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Abstract

Latent infection of CD4+ T cells is the main barrier to eradicating HIV-1 infection from infected patients. The
cellular and molecular mechanisms involved in the establishment and maintenance of latent infection are
directly linked to the transcriptional program of the different CD4+ T cell subsets targeted by the virus. In this
review, we provide an overview of how T cell activation, T cell differentiation into functional subsets, and the
mode of initial viral infection influence HIV proviral transcription and entry into latency.
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Introduction

HIV-1 is intricately linked to the biology of its pre-
ferred target host cell type, CD4+ T cells. This is par-

ticularly evident when considering the transcription of the HIV
provirus and the combinatorial requirement for general cellu-
lar transcriptional machinery, chromatin regulators, and cell
lineage-specific factors. The presence and absence of specific
factors or repressive transcriptional mechanisms in different
T cell subsets may promote the repression of proviral tran-
scription thus establishing, maintaining, and biasing latent
HIV-1 infection in different T cell subsets. HIV may encounter
different cellular transcriptional conditions during initial entry
and integration into a host cell or the transcriptional conditions
can change after HIV has already integrated into the host
DNA. Whether a host cell possesses a favorable or unfavorable
transcriptional environment is directly dependent on T cell
activation, cell cycle progression, maturation, differentiation
status, and signals generated at the time of initial infection.

T cell maturation is driven in large part by the strength of
signal through the T cell receptor (TCR)–major histocom-
patibility complex (MHC)–peptide interactions with antigen-
presenting cells (APCs). However, it is also strongly influenced
by other environmental cues in the tissue microenvironment,
including cytokines, chemokines, and interactions with
neighboring non-APCs. There have been several reviews that
have focused on the general biochemical mechanism of tran-
scriptional regulation, such as chromatin remodeling and
RNAP II (RNA polymerase II complex) pausing that limit HIV
transcription.1–3 In this review, we will focus on how intrinsic
cell lineage-specific factors that are initiated by T cell matu-
ration and the mode of infection may influence HIV replication
and the establishment of latency.

Overview of T cell Activation and Maturation

Canonical antigen presentation to CD4+ T cells involves
the direct cell–cell interaction between APCs and naive CD4+

T cells.4 APCs present MHC-II loaded with peptide to the
TCR, whereas costimulatory molecules on naive T cells in-
teract with their ligands on the surface of APCs. The mac-
romolecular complex generated upon cell–cell interaction is
known as the immunological synapse.5,6 Establishment of
APC–T cell immunological synapses triggers cascades of
positive and negative signaling that include nonreceptor ty-
rosine kinases, phosphorylation of downstream adaptor pro-
teins, the assembly of multimolecular complexes that include
lipid kinases, lipases, guanine nucleotide exchange factors,
and small G-proteins, which culminate in increased intra-
cellular calcium, activation of ERK/MAPK pathways, and
induction of cellular transcription factors.7–9

T cell signals converge to remodel cortical actin and re-
distribute surface receptors and membrane domains of acti-
vated T cells.7–9 These signals control the immune response in
part by influencing the generation and maintenance of T ef-
fector populations, memory cells, and tolerized T cells. They
also polarize T cell responses, which in turn drive the activity
and function of other immune cells, including but not limited to
macrophages, dendritic cells (DCs), B cells, other CD4+ and
CD8+ T cells.

The specific effector functions of stimulated T cells will
largely depend on the strength of the signaling cascade.
Binding avidity of the MHC-II/peptide complex to the TCR,
the duration of this interaction, and engagement of costi-
mulatory receptors and cytokines are the primary determi-
nants of signaling strength.7 For example, differentiation
of naive T cells to Th1 or Th2 effector functions can be

Section of Infectious Diseases, Department of Medicine, Boston University Medical Center, Boston, Massachusetts.

AIDS RESEARCH AND HUMAN RETROVIRUSES
Volume 34, Number 9, 2018
ª Mary Ann Liebert, Inc.
DOI: 10.1089/aid.2018.0105

780



modulated by stronger or weaker TCR signals, respective-
ly.10–12 Strong signaling can also bias naive T cells toward
effector subsets that have a relatively short half-life, whereas
weaker signaling in response to self antigen can drive cells
into anergy to establish immunological tolerance.10,13–16

Upon resolution of the T cell response, most effector cells
will turnover with relatively short half-lives, whereas a small
subset will survive as memory cells (Fig. 1). Upon re-
encountering antigens, memory cells will respond more
vigorously, thus forming the basis for immunological mem-
ory. Several subsets of memory cells have been recognized,
including stem cell memory cells (TSCM), central memory
cells (TCM), effector memory cells (TEM), and terminally
differentiated memory cells (TEMRA or TTE).17 TSCM are a
recently identified self-renewing subpopulation of memory
cells that give rise to effector T cells and other memory cell
populations.18–21 TCM have long half-lives and represent the
primary cellular compartment responsible for long-lasting
immunological memory.22,23 TEM cells home directly to in-
flamed tissues and are characterized by rapid response to
antigen.22,23 TEMRA have low proliferative and functional
capacity and express some markers of senescence.17

Homeostatic proliferation of these memory populations may
require low-level signaling through the TCR and/or cyto-
kines, including IL-7 and IL-15.24

In the absence of professional APCs, T cells can be par-
tially activated through alternative mechanisms. T cells have
been shown to be activated by nonprofessional APCs, such as
endothelial cells,25–27 stromal cells,28 and even activated
CD4+ T cells.29–32 These atypical APCs express MHC-II but
lack costimulatory molecules, such as CD28, which drives
partial activation and biasing T cells toward an anergic or
inactive state.33 T cell anergy is characterized by a significant
reduction in cell proliferation and diminished release of cy-
tokines upon subsequent antigen presentation. A similar inert
T cell phenotype results from overstimulation or persistent
signaling of T cells, as often occurs during chronic inflam-
matory diseases, including HIV infection and cancer. These
exhausted T cells are defined by their loss of immune effector
potential and proliferation.34 Both T cell anergy and T cell
exhaustion have their own transcriptional profiles and are

thought to be important mechanisms for controlling overac-
tive immune responses and antigenic tolerance.15,35–37

In considering the generation of T cells into different
functional subsets it is important to recognize that T cell
maturation is a regulated process that involves differential
T cell specific gene expression patterns.38,39 Effector and
memory subsets as well as exhausted and anergic cells ex-
press distinct batteries of genes that maintain their pheno-
types and function. Gene expression in these T cell subsets
are actively maintained by combinatorial activities between
cell-specific transcription factors, more general coactivator
and corepressor complexes and chromatin remodeling fac-
tors. During HIV entry into different T subsets, the virus will
encounter different transcriptional profiles and different in-
trinsic cellular factors, which will either support proviral
transcription or drive proviral repression and latency.

T Cell Activation and Intrinsic Cellular Factors
Regulate HIV Replication

HIV-1 can infect target cells through the dissemination of
cell-free particles or through direct cell–cell contact.40,41

Similar to antigen presentation, efficient cell–cell contact-
mediated transfer of HIV correlates with the redistribution of
surface receptors, lipid rafts, reorganization of cortical actin,
and the delivery of signals across a synaptic junction.42–46

Because of the physical and functional similarities to the
immunological synapse, these structures have been termed
infectious synapses (dendritic cell–T cell junctions) or viro-
logical synapses (T cell–T cell junctions).47–50 Whether the
quality of signals emanating from this synapse support or
alter HIV productive infection and the establishment of la-
tency has not been fully investigated; although, HIV co-opts
T cell activation to ensure efficient infection and replication.

For example, reports, including those from our laborato-
ry,51–56 have demonstrated that tyrosine kinases, Lck,55,57,58

Fyn,59 ZAP-70,60,61 ITK,53,54,62 lipid kinases PI3K52,63–65

and PI4P5 kinase,66 and MAP kinase pathways67 regulate
HIV entry, reverse transcription, proviral transcription, virus
assembly, and release. We and others have also shown that
signals emanating from CD28 positively and negatively

FIG. 1. Overview of T cell differen-
tiation. Upon antigen presentation, TN

are activated and differentiate in effec-
tor cells (TE). The specific effector
functions that these cells will undertake
largely depend on the stimulus and the
cytokine milieu during antigen presen-
tation. A fraction of TE cells will un-
dergo apoptosis after resolution of the
immune response while another fraction
will return to a resting state to become
memory cells (TEM, TCM, and TEMRA).
TCM can differentiate into TEM or TE

depending on the stimulus, whereas
TEM can typically only differentiate into
TE during subsequent stimulus. Some
TN differentiate into TSCM after antigen
presentation. These cells have self-
renewal potential and can also differ-
entiate into other memory subsets.
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regulate HIV transcription.51,52,65,68,69 Weaker signals, such
as those that induce homeostatic proliferation of T cells, seem
sufficient for cell division but not for stimulating HIV pro-
duction. This is the basis for the expansion of latently in-
fected cell clones in some HIV-infected individuals.70–76

In addition, the quality, duration, and magnitude of TCR and
CD28-associated signals set a threshold for completing reverse
transcription and productive HIV infection.65 For example,
T cell activation has been shown to enhance the efficiency
of reverse transcription since it is associated with low expression
of the restriction factor SAMHD1 and increased availability of
nucleotides.77–79 T cell activation will also influence integration
site selection by reorganizing general chromatin organization
and localization of transcriptionally active open chromatin to
the nuclear periphery near nucleoporin structures.80–83 That
antigen receptor-driven T cell activation influences HIV infec-
tion is supported by observations showing that superantigens
increase susceptibility of CD4+ T cells to HIV infection84 and
that in vitro and in vivo T cells specific for tetanus toxoid,
Candida albicans,85 adenovirus,86 HSV-2,86 TB,87 and HIV88–90

are preferentially infected.
Once integrated, the provirus will be transcribed by the

host transcriptional machinery. Efficient proviral transcrip-
tion involves the binding of essential host transcription fac-
tors, such as NF-jB, AP-1, NFAT, and Sp1, and processive
RNAP II.1–3 Repression of provirus transcription represents
the primary mechanism of HIV latent infection. Insufficient
signaling at the time of HIV infection may bias cells toward a

latent infection. For example, efforts to establish primary
models of latency suggest that minimal or partial activation
either by polarizing cells toward a central memory pheno-
type,91 treating with chemokines,92, 93or infecting resting
CD4+ T cells directly without additional stimulus94,95 biases
in vitro infections toward latency.

Similarly, interactions with immature DCs96,97 or non-APCs,
such as endothelial cells,98 and neighboring T cells may impact
the establishment of latency. Ectopic cell–cell interactions or
cytokine release alters the expression of intrinsic factors that
control T cell maturation and potentially drive expression and
repression of HIV transcription and latency in different T cell
subsets through cell-specific transcriptional programs (Ta-
ble 1). For example, effector memory T cells have increased
expression of the transcription factors GATA-3 and c-Maf;
these two factors are also essential for Th2 effector cell mat-
uration.99–102 Both GATA-3 and c-Maf have been demon-
strated to bind the LTR to co-operate with NF-jB and NFAT
to facilitate transcription in Th2 and activated TEM.103–106

An example of transcriptional repression by transcription
factors in quiescent T cells is the Bcl6-Blimp-1 axis. These
transcription factors are directly involved in the differentia-
tion of effector T follicular helper cells (TFH) and T memory
subsets.107–111 High Bcl6 expression and low Blimp-1
expression support TFH differentiation, whereas, elevated
Blimp-1 expression is observed in quiescent memory T cell
subsets. Both of these factors have been shown to directly and
indirectly regulate HIV replication. Bcl6 was recently

Table 1. Cell Lineage Specific Intrinsic Factors and Their Effect on HIV Transcription and Latency

Cell type
Repressive

transcription factor
Activating

transcription factor References

Naı̈ve Cells
TN NDa

Effector Cells
Th1 NDa

Th2 GATA-3 1. Pereira LA, et al.103

cMaf 2. Galio L, et al.104

3. Yang Z, et al.105

4. Zhang M, et al.106

Th17 RUNX1 1. Cleret-Buhot A, et al.153

PRC2 2. Klase Z, et al.154

EHMT2 3. Nguyen K, et al.155

Treg FOXP3 FOXP3 1. Grant C, et al.156

2. Selliah N, et al.157

3. Holmes D, et al.158

4. Holmes D, et al.159

5. Oswald-Richter K, et al.160

TFH Bcl-6 Bcl-6 1. Baron BW, et al.161

2. Amet T, et al.112

Memory Cells
TEM Blimp-1, PRC2,

EHMT2, G9a, SMYD2
GATA-3

cMaf
1. Kaczmarek Michaels K, et al.113

2. Nguyen K, et al.155

3. Boehm D, et al.162

TCM Blimp-1, PRC2,
EHMT2, G9a, SMYD2

TSCM Blimp-1, PRC2,
EHMT2, G9a, SMYD2

TEMRA Blimp-1, PRC2,
EHMT2, G9a, SMYD2

aND = not determined.
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reported to inhibit several interferon-stimulated genes, thus
likely contributing to the increased susceptibility of TFH cells
to HIV replication.112 Blimp-1 on the other hand, directly
interacts with interferon-stimulated response elements within
the HIV proviral sequences and prevents transcription pro-
cessivity, contributing to the establishment of latent infection
in memory T cells.113 Blimp-1 is also upregulated in T cells
that display exhausted phenotypes.36,114 Exhausted T cells
have been shown to have provirus in HIV-infected individ-
uals,115 but whether Blimp-1 is involved in the repression of
HIV transcription in these cells has not been demonstrated.

Latent HIV infection appears to be preferentially con-
tained within the central memory CD4+ T cell compart-
ment.116–121 However, all T cell subsets that have been
surveyed carry HIV provirus, including naive T cells.115–122

Latent infection of naive T cells has been largely ignored
partly due to the very low frequency of these cells in HIV-
infected individuals. It has been recently suggested that latent
infection in naive CD4+ T cells is more difficult to reverse.123

This observation may suggest that intrinsic factors within
naive cells may promote a ‘‘deep’’ latency that may be dif-
ficult to target by latency-reversing agents, thus having im-
plications for strategies to reduce the size of the latent
reservoir.

Cellular Mechanisms That Establish HIV
Latent Populations

Latent infection has been suggested to be established by
two mechanisms: (1) during the resolution of a T cell re-
sponse when a subset of activated cells transition to a qui-
escent or resting state or (2) by direct infection of quiescent or
resting T cells (Fig. 2). As mentioned in the previous section,
most studies have found that the majority of latently infected
T cells in treated individuals are memory T cells. This evi-
dence suggests that the process of infected activated CD4+ T
cells returning to a resting state is an important mechanism
for the generation of latent infection in vivo.124

Many in vitro models used for studying transcriptional
regulation of latent infection are dependent on activated T cells
returning to a resting state and extinguishing HIV proviral
transcription.91,125–129 Such experimental models have shown
that proviral transcription is limited in latently infected cells by
three main biochemical mechanisms: (1) absence of positive
transcription factors, such as NF-jB, to initiate proviral tran-
scription, (2) epigenetic changes to chromatin and proviral
DNA, and (3) repressive factors that prevent the processivity
of the transcriptional machinery.130–133 However, it remains
unclear if specific cellular factors are involved in the

A

B

FIG. 2. Cellular mecha-
nisms for the generation of la-
tent infection in CD4+ T cells.
(A) Latent infection can be es-
tablished during the transition
of activated CD4+ T cells to a
quiescent/resting state. When
fully or intermediately acti-
vated, CD4+ T cells become
infected with HIV, a proportion
will undergo apoptosis due
to the cytopathic effects of
viral replication, and a pro-
portion will survive infection
and return to a resting state in
which viral replication is sup-
pressed.124,149 (B) Latent in-
fection can also be established
by direct infection of quiescent/
resting CD4+ T cells with cell-
free particles,94,136,137,150–152

or by cell-to-cell transmission
from productively infected T
cells (Agosto and Henderson,
unpublished work), from
APC,96,97,141 and from endo-
thelial cells.98 APC, antigen-
presenting cells.
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establishment and regulation of HIV transcription and la-
tency when resting T cells are infected directly.134

Direct infection of quiescent or resting CD4+ T cells could
explain the presence of proviral DNA in some quiescent T
cell subsets such as naive cells and exhausted T cells.135–137

Interestingly, just as in activated CD4+ T cells, HIV inte-
gration in resting T cells is favored near transcriptionally
active chromatin regions,138,139 yet infectious virus produc-
tion is repressed. Despite the inability of infected resting
CD4+ T cells to produce infectious particles, it has been
observed that these cells do express some spliced HIV
RNA.95 These RNAs in infected resting cells have been
demonstrated to be translated into viral proteins, such as Gag
and Nef, but little production of Tat, Rev, and Env is de-
tected.95,140 Read-through of RNAP II from neighboring
cellular genes or yet-to-be-identified cellular transcription
factors may account for this pattern of HIV expression in
latently infected resting cells.

Resting CD4+ T cells can also become infected through
cell–cell contact. The best characterized mode of infection of
resting cells by cell–cell contact is that mediated by dendritic
cells.96,97,141 Dendritic cells capture particles through re-
ceptors such as Siglec-1/CD169 and DC-SIGN, which are
then preserved in intracellular compartments.142–144 Upon
interaction with T cells while probing for antigen-specific
cells, particles are transferred and ultimately infect T cells.
Dendritic cell maturation and functional subsets will directly
influence whether this cell–cell interaction is productive or
latent.96

Non-APCs have also been shown to transmit HIV directly
to resting T cells, including endothelial cells98 and produc-
tively infected T cells. Although cell-to-cell transmission to
resting CD4+ T cells has been suggested to be a highly in-
flammatory process resulting in the apoptosis of target and
bystander resting T cells,145–147 recent work from our labo-
ratory indicates that a proportion of target resting CD4+ T
cells become latently infected through this process (Agosto
and Henderson, unpublished observations). Interestingly, our
work suggests that latent infection generated by cell-to-cell
transmission between T cells is more difficult to reverse
through TCR/CD28 signaling compared with latent infection
generated by cell-free infection. This observation suggests
that cell-to-cell transmission either modifies the transcrip-
tional program in target T cells and a number of specific
factors may be involved in tightly repressing HIV tran-
scription or that this mode of viral transmission preferentially
targets resting cells with a strongly repressive transcriptional
program.

Conclusion

HIV transcription and the establishment of proviral latency
are regulated by multiple biochemical and cellular mecha-
nisms which will reflect how cells are activated, cell matu-
ration, and differentiation. Two main strategies have been
proposed for targeting the latent reservoir.148 The first strat-
egy, known in the field as ‘‘shock and kill,’’ proposes to
pharmacologically reactivate latent proviruses with the aim
of inducing death of infected cells due to the cytopathic ef-
fects of viral replication or cytotoxic immune responses. The
second strategy, known in the field as ‘‘block and lock,’’
proposes to suppress HIV transcription long term, thus

eliminating the need for antiretroviral therapy. Regardless of
which strategy will be used to target the latent reservoir, it
will be critical that all populations that are harboring latent
HIV are targeted to assure efficacy of a cure; thus, under-
scoring the importance of understanding the events of latency
in multiple cell subsets in different tissue environments.
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