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Abstract

Multiple myeloma (MM) is amongst the most compelling examples of cancer in which research
has markedly improved the length and quality of lives of those afflicted. Research efforts have led
to 18 newly approved treatments over the last 12 years, including 7 in 2015. However, despite
significant improvement in overall survival, MM remains incurable as most patients inevitably, yet
unpredictably, develop refractory disease. Recent advances in high-throughput “omics” techniques
afford us an unprecedented opportunity to (1) understand drug resistance at the genomic,
transcriptomic, and proteomic level; (2) discover novel diagnostic, prognostic, and therapeutic
biomarkers; (3) develop novel therapeutic targets and rational drug combinations; and (4) optimize
risk-adapted strategies to circumvent drug resistance, thus bringing us closer to a cure for MM. In
this review, we provide an overview of “omics” technologies in MM biomarker and drug
discovery, highlighting recent insights into MM drug resistance gleaned from the use of “omics”
techniques. Moving from the bench to bedside, we also highlight future trends in MM, with a
focus on the potential use of “omics” technologies as diagnostic, prognostic, or response/relapse
monitoring tools to guide therapeutic decisions anchored upon highly individualized, targeted,
durable, and rationally informed combination therapies with curative potential.
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INTRODUCTION

Multiple Myeloma (MM) is a plasma cell neoplasm that accounts for 1.3% of all
malignancies and 15% of hematological cancers, making MM the second most commonly
diagnosed blood cancer (after non-Hodgkin lymphoma) [1]. Once considered an incurable
disease with a short overall survival (OS), major progress in the understanding of MM
biology and the development of highly active therapeutics has led to a distinct change in the
natural history of MM. Indeed, MM is becoming a chronic illness for many patients, in
which median OS has increased over 3 folds in the past 15 years. Therapeutic advancements
have led to evolving treatment paradigms focusing on (1) autologous stem cell
transplantation (ASCT), (2) therapies targeting MM in the context of the bone marrow (BM)
microenvironment (e.g. proteasome inhibitors, immunomodulatory drugs, histone
deacetylase inhibitors), and (3) immunotherapy (e.g. monoclonal antibodies, checkpoint
inhibitors and T-cell immunotherapy) [2]. However, despite significant improvement in OS,
MM remains incurable in the long-term as most patients inevitably, yet unpredictably,
develop refractory disease (i.e. disease that fails to respond to induction or salvage therapy,
or progresses within 60 days of last therapy) [3]. This is the product of genomic instability,
clonal diversity, and MM’s unique relationship with the BM microenvironment [4]. The
treatment of relapsed/refractory disease poses a special challenge due to significant
heterogeneity in relapsed disease, clonal tiding, and the lack of clear biological-based
recommendations on the choice of salvage therapies at different stages of disease
progression [5]. A study by Kumar et al., has reported that patients who are double
refractory to both proteasome inhibitors (PIs) and immunomodulatory drugs (IMiDs) do
poorly, with a median OS and progression-free survival (PFS) of 9 and 5 months,
respectively [6]. As such, there is an urgent need to decipher the underlying mechanisms of
intrinsic and acquired drug resistance in MM.

“Omics” is the non-targeted, unbiased, and comprehensive study of genes (genomics),
mRNA (transcriptomics), proteins (proteomics), lipids (lipidomics), and metabolites
(metabolomics) in specific biological samples (Table 1) [7,8]. The success of genetic
research in the discovery of therapeutic targets is exemplified by the use of the tyrosine
kinase inhibitor Imatinib for the treatment of Philadelphia positive (Ph*) hematologic
neoplasia [9]. In the decade following the discovery of the Philadelphia chromosome, the
advent of next generation sequencing (NGS) has led to revolutionary advances in the
diagnosis and management of hematologic (and solid) cancers with findings such as the
BRAF V600E mutation in Hairy Cell Leukemia, the MYD88 265P mutation in
Waldenstrom’s Macroglobulinemia, and the CALR mutation in JAK2 and MPL double
negative myeloproliferative neoplasms [10-12]. In the field of MM, NGS has improved our
understanding of the heterogeneous landscape of genetic alterations and facilitated the
identification of multiple deregulated core signaling pathways and mutations of diagnostic
and therapeutic significance [13]. A massive parallel sequencing study of samples from 203
patients diagnosed with MM reported frequent mutations in KRAS, NRAS, FAMA46C, TP53,
and D/S3and less frequently in BRAF, TRAF3, CYLD, RB1, and PRDM1, which hold
biological and therapeutic potential in MM [14]. NGS efforts have also been instrumental in
uncovering clonal heterogeneity and evolution in MM patients [15,16]. Furthermore, the use
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of gene expression profiling has identified = 20 different types of myeloma, each
phenotypically different in treatment response and clinical behavior [17]. By using
molecular profiles to understand disease mechanisms, predict drug response and patient
relapse, “omics” data can be used to guide pre-clinical drug development and tailor
personalized treatments for each individual patient and disease.

Indeed, recent advances in high-throughput “omics” techniques afford us an unprecedented
opportunity to understand drug resistance at the genomic, transcriptomic, and proteomic
level. The use of multi-"omics” has proven invaluable for investigating the genetic and
molecular mechanisms of drug resistance in refractory MM in both clinical and pre-clinical
studies. Specifically, a literature review of studies on “myeloma” “resistance”, published
between 2010 and 2016, revealed 52, 9, and 3 papers that utilized genomics, proteomics, and
metabolomics, respectively, to interrogate the mechanisms underlying drug resistance. In
this review, we provide an overview of “omics” technologies in (1) developing MM clinical
diagnostic and risk stratification tools, (2) understanding MM drug resistance in the era of
conventional and targeted therapies, (3) developing new biomarkers and therapies in the era
of targeted cancer immunotherapy. We also propose a model for the application of “omics”
technologies in preclinical research (bench) and clinical practice (bedside) (Fig 1).

CLINICAL APPLICATION OF “OMICS”: MOVING “OMICS”-BASED
DIAGNOSTICS AND PROGNOSTICS FROM BENCH TO BEDSIDE

Potential of genomics in the identification of high-risk MM

Standard cytogenetics and FISH are key to risk stratify newly diagnosed multiple myeloma
patients. However, there may be further heterogeneity even within groups with these genetic
prognostic factors. From this perspective, standard karyotype and FISH only have limited
value in guiding treatment decisions and aid in personalized therapeutic strategies [18-23].

On the other hand, gene expression profiling (GEP) has given rise to several genetic
signatures that have been successfully implemented in MM to improve risk stratification
[24-27]. The “Mayo stratification of myeloma and risk-adapted therapy model” (nNSMART)
put forward by the Mayo clinic Dysproteinemia group is an example of a model that
integrates gene expression profiling (GEP) with conventional cytogenetics and fluorescent
in-situhybridization (FISH) [28]. Indeed, a study using GEP identified 70 genes that are
associated with shorter durations of remission, event-free survival (EFS) and OS; 30% of
which were found to be either upregulated or downregulated on chromosome 1. By utilizing
a ratio of mean upregulated to downregulated gene expression, a high-risk score was
formulated and shown to be an independent predictor of outcome in a multivariate analysis
that included the International Staging System. The study further identified a 17-gene
signature (subset of the original 70 genes) that could accurately define high-risk disease
[24]. Another study identified 15 survival-associated genes through GEP. A risk score based
on the expression level of these genes was calculated and used to stratify patients into a
high-risk group (overexpression of cell cycle-related genes) and a low-risk group
(heterogeneous GEP pattern with a hyperdiploid signature). This genetic signature was
validated in three independent myeloma cohorts (n=853), with the low and high-risk groups
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reporting a three-year OS of 90.5% and 47.4%, respectively; hence attesting to the potential
of GEP in myeloma risk stratification [29].

However, limitations to GEP do exist as the gene signatures used to stratify risk may not
always be specific for a given clinical outcome, thus potentially leading to over- or under-
treatment. Additionally, GEP cannot assay certain important prognostic factors, such as the
presence of del(17p), and should therefore be combined with FISH analysis. Moreover, there
still needs to be standardization in gene expression profiling methods, analysis techniques,
and consensus and validation of the best genes to be used universally. Given these
limitations, coupled with the fact that GEP is still largely experimental and not widely
available, there are several issues that need to be addressed prior to clinical application [30].
Furthermore, while GEP has proven utility in tumor classification and survival risk
prediction [29,31-40], gene expression alone may not be adequate in predicting complete
response in MM, highlighting the need to adopt integrated omics approaches in the
development of more accurate and comprehensive predictive models [41].

Treatment response and relapse monitoring using a genoproteomic approach

The early detection of MM relapse has been challenging due to a historical lack of
sufficiently sensitive monitoring strategies [42]. Presently, however, a better understanding
of disease biology coupled with progress in science and technology has enabled us to
measure MRD in the bone marrow with sensitivities in the range of 107°-107 cells through
the development of cellular techniques such as next generation flow cytometry and “omics”-
based approaches such as gASO-PCR (quantitative allele-specific oligonucleotide
polymerase chain reaction) and next generation sequencing [43]. Specifically, NGS can be
used to track clonal rearrangements in one or more of three Ig genes (IgH, IgLx, IgLA)
unique to the malignant plasma cell over the course of disease and treatment to guide and
further refine therapeutic decisions. Ultimately, the question today is no longer “can we
detect MRD with sufficient sensitivity?” but rather “what is the practical value of minimal
residual disease (MRD) monitoring and how can it be utilized to improve patient
outcomes?”; a question that is thoroughly discussed in a current perspective piece by
Anderson et al [44].

Researchers at the Mayo clinic have devised a new proteomics-based approach to monitor
clonotypic peptides from M-protein heavy chain variable regions [45]. Compared with
current analytical methods (e.g. protein electrophoresis/PEL, immune-fixation
electrophoresis/IFE, and free light chain nephelometry/FLC), proteomics can detect
clonotypic peptides in PEL-, IFE-, and FLC-negative samples. Thus, the use of proteomics
to monitor myeloma progression and relapse has the capability to redefine clinical residual
disease due to its superior sensitivity and specificity [45]. As tumor heterogeneity and
evolution make myeloma a ‘moving’ molecular target, myeloma (M)-protein monitoring
could be complimented by ongoing molecular profiling to evaluate how the genetic
architecture of myeloma changes over time or in response to treatment. The proposed
genoproteomic-based drug-repurposing program could be more effective than the current
therapeutic approach (i.e. to treat empirically based on clinical trial evidence or to re-
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challenge with prior active agent or ASCT) adopted in patients who may be refractory to
standard therapies [46].

PRE-CLINICAL APPLICATION OF “OMICS” IN THE ERA OF
CONVENTIONAL AND TARGETED CHEMOTHERAPY: UNCOVERING AND
OVERCOMING MECHANISMS OF MM DRUG RESISTANCE

As alluded to previously, a search of the published literature from 2010 to 2016 identified 62
studies (25 clinical; 37 pre-clinical) that utilized *“omics” technologies to screen for genes,
proteins, and metabolites dysregulated in drug-resistant MM (Table 2). These studies
identified many deregulated pathways (e.g. survival, apoptosis, proliferation, cell-cycle
regulation, DNA repair, epigenetic regulation, redox homeostasis, protein handling, drug-
efflux, autophagy, inflammation, and plasma cell maturation) that could contribute to
resistance to conventional chemotherapy, proteasome inhibitors, IMiDs, and small molecule
inhibitors. In particular, decreased XBP1 splicing was recently found to be a marker of
bortezomib resistance in MM [47]. By suppressing XBP1s, MM cells de-commit to plasma
cell maturation and decrease immunoglobulin production, proteasome load, and ER stress,
resulting in acquired resistance to Pl [47,48]. Low cereblon (CRBN) expression on the other
hand was discovered to be implicated in Lenalidomide and Pomalidomide resistance [49].
The next step would then be to validate and translate this data into (1) novel diagnostic,
prognostic, and therapeutic biomarkers and (2) novel therapeutic targets and rational drug
combinations, to optimize risk-adapted strategies to circumvent drug resistance and bring us
closer to a potential cure for MM.

Genomic identification of biomarkers predicting drug resistance

The use of gene expression profiling to identify novel biomarkers of drug response in MM
has already been extensively reviewed [50-52]. As such, we will only briefly highlight a few
studies that employed genomic evaluation to identify potential biomarkers associated with
drug resistant MM. A recent study identified a 23-gene expression signature, by comparing
the baseline gene expression of bortezomib-resistant (BzR) vs bortezomib-sensitive (BzS)
mouse MM cell lines, that could significantly predict patient outcomes in the MMTT3
human drug trial [53]. Additionally, an RNAI screen identified 37 genes that could
potentially be targeted to sensitize MM cells to proteasome inhibitors [54]. Current genes in
the biomarker translational pipeline include CXCR4; a gene linked with bortezomib-
resistance and a potential diagnostic biomarker that can predict patient response to
borterzomib [55].

Proteomic identification of biomarkers predicting drug resistance

Apart from gene expression profiling, mass spectrometric (MS) exploration of early
biomarkers of bortezomib resistance has yielded some promising results. Apolipoprotein C-I
and C-I” were recently found to be significantly increased in the serum of treatment-
refractory patients compared to treatment-responsive patients 24-hours post bortezomib
administration [56]. In a separate study, an ‘isobaric tags for relative and absolute
quantification” (ITRAQ)-based approach implicated drug-resistance in the BzR
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RPMI-8226/R5 MM cell line with the overexpression of the MARCKS protein [57]. MS
profiling of dexamethasone (dex)-sensitive MM.1S revealed FKBP5 overexpression
following dex treatment which was not seen in the dex-resistant MM.1R cell line [58].

Membrane proteins play a significant role in chemoresistance [59-61]. Membrane
proteomics represents a highly efficient way of identifying membrane proteins with unusual
properties that can potentially lead to the discovery of novel therapeutic targets as well as
important modulators of drug resistance. However, despite constituting 30% of the total
genome, membrane proteins are under-represented in many proteome profiles. The under-
representation of membrane proteins from proteome studies is attributed mainly due to the
heterogeneous, hydrophobic, and low abundance nature of these proteins. Lately there have
been significant developments made in the areas of membrane protein analysis due to the
availability of superior solubilisation methods and the production of new mass spectrometers
that can detect and quantify low abundant proteins such as those found in or associated with
the membrane.

Apart from the regulation of protein expression, post-translational modifications (e.g.
phosphorylation, glycosylation, ubiquitination, methylation, acetylation) provide an
additional layer of control over protein function. Emerging evidence is showing that cancer
progression is largely regulated by epigenetic alterations such as post-translational
modifications (PTMSs). PTMs play critical roles in gene regulation, cellular functions, tissue
development, diseases, malignant progression and drug resistance. Mass spectrometry is
now sensitive enough to reliably identify PTMs thus allowing us to further interrogate how
PTMs, and not simply expression, of proteins underlie drug-resistance. Chemoresistance in
MM has been associated with aberrant activation of FGFR3, through tyrosine
phosphorylation, in 15-20% of MM due to a t(4;14)(p16.3;932) translocation [62—-64].
Phosphoproteomic profiling of proteins associated with FGFR3 expression, ligand
activation, and drug inhibition was recently performed and several phosphotyrosine sites
downstream of FGFR3 activation that could potentially serve as biomarkers of drug
resistance were identified and quantified [65]. While the function of phosphorylation has
been extensively studied over the last 20 years and is now relatively well-characterized,
much less is understood about the role other PTMs (e.g. ubiquitination) play in MM drug
resistance. Interestingly, multi-monoubiquitination can mark transmembrane proteins (for
example, receptors) for removal from membranes (internalization) and fulfill several
signaling roles within the cell. When cell-surface transmembrane molecules are tagged with
ubiquitin, the subcellular localization of the protein is altered, often targeting the protein for
destruction in the lysosomes. The conditions in the bone marrow microenvironment in MM
and, in particular, the presence of growth factors (interleukin 6, insulin-like growth factor-1,
and vascular endothelial growth factor) and their interaction with corresponding membrane
receptors, can promote drug-resistance and plasma cell survival. Understanding how
ubiquitination contributes to this phenotype, especially in presenting and internalizing
membrane proteins may present opportunities to develop novel targeted therapies and
biomarkers for monitoring patients.

MS analysis is a powerful and proven research tool to explore MM biology. However, its
clinical implementation has several limitations. Firstly, high-abundant proteins such as
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albumin can mask low-abundant proteins while sample purification may result in the loss of
low-abundant proteins through interactions with high-abundant proteins. Thus, careful
analyses need to be performed at every purification step [57]. Furthermore, variables such as
age differences, gender, ethnicity, menopause, and nutrition could confound biomarker
discovery [57].

“Omics” identification of novel drug targets in MM

Significant sequencing efforts in MM have identified driver mutations (e.g. KRAS, NRAS,
BRAF, FAM46C, TP53, DIS3, SP140, LTB, ROBO1) that can guide the development of
novel targeted therapies exploiting oncogene addiction [14,66,67]. A recent study showed
that whole genome sequencing (WGS) could detect BRAF mutations otherwise missed by
FISH, thereby identifying a subset of patients that might benefit from BRAF inhibition [68].
However, the caveat here is that not only might some of these mutations only be present in a
fraction of cells but, in addition, fluctuations of MM subclonal architecture make it difficult
to predict the clinical efficacy of such a strategy. Nonetheless, “omics” approaches have led
to the clinical development of potential drugs against drug resistant MM, some of which are
highlighted in Table 3.

Targeted genome editing technologies (RNAi and CRISPR/Cas9) can also be harnessed to
screen for novel “druggable”targets to overcome drug resistance. As a proof of concept, a
CRISPR/Cas9 screen of protein domains in murine acute myeloma leukemia (AML) cells
revealed six known drug targets and 19 additional dependencies [69]. Cell-based drug
screening assays have also been used to screen compounds for their effects on cell viability
in BzZR MM cells [70]. Cancer researchers at the University of Helsinki’s Institute for
Molecular Medicine Finland, in collaboration with the pharmaceutical company Pfizer, have
developed cutting edge high-throughput systems biological platforms to functionally profile
patient cells to develop new targeted cancer drugs in personalized and precision medicine
projects [71]. A pilot screen using the NCI Diversity Set 11 (NCI Developmental
Therapeutics Program) of ~1600 small molecules identified 4 compounds that either had
greater single-agent activity against BzR cells or restored sensitivity to bortezomib in BzR
cells co-treated with bortezomib [70]. These compounds were then validated and further
downstream mechanistic studies were performed using next-generation “omics” approaches
(e.g. gene expression profiling, chemical genomics) [70]. Therefore, the use of HTS
approaches has utility not only in drug discovery, but also in helping us understand the
molecular mechanisms for targeting drug-resistant MM.

PRE-CLINICAL APPLICATION OF “OMICS” IN THE ERA OF CANCER
IMMUNOTHERAPY: EXPLOITING IMMUNOMICS AND “CHO”-OMICS

It has become apparent in recent years that conventional and targeted chemotherapy, while
highly effective in lowering tumor burden, unfortunately lacks long-term durability as MM
will evolve, recur, and become refractory to any conventional or targeted therapies. The
observation that selected MM cases can be de facto cured with allogeneic hematopoietic
stem cell transplant (HSCT) suggests that active cancer immunotherapy plays a fundamental
role in inducing lasting disease remission due to its ability to target the malignant phenotype
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of MM cells rather than specific dysregulated pathways [72]. However, HSCT-related
mortality remains an obstacle to the widespread implementation of this therapeutic avenue
for most MM patients, necessitating the exploration of other immunotherapeutic strategies.
Currently, three broad approaches exist to enhance anti-myeloma immunity and stimulate a
“host- versus-myeloma” effect; (1) immunomodulation using IMiDs, checkpoint inhibitors,
and cytokines; (2) stimulation of myeloma specific T cell immunity using MM vaccines
(dendritic cell based, peptide based) and adoptive T cell transfer (CAR T cells); and (3)
monoclonal antibodies (anti-CD38 daratumumab, isatuximab, and MOR202, and anti-
SLAMF7/CS1 elotuzumab) [72]. Immunomics aims to characterize the tumor-host interface
through integration of immunology, genomics, proteomics, transcriptomics, and
bioinformatics [73]. The relevance of “omics” in IMiDs research has already been covered
in Table 2. Herein, we will discuss the enormous potential of immunomics in the
development of highly effective and and specific anti-myeloma immunotherapeutic
strategies.

An immunomics approach to vaccine and CAR-T cell development

Enhancing myeloma-specific T cell immunity through vaccination against cancer-specific
antigens holds great promise, particularly in the clinical setting of early-stage or minimal
residual disease. A multi-peptide vaccine (PVX-410) consisting of a cocktail of four HLA-
A2-specific peptides (XBP1u, XBP1s, CD138, SLAMFT7) is currently being evaluated in a
phase I/lla trial in patients with smoldering MM with the goal of delaying their progression
to active disease (NCT01718899) [74]. Chimeric antigen receptor (CAR)-T cells are
engineered by cloning antigen-specific T cell receptors onto T cells collected from patients.
After ex vivo engineering, these cancer-specific CAR-T cells are expanded and then infused
back into the patient in a process known as adoptive cell transfer. Encouraged by the
remarkable results of CD19-directed CAR-T cell therapy in relapsed and refractory chronic
lymphocytic leukemia, non-Hodgkin lymphoma, and acute lymphoblastic leukemia,
researchers are now looking to develop CAR-T cells against myeloma-specific antigens
[75,76]. Specifically, CD138 and BCMA-directed CAR-T cells are currently undergoing
phase I clinical trial (NCT01886976, NCT02215967) while CD38 and SLAMF7-directed
CAR-T cells are still in preclinical development [77].

The success of MM vaccination and CAR-T cell development hinges on the identification of
MHC class I-restricted myeloma peptides that can generate highly avid, myeloma-specific
memory cytotoxic T lymphocytes (CTLs) to provide a long-lasting immune response. The
main challenges to this approach are the complex tumor-host interaction and the molecular
and phenotypic heterogeneity of MM [73]. Immunomics provides a systematic framework
for the identification of cancer-specific antigens and epitopes that interact with the host
immune system. Gene expression analysis and reverse vaccinology has led to the discovery
of a wide array of myeloma-associated T-cell antigens (e.g. CD138, XBP1, SLAMF7, WT1,
RHAMM, hTERT, Survivin) [78-94]. Tumor exome sequencing and cDNA libraries can be
used to screen for myeloma-specific mutated proteins in patient tumors. These neoepitopes
(positive hits) can then be further characterized using an MHC binding algorithm to identify
candidate mutated T cell epitopes. Next generation immunosequencing can be used to
profile T-cell receptor sequences to determine the mature T-cell repertoire of MM-specific T
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cells which can then guide development of CAR-T cells and ImmTACs (immune mobilizing
monoclonal TCRs Against Cancer). Mass spectrometric analysis of the HLA-presented
peptidome can also be used to the screen for novel, non-mutated, myeloma-specific T-cell
epitopes [95].

A promising strategy that utilizes next-generation platforms to discover novel T-cell epitopes
has been described [96]. Firstly, MHC-prediction algorithms are used to identify possible
myeloma peptides with high binding affinity to the MHC I-complex [96]. Each candidate
peptide-MHC tetramer is then labelled with a distinct three-metal staining code; each metal
selected from a pool of 10 different metal tags. This system, which utilizes only 10 of the
~40 currently available cytometry by time of flight (CyTOF) heavy-isotope channels for
three-dimensional antigen-specificity encoding (assignment of a distinct three metal tag to
each antigen specificity), provides us with 120 unique combinations of three metals to label
up to 120 different tetramers simultaneously [96]. CD8* T cell-enriched MM patient
samples are then stained with the metal-labelled tetramers and sorted using magnetized
columns to further enrich for “tetramer-positive” T cells. Subsequent analysis of both sorted
and pre-sorted samples using mass cytometry gives an objective readout of the frequency of
pre-sorted antigen-specific T-cell in each donor sample, by fusing a back-calculation
approach [96]. Metal-tagged antibodies specific for phenotypic markers of interest (e.g. cell
surface markers, memory cell markers, functional markers, co-stimulatory/inhibitory
markers) can also be added to further characterize the peptide-specific CD8* T cells. Multi-
parameter analyses would then enable a more stringent selection of peptides that
preferentially induce the expansion of highly functional memory T cells against MM [96].

“Omics” approaches to streamline monoclonal antibody development and production

Monoclonal antibodies (mAbs) bind against specific antigens expressed on the surface of
cells. They can then induce cell death through a number of mechanisms: (1) antibody-
dependent cell-mediated cytotoxicity, (2) complement-dependent cytotoxicity, (3) antibody-
dependent cellular phagocytosis, and (4) direct cytotoxicity via alterations in intracellular
signaling, inhibition of function of growth factor receptors and adhesion molecules or
induction of apoptosis by crosslinking receptors [72,97]. Two FDA approved mAbs,
daratumumab and elotuzumab, have proven to be highly efficacious in MM. In particular,
three-drug regimens incorporating daratumumab, with either bortezomib and dexamethasone
or lenalidomide and dexamethasone showed unprecedented results in phase 11 trials in RR
MM with circa 60% reduction in risk of death or progression compared to the control arm
[98,99]. Antibody-drug conjugates (ADCs) utilize mAbs to selectively deliver cytotoxins to
target cells, with the goal of increasing specificity and limiting side effects. Indatuximab
ravtansine (chimeric anti-CD138-conjugated maytansinoid DM4) and J6M0O-mcMMAF
(humanized and afucosylated anti-BCMA-conjugated monomethyl auristatin F) are
examples of ADCs undergoing clinical trials for use in RR MM [100]. Another area of mAb
research focuses on bispecific T cell engagers (BiTEs). These molecules bind on one arm to
a specific antigen and on the other to CD3, thus redirecting the activity of cytotoxic T cells
against a specific target cell. BI 836909 is a novel BiTE in phase | clinical development that
targets BCMA; a highly expressed protein in most MM cells (NCT02514239).
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The design of novel cytotoxic mAb therapies (mAbs, ADCs, BIiTESs) is challenging due to
the limited availability of suitable tumor-associated antigens (TAA) that are: (1) specifically
overexpressed on MM and not on normal tissue surfaces (to allow for the effective induction
of anti-tumor immunity with as little side effects as possible), (2) involved in oncogenesis or
MM survival, (to limit the chances of downregulation upon treatment pressure), and (3)
highly immunogenic [101]. The use of genome-wide microarray analysis which gives us
unbiased and comprehensive gene expression profiles of both normal and cancer tissues can
be used to guide the selection of ideal TAAs [101]. Proteomic-based approaches can also be
utilized to screen and identify potential TAAs. One such study utilized a polyclonal
antibody, generated by immunizing rabbits with ARH-77 MM cells, to probe for potential
TAAs, which were then identified by mass spectrometric analysis [102].

Commercial production wise, Chinese Hamster Ovarian (CHO) cells are used in large scale
mAb manufacturing [103]. The process involves the transfection and expression of the mAb
transgene followed by subsequent purification of recombinant mAb from the CHO cell
culture supernatant. While improvements in recombinant DNA technology have
significantly enhanced production yield by more than 100-fold over the last 20 years, there
still exists considerable, and unpredictable, variation in yield between different production
cell lines as the factors controlling protein (and gene) expression have yet to be uncovered
[104]. Application of “omics” techniques have enabled us to decode the CHO cell genome,
transcriptome, proteome, glycome, and metabolome, allowing us to better understand and
exploit the molecular basis of high productivity [103,104]. For example, “omics” can be
used to identify key markers of good production lines and optimize CHO-cell engineering
[104]. Complete sequencing of the CHO cell provides us with numerous opportunities and
possibilities for strategies to increase production yield and consistency, and reduce both
costs and process-development time to ultimately expedite delivery of products into the
clinic.

CONCLUSION AND FUTURE DIRECTIONS: PROPOSED MODEL FOR THE
APPLICATION OF “OMICS” TECHNOLOGIES IN PRECLINICAL RESEARCH
(BENCH) AND CLINICAL PRACTICE (BEDSIDE)

Remarkable progress in our understanding of MM biology has led to significant refinements
in how we diagnose, prognosticate, treat, and monitor MM. The expanding repertoire of
novel therapeutics, designed to exploit MM’s three Achilles’ heels, fall largely into three
hierarchical categories: drugs that target the (1) molecular aberrations of MM (e.g. MAPK
and PI3K-Akt pathway inhibitors), (2) unique phenotype of MM resulting from these
molecular aberrations and ongoing DNA damage (e.g. blocking stress responses,
immunotherapy), and (3) mechanisms underlying genomic instability in plasma cells (e.g.
APOBEC, APEX1). 20 years ago, there were not enough therapeutic options available to our
patients. Today, clinicians face a different but welcomed challenge: one that involves having
to figure out the right drugs to use, in the appropriate combination, at the correct time, and in
the right sequence [105]. Bearing in mind that every cancer is as unique as the person
fighting it, the goal would likewise be to have treatment regimens specifically tailored to the
individual patient. Integrative personal “omics” profiling (iPOP) provides clinicians with a
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powerful tool to meet this challenge as we move forward into the era of precision medicine
[106].

Rapid advances in science and technology offer huge potential for innovation at the
crossroads of medicine, biotechnology, and Big Data. Indeed, the use of “omics”
technologies has significantly advanced our understanding of the molecular biology of MM
which has greatly advanced preclinical drug development. However, as Einstein famously
puts it: “the more (we) learn, the more (we) realize how much (we do not) know”; the same
can be said of our ongoing battle to decode MM. As we push the boundaries of science, it is
important not to become lost in the multitude of data but to instead focus on making the
research count for the patients. The use of “omics” technologies in pre-clinical research has
and will continue to facilitate the development of (1) better risk stratification systems, (2)
biomarker discovery, (3) rational drug combinations to overcome resistance, and (4) novel
targeted and immunotherapies for use in the diagnostic workup and treatment of patients
with MM (Fig 1). Although at present, “omics” technologies are not ready for immediate
clinical use as diagnostic, prognostic, or response/relapse monitoring tools, they can be
envisaged as simple, rapid, robust, portable, and cost-effective clinical diagnosis, prognosis,
and disease monitoring systems that could be available soon, which would not only improve
clinical decisions but also guide the design of more clinically pertinent, bench to bedside
research.
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[ . ] | Patient samples:
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Data mining
(gene expression geno : pto proteo pido etabolo
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—I Validation expression, protein, lipid, metabolite

Eiucidat e Inform rational drug i
ucidate mechanisms combinations to .~ L---_ :
of drug resistance
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—’I Discover new biomarkers |“ -
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on GEP and protein
biomarkers

GenoProteomic
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I
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Figure 1. Application of “omics” technologies in preclinical research (bench) and clinical practice
(bedside)Bench:

The use of “omics” technologies in pre-clinical research has and will continue to facilitate
the development of (1) better risk stratification systems, (2) biomarker discovery, (3) rational
drug combinations to overcome resistance, and (4) novel targeted and immunotherapies for
use in the diagnostic workup and treatment of patients with MM. Bedside: Although at
present, “omics” technologies are not ready for immediate clinical use as diagnostic,
prognostic, or response/relapse monitoring tools, it can be envisaged that simple, rapid,
robust, portable, and cost-effective clinical diagnosis, prognosis, and disease monitoring
systems could be available in near future, which would not only improve clinical decisions
but also guide the design of more clinically pertinent, bench to bedside research. Bench to
bedside research, Beside to bench research, Application of “omics” technologies, TAA:
tumor-associated antigens, GEP: gene expression profiling
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Table 1.

“Omics” technologies used in preclinical and clinical studies
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Cancer genome sequencing

SNP array, CNV microarray

Genomics

Genomic DNA (Tumour)

Mutational profile
of cancer

Genomic DNA
(Germline or Tumour)

Unbiased
association of
genotype and

phenotype

RNA Seq, RNA microarray

Transcriptomics

MRNA (cDNA)

Gene expression
profile, disease
associated genes,
chemoresistance-
associated genes

Protein analysis by LC-
MS/MS, SILAC-MS,
ITRAQ-MS

Proteomics

Proteins

Protein maps and
predicted networks,
disease-associated
proteins,
chemoresistance-
associated proteins

Metabolome analysis by LC-
MS/MS, NMR, ion-mobility
spectrometry, Raman
spectroscopy

Metabolomics

Metabolites

Metabolite profiles
in cancer, tissues,
and body fluids

Genome-wide DNA
methylation assays, miRNA

DNA methylation,

screens, overexpression
screens, drug screens)

array, Histone modification Epigenomics DNA, proteins m:so,\éﬁiscyamzt::e
assays
High-throughput screen Phenotype (i.e.
(knockdown/knockout Genomics survival,
SshRNA/CRISPR-Cas9 Multi—omiés Cells, proteins, embryo proliferation,

chemoresistance),
biochemical, etc...

Discover new
mechanisms
of drug
resistance,
biomarker
discovery

Application
Omics Approach Omics Technology Source Material Readout
Preclinical Clinical
WGS: Sequence of
entire chromosomal Patient risk
and mitochondrial stratification
WGS, WES Genomic DNA (Germline) DNA predict !
WES: Sequence of response to
all exomes in therapy, guide
genome

therapeutic
decisions

Identification
of genetic
variation
associated with
response and/or
adverse events
to treatment

Monitor
changes in
mutational

landscape of
cancer, predict
response to
therapy, guide
therapeutic
decisions

Predict
treatment
response, guide
therapeutic
decisions,
monitor
treatment
response and
relapse

NA

WGS: whole genome sequencing; WES: whole exome sequencing; SNP: single nucleotide polymorphism; CNV: copy number variant; LC-
MS/MS: liquid chromatography-tandem mass spectrometry; miRNA: microRNA; NMR: nuclear magnetic resonance; shRNA: short hairpin RNA;
CRISPR: clustered regularly interspaced short palindromic repeats
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Table 3.

MM drugs in clinical development against pathways identified in “omics” studies

Page 33

Drug Name Sponsor Mechanism of Action Status Study Design Identifier
Histone Deacetylase Inhibitors
HDACE6-selective inhibitor
. ACY-241 + POM +
ACY-241 A(ngﬁ‘;" Downregulation ofMYCand | pnase 1t | DEXvs ACY-241 | NCT02400242
alone in R/R MM
Caspase 8/9 mediated
apoptosis; Terminal UPR P
Ricolinostat A(‘ﬁtsﬁ‘;" induction; PolyUb protein phase i1 | Ricolinostat + LEN | ncTo1583083
accumulation; Aggresome
disruption
pan-HDAC inhibitor
Merck p21 and p53 upregulation; Rb \orinostat + BTZ
\orinostat (USA) dephosphorylation; BID Phase 111 vs BTZ alone in NCT00773747
cleavage; Calpain activation R/R MM
Panobinostat +
. Novartis . BTZ + DEX or
Panobinostat (CHE) Apoptosis; Cell cycle arrest FDA approved BTZ + DEX in NCT01023308
Relapsed MM
Receptor Tyrosine Kinases
MET inhibitors
Perturbation of microtubule A :
Tivantinib (Blg)&) dynamics; G2/M arrest; Phase Il Tlvargllrsbw?’l\;)ne n NCT01447914
Apoptosis
- MGH Tumour growth inhibition; Cabozantinib alone
Cabozantinib (USA) Anti-angiogenic Phase I/11 in RIR MM NCT01866293
MAPK Inhibitors
MEK inhibitors
Trametinib +
- GlaxoSmithKline P GSK2110183 in
Trametinib (GBR) Tumour growth inhibition Phase I/11 Solid Tumors or NCT01476137
MM
- NCI Tumour growth inhibition; Selumetinib alone
Selumetinib (USA) DNA damage Phase 11 in R/R MM NCT01085214
RAF inhibitors
. Induction of senescence and Encorafenib +
Encorafenib University of Heidelberg autophagy; Cell cycle arrest Binimetinib in R/R
Medical Center Phase 11 MM with NCT02834364
Binimetinib (GER) Caspase 9 mediated apoptosis BRAFVE00E/K
mutation
P Mayo Clinic Tumour growth inhibition; Sorafenib alone in
Sorafenib (USA) anti-angiogenic Phase 11 Refractory MM NCT00474929
Dual RAF/MEK inhibitors
- RO5126766 alone
NHS Apoptosis; Cell cycle arrest; . .
RO5126766 (GBR) Tumour growth inhibition Phase | in Solld'\'I/;L’JVImours or | NCT02407509
PI3K-AKT Inhibitors
NCI Inhibition of IL-6 pro-MM Trametinib +
GSK2141795 (USA) effect; Cell cycle arrest; UPR Phase Il GSK2141795 in NCT01989598
induction; Apoptosis R/R MM
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Drug Name Sponsor Mechanism of Action Status Study Design Identifier
Histone Deacetylase Inhibitors
Curis Tumour growth inhibition; CUDC-907 alone
CUDC-907 (USA) Caspase 3/7 mediated Phase | in Lymphoma or NCT01742988
apoptosis; Cell cycle arrest MM
Swiss Group for Clinical . . Nelfinavir + LEN +
Nelfinavir Cancer Research Irl1rr]1?gicttilc?nn ;{f Erc?t:;rsi)sr?{e Phase I/11 DEX in Progressive | NCT01555281
(CHE) p MM
Cell Cycle
: Apoptosis; Inhibition of : :
Selinexor Kary"pha{gs&h)erape““cs MYC, MCL-1, and NF-xB; Phase 1l | Selinexor DEXn | ncrop3seers
Cell cycle arrest
Apoptosis; Inhibition of
[ NCI XBP1s nuclear localization; Dinaciclib alone in
Dinaciclib (USA) Accumulation of p53; Phase Il RRMM NCT01096342
Downregulation of MCL-1
- - PETHEMA Foundation - . : Filanesib + POM +
Filanesib (ESP) Mitotic arrest; Apoptosis Phase 1/11 DEX in R/R MM NCT02384083
Epigenetic Modulators
Demethylating agents
Case Comprehensive Cancer -
P . Azacitidine + LEN
Azacitidine (CSQE:; Apoptosis Phase I/11 + DEX in R/R MM NCT01155583
BET bromodomain inhibitors
- GSK525762 in R/IR
GSK525762 G"“‘XOSG”E‘;';“K"”E haematological | NCT01943851
( ) MY C downregulation; Cell Phase | malignancies
cycle arrest; Cell senescence
Constellation Pharmaceuticals CPI1-0610 alone in
CP1-0610 (USA) R/IR MM NCT02157636
Matrix Metalloproteinases
Aeterna Zentaris : : : Neovastat alone in
Neovastat (CAN) Anti-angiogenic Phase 11 R/R MM NCT00022282
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