011). Mice lacking the complement receptor C5aR are resistant to LPS-induced preterm 

labor but still deliver at term, indicating that C5aR is not required for term labor (Gonzalez 

et al., 2013). In this regard, TLR4 and IL-6 appear to be mediators of on-time labor: in 

addition to being protective of preterm labor, genetic deletion or inhibitors of TLR4 or IL-6 

lead to delayed parturition and increased perinatal mortality (Robertson et al., 2010; Wahid 

et al., 2015). The context in which type I IFN signaling occurs is also critical: blocking 

signaling through IFNAR or suppressing type I IFNs increases sensitivity to intraperitoneal-

challenge LPS-mediated preterm birth (Racicot et al., 2016). Conversely, type I IFNs 

mediate preterm birth in the case of intraperitoneal poly(I:C) injection and maternal viral 

infection (Cappelletti et al., 2017b). These animal studies collectively highlight a role for 

distinct inflammatory cells and pathways that underlie fetal loss and preterm labor.

Chronic maternal diseases leading to pregnancy complications

Maternal autoimmune disease is another known risk factor for pregnancy complications. 

Since many autoimmune diseases affect women of child-bearing age, the effect of these 

diseases on pregnancy is of high relevance. Two of the commonly recognized autoimmune 

diseases associated with pregnancy complications are systemic lupus erythematosus (SLE) 

and antiphospholipid syndrome (APS). SLE is characterized by systemic inflammation, 

most commonly affecting the skin and kidney. Women with SLE have an increased risk of 

preeclampsia, preterm delivery, fetal growth restriction and fetal loss (Bundhun et al., 2017). 

Children born to mothers with SLE may also have an increased risk of neurodevelopment 

disorders and congenital heart defects (Vinet et al., 2014, 2015). Anti-phospholipid antibody 

syndrome (APS) is characterized by presence of one or more of the anti-phospholipid 

antibodies and episodes of thrombosis or recurrent miscarriage (Schreiber et al., 2018). 

Many patients with SLE also have antiphospholipid antibodies. In addition to recurrent 

miscarriages, women with APS have an increased risk of preeclampsia, growth restriction, 

and still birth (Saccone et al., 2017; Schreiber et al., 2018).
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A number of different inflammatory mechanisms have been implicated in the poor 

pregnancy outcomes in individuals with SLE and APS, beyond hypercoagulability alone. 

Antibodies against cardiolipin, beta2-glycoprotein, and lupus anticoagulant are most 

common antibodies present in APS, and the concentrations of antibodies correlate with the 

risk of miscarriage (Santos et al., 2017). A number of in vitro studies have shown these 

antibodies can directly affect trophoblast function by decreasing proliferation, inhibiting 

syncytialization, and decreasing hormone production (Tong et al., 2015). Antibodies against 

beta2-glycoprotein, which is expressed by trophoblasts, directly induce inflammatory 

cytokine expression and cell death of trophoblasts in vitro (Mulla et al., 2009). Elevated 

concentrations of complement factors in the serum and deposition of complement in the 

decidua, are also predictive of poor pregnancy outcomes in patients and mediate disease in 

mouse models of APS (Cohen et al., 2011; Girardi et al., 2003; Kim et al., 2018). These 

mouse models, which involve induction of fetal demise and growth restriction after passive 

transfer of human antiphospholipid antibodies, also show a role for neutrophils and TNFα in 

mediating fetal demise (Berman et al., 2005; Girardi et al., 2003). In addition to antibody- 

and complement- mediated mechanisms, interferons may also be mediators of poor 

outcomes in SLE and APS patients. Elevated type I IFN activity, a signature of SLE, is one 

of the factors that correlates with development of preeclampsia in SLE patients (Andrade et 

al., 2015). The authors suggest that this clinical correlation may be due to impaired placental 

vasculature remodeling in the setting of elevated IFNα concentrations. The high risk 

pregnancy for individuals with autoimmune disease extends beyond SLE and APS: 

rheumatoid arthritis is associated with low birth weight, mothers with systemic sclerosis 

have higher rates of preterm delivery and IUGR, and those with Sjogren’s disease have 

higher rates of miscarriage, preterm delivery, and low birth weight (Gupta and Gupta, 2017; 

Ostensen and Clowse, 2013).

In addition to classic states of maternal inflammation including infection and autoimmunity, 

the role of inflammation in metabolic diseases including obesity and diabetes is increasingly 

being recognized. Obesity leads to a state of chronic low-grade inflammation, which has 

been shown to contribute to many of the health consequences including insulin resistance 

and type II diabetes (Reilly and Saltiel, 2017). Obese individuals have an increased risk of 

many pregnancy complications including preeclampsia, stillbirth, miscarriage and pre-term 

birth (Kalliala et al., 2017). Children of obese mothers are at an increased risk for a number 

of complications, ranging from macrosomia (above average infant size), 

neurodevelopmental/psychiatric disorders (including autism spectrum disorder, 

schizophrenia, attention deficit hyperactivity disorder, and poor cognitive performance), 

congenital malformations including congenital heart defects, and asthma (Edlow, 2017; 

Godfrey et al., 2017; Persson et al., 2017). Global transcriptional analyses of placenta of 

obese women identify inflammation and immune responses among the top dysregulated 

pathways (Altmäe et al., 2017). Analyses of the placentas of obese women show increased 

IL-1β and IL-8 expression (Aye et al., 2014; Roberts et al., 2011). Obese women also have 

reduced numbers of uNK cells, altered gene expression of uNK cell, and delayed uterine 

artery remodeling during early pregnancy (Perdu et al., 2016). Fetuses of mothers with 

obesity have increased markers of inflammation in the cord blood including increased C-

reactive protein (CRP), IL-6 and TNFα concentrations (Dosch et al., 2016; Wilson et al., 
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2015). While, there is a consistent association between maternal body mass index and 

expression of the inflammatory marker, CRP, there is still no consensus between studies on 

the changes in systemic cytokine expression during pregnancies in obese women 

(Pendeloski et al., 2017). Animal studies using mouse and nonhuman primate models 

support this correlation between obesity, increased inflammatory markers in the mother or 

placenta, and poor pregnancy outcomes including stillbirth and fetal resorption (Frias et al., 

2011; Mahany et al., 2018). More studies are needed to investigate the causal and 

mechanistic link between increased inflammation in obesity and associated pregnancy 

complications. Collectively, pregnancy complications and congenital diseases associated 

with chronic autoimmune and obesity correlate with elevated expression of type I IFNs, IL-6 

and IL-1β (Fig. 3, Table 1).

Inflammatory pathways that disrupt fetal brain development

Fetal development can also be impacted by inflammation. Nervous system development 

appears to be exquisitely sensitive to inflammatory insults throughout pregnancy. In the case 

of the “TORCH” infections, some of the common neurological defects seen include 

microcephaly, cranial calcifications, ventriculomegaly, ocular defects, and sensorineural 

hearing loss (Adams Waldorf and McAdams, 2013; Coyne and Lazear, 2016). Many of these 

presentations, including microcephaly, are similar among pathogens including CMV, rubella, 

rubeola (measles) and varicella zoster, Toxoplasma, HSV, and Zika virus (Devakumar et al., 

2017). Similar clinical presentation across a range of viral and protozoan pathogens suggests 

a common underlying mechanism. This possibility is supported by the findings that fetuses 

with genetic defects leading to type I IFN overproduction can present as if they have a 

congenital viral infection, a disease referred to as pseudo-TORCH syndrome or Aicardi-

Goutieres syndrome (AGS) (Crow and Manel, 2015). Most of the type I interferonopathies 

are due to defects in genes that are necessary for nucleic acid degradation, recognition and 

modification, including TREX1, RNASEH2A, RNASEH2B, RNASEH2C, SAMHD1, 
IFIH1 and ADAR; or negative regulation of the IFN pathway in the case of USP18 (Crow 

and Manel, 2015; Meuwissen et al., 2016). Infants with AGS suffer from severe 

encephalopathy with seizures, cortical blindness, spasticity, and psychomotor retardation 

(Crow et al., 2015). AGS patients have elevated IFN concentrations in their blood and 

cerebral spinal fluid (CSF) and increased expression of ISGs in their blood, and the 

concentration of interferon in the CSF predicts disease severity, suggesting a role for 

elevated IFN in disease pathogenesis (Crow et al., 2015).

Recent studies show that in people with Down’s syndrome, or trisomy 21, many ISGs are 

overexpressed, likely due to an additional copy of the IFN receptor genes on chromosome 21 

(Sullivan et al., 2016). Partial IFNAR and IFNGR deficiency leads to improved growth and 

neuron viability in a mouse model of trisomy 21, raising the possibility that some of the 

complications associated with trisomy 21, including developmental delay and growth 

restriction, may be mediated by IFN (Maroun et al., 2000). Taken together, these findings 

point towards hyperactive interferon signaling being a potential driver of brain pathology 

and abnormal brain development after congenital infections and genetic diseases.
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IFNγ is primarily produced by T and NK cells and induces some overlapping effectors with 

type I IFNs. Mouse models demonstrate a direct role for IFNγ in altering brain 

development. Genetic overexpression of IFNγ in astrocytes leads to abnormal cerebellar 

development and ataxia in mice (Wang et al., 2004). IFNγ induces expression of Shh 

signaling demonstrating a direct interaction with a key neural developmental pathway (Wang 

et al., 2003). Other studies implicate IFNγ in vitro and in vivo in impaired neural progenitor 

differentiation (Ahn et al., 2015). In these studies, IFNγ acts by downregulating neurogenin 

2, an important regulator of neuronal differentiation and proneural factor (Ahn et al., 2015). 

Thus, IFNγ overexpression during development can disrupt developmental pathways and 

differentiation in neurons.

Systemic maternal immune responses have the potential to be teratogenic: LPS or CpG 

administration during early pregnancy (starting E8.5 or E6.5 in mice, respectively) lead to 

neural tube defects, including exencephaly, in mice (Thaxton et al., 2009; Zhao et al., 2008). 

Excess reactive oxygen species contribute to the LPS-mediated defects, and folic acid 

administration can protect these mice from neural tube defects (Zhao et al., 2008, 2013). 

Interestingly, folic acid supplementation reduces the production of IL-1β, TNFα, and IL-6 

made in the response to LPS administration. LPS-induced neural tube defects and resorption 

were also partially rescued by depletion of NK cells and in mice lacking IL-15 signaling, 

which lack uterine NK cells (Lee et al., 2013). TNFα administration alone is sufficient to 

induce neural tube defects in mice, potentially through its role in altering zinc metabolism 

(Weldon Taubeneck et al., 1995). Animal models demonstrate that a systemic maternal 

immune response is sufficient to induce neural tube defects, but the exact mechanisms and 

the respective contributions of cytokines, oxidative damage, and nutrient imbalances to these 

phenotypes are still unclear.

In addition to overt structural malformations, maternal immune activation (MIA) during 

pregnancy is associated with an increased risk of psychiatric diseases including 

schizophrenia and autism spectrum disorder (Patterson, 2009). One retrospective study 

estimates that maternal exposure to influenza virus can account for as many as 20% of cases 

of schizophrenia (Brown et al., 2004). Abnormal behavior analogous to schizophrenia and 

autism, including inability to inhibit the startle response, has been recapitulated in animals 

by injection of influenza virus, poly(I:C), LPS, or recombinant IL-6 (Patterson, 2009; Smith 

et al., 2007). The poly(I:C)-induced autism-like phenotype leads to specific defects in the 

dysgranular zone of the somatosensory cortex and is mediated by IL-17 (Choi et al., 2016; 

Yim et al., 2017) (Fig. 3). IL-17 produced by maternal T helper-17 (Th17) cells presumably 

crosses the placenta to trigger IL-17R in the fetal neurons, resulting in cortical and 

behavioral abnormalities. Maternal gut microbiota, such as segmented filamentous bacteria 

(SFB), promote the development of Th17 cells and predispose the fetus to 

neurodevelopmental disorders following poly(I:C) challenge in mice (Kim et al., 2017). 

Recent studies of healthy human subjects show a correlation between maternal IL-6 

concentrations during pregnancy with neonatal brain connectivity and executive memory at 

2 years (Rudolph et al., 2018). This indicates that baseline inflammation of the mother may 

impact brain connectivity even without overt disease. In addition to the direct action of 

cytokines on the fetal brain, MIA can modulate fetal neurodevelopment through inducing 

changes in placental tryptophan metabolism and increased serotonin production (Goeden et 
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al., 2016). Thus, during MIA, inflammatory mediators released by the mother may have 

either a direct or an indirect effect on the fetal brain development.

Perinatal inflammation is also recognized as an important risk factor for brain injury and 

development disorders including cerebral palsy, white matter injury, and autism (Boyle et 

al., 2017). Elevated cytokines IL-6 and IL-1β in the amniotic fluid as well as placental 

inflammation are predictors of brain injury in premature infants (Boyle et al., 2017) (Fig. 3). 

Animal models have helped to confirm this connection and identify some of the 

inflammatory pathways that contribute to abnormal brain development. Induction of preterm 

birth by intrauterine LPS exposure leads to abnormal neuronal morphology and decreased 

dendrites compared to preterm birth induced by progesterone inhibition with RU486 (Burd 

et al., 2010). Inhibition of IL-1 signaling using an IL-1 receptor antagonist eliminates the 

abnormal morphology and dendrite numbers (Leitner et al., 2014). IL-1 may act to promote 

an adaptive immune response: depletion of maternal CD8+ T cells reverses the cortical 

density and behavioral abnormalities associated with inflammation- induced preterm 

delivery (Lei et al., 2017). A recent study shows that γδ T cells, which are among the first T 

cells to develop, may contribute to brain injury: γδ T cell infiltration is observed in 

postmortem analysis of human fetuses with white matter brain injury as well as in sheep and 

mouse models of perinatal brain injury due to hypoxia (Albertsson et al., 2018). Depletion of 

γδ T cells in mouse models is sufficient to reduce brain injury (Albertsson et al., 2018). 

Thus, the brain is susceptible to developmental disruption by increased expression of type I 

immune cytokines including type I and type II IFNs, IL-17 and IL-1β (Fig. 3).

Inflammatory pathways that disrupt development of other organs

Heart development is also susceptible to disruption by different states of inflammation. 

While defects in heart development are less common amongst congenital infections, patients 

with congenital rubella syndrome have high rates of heart defects including patent ductus 

arteriosus (PDA), an abnormal connection between the aorta and pulmonary arteries, and 

pulmonary artery stenosis, a narrowing of the pulmonary artery (Oster et al., 2010). Of the 

TORCH pathogens, why only rubella infection results in cardiac defects is unknown. 

Chorioamnionitis, or infection of the fetal membranes, is also associated with an increased 

risk for PDA (Park et al., 2015).

A classic example of immune-mediated congenital heart defects is the case of congenital 

heart block (CHB) that occurs in the fetus of mothers with autoimmune diseases. CHB 

occurs when the maternal autoimmune antibodies, anti-Ro and anti-La, cross the placental 

barrier and attack the conduction system of the fetal heart (Brito- zeron et al., 2015). These 

autoantibodies commonly occur in mothers with SLE, and 1–2% of women with anti-Ro 

antibodies will have babies with CHB. The most common clinical finding of CHB is 

irreversible atrioventricular node block (Brito-zerón et al., 2015). The atrioventricular node 

is the pacemaker of the heart and controls passage of current to the ventricles. The exact 

mechanism by which the conducting system of the developing fetal heart is specifically 

damaged by anti-Ro antibody is poorly understood as most of the target antigens are 

intracellular (Ambrosi et al., 2014).
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Lung development spans the entire gestational period, with the formation of alveoli 

occurring just weeks before birth (Kalikkot et al., 2017). Bronchopulmonary dysplasia 

(BPD) is common in premature infants and results when there is an early block in lung 

development. While there are genetic susceptibilities, bacterial infection of the amnion and 

chorion is an important contributor to BPD (Kalikkot et al., 2017). Intrauterine LPS 

administration leads to abnormal lung development, with decreased airway branching and 

perinatal death, in a macrophage-dependent manner (Blackwell et al., 2011). Constitutive 

activation of NFκB in macrophages is sufficient to reproduce these effects. Inhibition of 

IL-1β and inflammasome activity is sufficient to inhibit the effects of LPS- induced lung 

development defects (Hogmalm et al., 2014). Interestingly, the cell type in which NFκB is 

activated influences the subsequent defects: when NFκB is constitutively activated in 

mesenchymal cells, vascular development in the lung is abnormal (Mccoy et al., 2017). One 

of the possible mediators of abnormal lung development after LPS stimulation is inhibition 

of Shh signaling, which is critical for lung development (Collins et al., 2012). Thus, animal 

models of BPD have provided insights into the mechanisms of disease: including NFκB 

activation and IL-1 expression (Fig. 3).

In addition to brain, heart, and lung, other organ systems can be affected by inflammation as 

well. For example, congenital varicella infection is associated with limb and urogenital 

anomalies. Congenital Treponema pallidum, or syphilis, infection is associated with 

abnormal teeth and bone development (Adams Waldorf and McAdams, 2013). Overall, 

human disease and animal models demonstrate a key role of cytokines, whether induced by 

infection, inflammation or genetic abnormalities, in disrupting development of specific 

organs.

Unanswered questions and future directions

While many questions remain, we highlight a few that may have potential therapeutic 

benefits. First, a long-standing question has been why some maternal infections, but not 

others, lead to congenital diseases (Arora et al., 2017). Must the pathogen infect the placenta 

or the fetus in order to cause developmental defects? How much cytokines, locally or 

systemically, are required to induce placental insufficiency, IUGR, or abnormal brain 

development? What are the cellular sources and targets of cytokines in the placenta and the 

fetus? What are the molecular mechanisms of cytokine-induced dysfunction in target cells?

Second, how might we use our knowledge of toxicity associated with inflammatory 

cytokines and IFNs to develop therapies to prevent pregnancy complications and birth 

defects? Is it advantageous to interfere with these inflammatory responses? In the case of 

congenital infection, blocking type I or type II IFNs may have a detrimental impact on the 

mother, as the pathogen will replicate and spread to cause severe infection (Racicot et al., 

2017). However, if we can understand the ISGs involved in mediating placental insufficiency 

and abnormal brain development vs. those involved in antimicrobial defense, we may be 

able to selectively target the pathogenic ISGs while leaving the protective ISGs intact. 

Similarly, it will be important to delineate which aspects of cytotoxic responses to pathogens 

by NK cells and CD8+ T cells at the maternal-fetal interface control pathogens or contribute 

to pathology. Since many pregnancy complications and birth defects have no known genetic 
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or environmental causes, identification of common “developmentally-toxic ISGs” that 

underlie infectious and non- infectious causes of birth defects could serve as targets for 

future therapy.

Concluding remarks

Healthy pregnancy requires tightly coordinated immune responses. Cytokines and IFNs are 

critical mediators of healthy pregnancy, for their ability to drastically alter cellular function, 

migration, cell-cell communication, proliferation, and gene expression. However, when 

dysregulated or inappropriately expressed, these have the potential to act as teratogens and 

disrupt fetal and placental developmental pathways, leading to birth defects and pregnancy 

complications. Investigating the ways in which different immune signaling pathways impact 

pregnancy and fetal development could provide important insights into congenital disorders 

and possible therapeutics to prevent pregnancy complications.
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Figure 1: Immune responses necessary for healthy pregnancy
(A) The blastocyst attaches to and invades the maternal uterine endometrium. This process is 

accompanied by an evolutionary conserved inflammatory response including IL-6, IL-1, and 

LIF. Key cell types necessary for early pregnancy, as demonstrated by mouse models, 

include dendritic cells, which are essential for decidualization, and macrophages, which are 

essential for maintenance of the corpus luteum in the ovary. NK cells directly surround the 

trophoblasts after implantation.
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(B) During development of the placenta in the first trimester, immune cells including NK 

cells and mast cells are necessary for uterine spiral artery remodeling, as demonstrated by 

mouse models. The cytokine IFN-γ is also necessary for this process in mouse models.

(C) Parturition is mediated by an inflammatory response. Macrophages and neutrophils 

infiltrate the uterine myometrium. IL-1β is secreted and induces muscle contraction. IL6 is 

necessary for on-time parturition in mouse models.
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Figure 2: Antimicrobial protective mechanisms at the placenta and decidua
A) At the chorionic villi and intervillous space, syncytiotrophoblasts (SYN) constitutively 

express IFNλ and exosomes, which confer resistance to viruses and other known TORCH 

pathogens to SYNs and neighboring cells. Maternal IgG is transferred to the fetus using 

FcRn receptors starting at 13 weeks of gestation in humans.

B) At the anchoring villi and decidua, NK cells are capable of killing virus-infected cells 

and are located in close proximity to potential portals of viral entry. NK cells surround 

extravillous trophoblasts (EVTs) and spiral arteries. Pathogen specific CD8 T cells are 

enriched in the human decidua. They have the potential to be cytotoxic upon ex-vivo 

stimulation.
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Figure 3: Pathological effects of cytokines in pregnancy
Aberrant expression of IFN-γ, IFN-β, TNF-α, IL6, IL17, and IL-1β can lead to 

developmental failure in multiple organ systems.

(A) Exposure of embryos to IFN-γ in culture is toxic, and systemically elevated IFN-γ at 

the time of implantation inhibits implantation. Mouse models implicate that IFN-γ 
responsiveness after malaria and toxoplasma infection mediates some of the placental 

defects and that IFN-γ overexpression leads to abnormal brain development in mouse 

models.
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(B) Type I IFNs (including IFNα and IFNβ) mediate abnormal placental development after 

ZIKV infection, as demonstrated by mouse models. Humans with overexpression of type I 

IFNs due to interferonopathies have abnormal brain development, similar to “TORCH” 

infections, implicating IFNs as mediators of abnormal brain development.

(C) Exposure of embryos to TNF-α can induce a block in development. TNF-α is a 

mediator of fetal demise in mouse models of immune stimulation (CpG, LPS, and 

Poly(I:C)). TNF-α injection in mice can cause neural tube defects. Intraamniotic infusion of 

TNF-α is sufficient to induce preterm birth in non-human primate models.

(D) IL-6 (upstream of IL-17) induces abnormal brain development and behavior in mouse 

models of maternal immune activation. IL-6 mediates on time and preterm parturition in 

mouse models.

(E) IL17 (downstream of IL6) induces abnormal brain development and behavior in mouse 

models of maternal immune activation.

(F) IL-1 may induce preterm birth, as amniotic IL-1β administration is sufficient to induce 

preterm labor in non-human primates. Mouse models reveal that IL-1 may mediate defects 

associated with peripartum intrauterine inflammation including abnormal lung development 

associated with bronchopulmonary dysplasia and brain injury.
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Table 1:

Beneficial and pathological roles of cytokines in pregnancy

Cytokine Beneficial roles Citation Pathological roles Citation

Type I IFNs Pregnancy recognition in 
ungluates (IFN-τ)

(Roberts, 2007) Block in placenta development after ZIKV 
infection

(Yockey et al., 2018)

Mediates uterine artery 
remodeling in mouse 
models

(Murphy et al., 2009) Microcephaly and cranial calcifications 
after genetic overexpression, possibly viral 
infection

(Crow et al., 2015)

Correlates with pregnancy complications in 
patients with SLE

(Andrade et al., 2015)

IFN-γ Mediates uterine spiral 
artery remodeling

(Ashkar et al., 2000) Prevents implantation and toxic to embryo (Robertson et al., 2018)

Induces abnormal cerebellar development 
when overexpressed in mouse brains

(Wang et al., 2004)

Mediates placental damage after Malaria 
infection in mouse models

(Niikura et al., 2017)

Mediates fetal resorption after Toxplasma 
infection in mouse models

(Senegas et al., 2009)

IL-1β Upregulated during 
implantation in an 
evolutionary- conserved 
manner

(Griffith et al., 2017) Mediates abnormal lung development after 
peripartum inflammation in mouse models

(Hogmalm et al., 2014)

Mediator of myometrial 
contraction during labor

(Oger et al., 2002; 
Tribe et al., 2003)

Mediates neuronal damage due to 
inflammatory preterm birth in mouse 
models

(Leitner et al., 2014)

Sufficient to induce (Sadowsky et

preterm labor in non-human primate 
models

al., 2006)

IL-6 Upregulated during 
implantation in an 
evolutionary- conserved 
manner

(Griffith et al., 2017) Induces autism-like phenotype and 
abnormal brain development in mouse 
models

(Smith et al., 2007)

IL-15 Required for uNK cell 
recruitment and uterine 
spiral artery remodeling in 
mouse models

(Ashkar et al., 2003)

IL-17 Induces autism-like phenotype and 
abnormal brain development in mouse 
models

(Choi et al., 2016)

LIF Upregulated during 
implantation in an 
evolutionary- conserved 
manner

(Griffith et al., 2017)

Required for successful 
implantation in mouse 
models

(Stewart et al., 1992)

TNFα Toxic to early embryo development (Robertson et al., 2018)

Sufficient to induce preterm labor in non-
human primate models

(Sadowsky et al., 2006)

Sufficient to induce neural tube defects 
after systemic maternal injection

(Weldon Taubeneck et 
al., 1995)

Mediates fetal demise in mouse models of 
LPS and poly(I:C)-induced

(Carpentier et al., 2011; 
Thaxton et al., 2013)

fetal resorption.
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