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Abstract

Several diseases share misfolding of different peptides and proteins as a key feature for their 

development. This is the case of important neurodegenerative diseases such as Alzheimer’s and 

Parkinson’s diseases and type II diabetes mellitus. Even more, metal ions such as copper and zinc 

might play an important role upon interaction with amyloidogenic peptides and proteins, which 

could impact their aggregation and toxicity abilities. In this review, the different coordination 

modes proposed for copper and zinc with amyloid-β, α-synuclein and IAPP will be reviewed as 

well as their impact on the aggregation, and ROS production in the case of copper. In addition, a 

special focus will be given to the mutations that affect metal binding and lead to familial cases of 

the diseases. Different modifications of the peptides that have been observed in vivo and could be 

relevant for the coordination of metal ions are also described.
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1 Introduction

In the last decades, the discovery of a common characteristic to different diseases is leading 

the research on their development. Neurodegenerative diseases such as Alzheimer’s (AD), 

Parkinson’s (PD), Huntington’s and prions diseases share with Type II diabetes mellitus 

(T2D) the misfolding of specific proteins or peptides, which causes the deposition of 

amyloid fibrils and plaques in different tissues [1]. Furthermore, metal ions dyshomeostasis 

has been linked to AD, PD and T2D and could be a key factor in their development as they 
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can greatly impact the aggregation and the redox activity of the implicated peptides and 

proteins [2–4]. Several studies have found a relative high concentration of metal ions (Zn, 

Cu and Fe) in aggregates such as senile plaques (AD) formed by the amyloid-β peptide [5–

9], and Lewy’s bodies (PD) formed by α-synuclein protein [10]; and a more than probable 

correlation between amyloid deposits formation of islet amyloid polypeptide (IAPP, amylin), 

Zn deficiency and T2D [11]. Nevertheless, there is still no clear evidence of the in vivo 
metal-binding to Aβ, αSyn and IAPP upstream of the aggregates. One parameter to take into 

account is the relatively low binding constant for these peptides and protein, which makes 

metal-binding a low probability scenario in the cytosol [12]. However, interaction between 

Cu and Zn and intrinsically disordered peptides/proteins (IDPs) could be plausible in the 

extracellular space. In the case of AD, a “labile copper pool” was proposed [13]. Similarly, 

spots where high concentration of metal ions, especially loosely bound metals, would be 

present such as in β-cells in the pancreas could be key for the interaction of IDPs and these 

metal ions. Moreover, some deregulation of metal ions might need to occur, which would 

increase the available metal ions concentration, and hence permits metal binding to Aβ, 

αSyn and IAPP.

In this review, we will focus on Cu and Zn, due to their relatively high concentration in the 

synaptic cleft in the brain and β-cells of the pancreas. The coordination chemistry of Zn(II) 

and Cu(II/I) are studied since more than two decades, at least for amyloid-β. Thus, we do 

not go into past controversies, which mainly concern the native structure of amyloid-β. We 

just report on the most accepted structures (and refer to past review) and concentrate on the 

most recent advancements often obtained on mutations or modified forms of the peptides/

proteins. A general perspective of the metal-induced aggregation and ROS production will 

be covered in sections 3 and 4, aiming to compare the last data for the three peptides and 

protein. Surely this work will complete the reviews aimed to cover the interaction of metal 

ions and amyloidogenic peptides individually. Moreover, we aim at outlining their 

coordination not only to amyloid-β, α-synuclein and amylin, the main disordered peptides 

and proteins of the mentioned diseases; but also, to the mutated peptides which cause 

familial pathologies, and the murine peptides, which show different aggregating propensity 

features (Table 1). Studying how these mutations impact the coordination of metals ions, and 

consequently their aggregation and ROS production could be an important step to help 

elucidate this very interesting chemistry.

2 Coordination of Cu and Zn to amyloid-β, α-synuclein and amylin and 

their mutants

The coordination of metal ions to the different amyloidogenic peptides and proteins has been 

thoroughly studied. There is still debate regarding some coordination modes. Nonetheless, in 

the next paragraphs the different coordination modes, including the most accepted and the 

new ones, proposed for Aβ, αSyn, hIAPP and their mutated and murine homologues will be 

outlined (table 1). In order to give a more global understanding of Cu and Zn binding to 

these peptides and protein, their association constants have been gathered in table 2 at the 

end of this section.

Atrián-Blasco et al. Page 2

Coord Chem Rev. Author manuscript; available in PMC 2019 March 15.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



2.1 Coordination to Aβ, its FAD mutants and murine Aβ

The high affinity metal binding site of amyloid-β (Aβ) peptide is found at residues 1-16, 

which is proposed as an appropriate model of its coordination and redox properties. The 

most accepted metal binding structures involving the native peptide will be described below. 

Meanwhile, the structures concerning mutated peptides will be discussed more profoundly. 

At physiological pH, two different binding modes can be found for Cu(II), known as 

component I (favored at lower pH) and II (at higher pH) [17–21]. They both present a 

distorted square-planar geometry and the coordination through the terminal amine of the 

Asp residue (Fig. 1.A). In Component I Cu(II) is also bound through the carbonyl from the 

Asp1-Ala2 amide bond, and the imidazole nitrogen atom from two histidine residues, His6 

and His13 or His14 in equilibrium. In component II, the nitrogen atom from the Asp1-Ala2 

amide bond is deprotonated and binds to the Cu(II), together with the CO from the Ala2-

Glu3 peptide bond and one histidine residue with no preference. A different structure has 

been proposed for the component II, involving the oxygen from the carbonyl group of the 

Ala2-Glu3 bond and the three Nim from His6, His13 and His14 [22]. Some authors have also 

proposed a carboxylate function being involved in the apical position [23,24]. A second site 

has been described for the Aβ1-28 peptide but its low affinity would mean a lower biological 

relevance [25]. Cu(I) is bound in a linear fashion by the Nim of His6, His13 and His14 in an 

equilibrium, in which His13 and His14 seem to be the preferred ligands [26,27] (Fig.1.A.). 

The amino acids involved in the coordination of Zn(II) are also found in the Aβ1-16 

sequence. First studies reported the involvement of the three histidine residues in the 

coordination site [28–34], being the fourth and, in some cases, fifth ligands the NH2- 

terminal and the Glu11 residue among others. A more recent work proposes a different 

coordination sphere after the study by 1H-NMR and X-Ray absorption of Zn-Aβ complexes 

with Aβ16 and a wide series of modified peptides [35]. The Zn(II) ion would have a 

tetrahedral binding to two histidine residues (His6 and His13 or His14), and two carboxylate 

residues (Glu11 and Asp1, Glu3, Asp7, with a preference for Asp1) (Fig. 1.A). Some 

authors have stated the Cu(II) coordination sphere to be independent to the oligomerization 

state [36,37], but a polymorphism has also been found in Cu(II)-Aβ oligomers [38,39]. In 

the case of Zn(II), the monomeric complex would be lost upon aggregation [40], leading to a 

polymorphism, of intra- and inter- molecular binding which would trigger the fast Zn-

induced aggregation [41–44]. The metal-cross linking has also been observed for Cu(II) in a 

minor relevance [39,41,45]. Recently, the effect of N-terminal truncation of Aβ on Cu(II) 

binding ability, ROS production and Cu-mediated Aβ aggregation has been reviewed [46]. 

Such Aβ modification will thus not be addressed in the present review. Another point which 

could be of great interest is the mutual interference of Cu and Zn on their coordination to Aβ 
and the metal-induced aggregation and ROS production, which has been recently revised as 

well [47].

Familial Alzheimer’s disease (FAD) comprises the subtypes of this dementia characterized 

by mutations on proteins linked to Aβ: the presenilin-1 and -2 and APP. FAD mutations are 

generally associated with an early onset of the illness. Mutations on the APP can affect 

either cleavage sites, or fragments apart from it [48]. In this review, we focus on those found 

in the N-terminal part of the Aβ peptide, which can have an impact on the coordination of 

metal ions. Most of these mutations lead to either an increase of the fibrillation of Aβ or an 
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alteration the Aβ40/Aβ42 ratio [49]. Understanding the mechanism of the enhanced toxicity 

could be key to better disentangle the molecular mechanisms of AD even if the number of 

FAD cases is not significantly high. The coordination to some of these mutants has been 

recently reviewed [24,49]. The mutation of Ala2 is an interesting one: A2V is highly 

pathogenic [50], while A2T has shown a protective effect [51]. EPR studies show a similar 

Cu(II) coordination for the WT and the A2 mutants, but changes on the pKa values of the 

transition between component I and component II, which could be key for a pathological 

role of Cu-Aβ binding [52,53]. In fact, with a pKa for A2V of 8.4 (7.4 for A2T, 7.8 for WT), 

component I is stabilized at physiological pH. Furthermore, this mutant shows a faster inter-

peptide Cu(II) exchange linked to a higher pathogenic character of component I [53]. 

Similar features were observed for the Tottori mutation D7N, involved in early onset AD, 

although the shift of pKa value between components I and II is less accused [54,55]. His 

residues are key for the coordination of Cu, and greater differences would be expected when 

the mutations affect this amino acid. This could be the case of the English (H6R) and Taiwan 

(D7H) mutations, with -1 or +1 His residues respectively. In the case of the mutation H6R, 

only His13 and His14 can coordinate Cu(II), and its impact can be observed mainly in 

component I, which lowers the transition pKa from 7.8 (Aβwt) to 7.2 [54]. However, no big 

differences have been found in either Cu(II) coordination or pKa in the case of the additional 

His-mutation D7H [56]. Regarding Cu(I) binding, a similar coordination sphere with 2 Nim 

implicated would be expected, as in the case of Aβwt [56,57]. For the case of Zn(II) binding, 

mainly the mutation of His6, and in some extent D7N, would have an impact on the 

coordination and affinity [35]. The punctual mutation H6R seems to favor the formation of 

dimers, with residues His13, His14 and Glu11 being implicated in the coordination of Zn(II) 

[58]. Induction of homodimers is also found for the D7H mutation upon Zn-binding [59].

Murine Aβ (mAβ) differs from hAβ in three-point mutations: R5G, Y10F and H13R. At 

least two different coordination modes have been found: Im and IIm, with a pKa much lower 

than for hAβ, i.e. 6.2 [60]. Some studies on the coordination have shown that the N-terminal 

amine is also implicated in the coordination of Cu(II). In the predominant mode at 

physiological pH, IIm, the main difference between hAβ and mAβ is the intervention of the 

deprotonated N- from the amide bond between Gly5 and His6 (murine) instead of Asp1-

Ala2 (human) [60] (Fig. 1.B, left). In the case of Zn(II) binding, the implication of the two 

available histidine ligands (His6 and His14) has been corroborated, as well as the 

implication of the NH2-terminal of Asp1 and the COO- group of Glu11 [61] (Fig. 1.B, 

right). Another study has remarked the strong propensity of Zn(II) to induce dimerization 

mAβ, by binding to the His6 and His14 of two different peptide chains [62].

2.2 Coordination of Cu(II), Cu(I) and Zn(II) to αSyn, its H50Q mutated form and βSyn

α-Synuclein is a protein with 140 amino acid residues and three main domains: (i) the N-

terminal (1-60); (ii) the non-amyloid component (NAC) (61-95) where fibrillation is 

initiated; (iii) C-terminal region (96-140) rich in Pro, Asp and Glu residues. The high 

affinity binding site (table 2) has been found within the first 9 amino acids (MDVFMKGLS), 

where Cu(II) forms either a 2N2O or a 3N1O complex binding to the terminal amine, even 

the co-presence of both forms has been proposed [63]. Several amino acids have been 

identified as binding residues. One of the possibilities would be the deprotonated nitrogen of 
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the Met1-Asp2 amide bond and the carboxylate of the Asp2 side chain, with either a 

molecule of H2O or the imidazole side chain of His50 [64–70] (Fig. 2.A, left). Other 

possibilities have related the Nim and the deprotonated N-amide from His50, an unidentified 

oxygen atom, and a H2O molecule, with the presence of the N-terminal as an axial ligand 

[71]. Most coordination studies have been carried out for the αSyn, although it has been 

found to be in the acetylated form (Ac-αSyn) in Lewy bodies in vivo [15]. In this case, 

coordination through the N-terminal domain is lost, but binding to the lower affinity binding 

site (His50) is maintained (Fig. 2.B, left) and Asp121 are maintained, although the binding 

affinity (table 2) lowers with respect to the one of unmodified α-synuclein [72,73]. The 

coordination of Cu(II) ions to the N-terminal motif and His50 might promote the formation 

of oligomers by favoring intra-molecule interaction [74]. Cu(I), being a softer cation than 

Cu(II), shows preference for the S atoms of the Met1 and Met5 residues in a tetrahedral 

structure together with the carboxyl group of Asp2 and a water molecule [75–78] (Fig. 2.A, 

right). This coordination sphere is maintained in the Ac-αSyn protein, as well as the affinity 

[79] (Fig. 2.B, right). As it should be relevant for the ROS production of Cu-αSyn 

complexes (section 4.2.3), the only common coordination groups for both Cu(II) and Cu(I) 

ions are the carboxylate of Asp2 [80], and in some extent the His50 imidazole ring [76]. In 

contrast to the wide number of studies regarding Zn-Aβ complexes and its role on amyloid-β 
aggregation, the coordination and influence of zinc ions on αSyn is still unclear [81,82], as 

maybe the low affinity of αSyn for Zn(II) (table 2) may lead to a low relevancy of the metal 

ion in the development of PD [83,84]. Two amino acids residues might be involved in the 

binding: Asp121 and His50 [83].

Six single amino acid pathological mutations of αSyn have been linked to familial PD: 

A30P, E46K, H50Q, G51D, A53T and A53E [85,86]. Nevertheless, the most significant one 

from a bioinorganic point of view would be H50Q, as it implies the metal-coordinating 

residue His [87,88]. Proukakis et al. [87] confirmed the Cu(II)-binding ability of the His50-

mutated αSyn; but their Cu(II)-complexes showed a different EPR signature to that of the 

Cu(II)-αSynWT, consistent with a change of an equatorial oxygen by nitrogen. Further 

studies have confirmed the similar binding capacity of the mutant, with the only loss of the 

second binding site at His50 [63,89]. Nevertheless, Mason et al. [73] have remarked the 

importance of the N-acetylation in Cu(II) binding: not only for the WT αSyn, but also for its 

H50Q. In this study, the presence of both N-acetylation and H50Q mutation prevents Cu(II) 

coordination.

It could also be interesting to review the coordination ability of β-synuclein: (i) this 

conformation represents between 75 and 80% of the whole synuclein content in the brain 

[90]; (ii) it shares sequence with α-synuclein, with the exception of six point mutations 

between residues; (iii) it seems less prone to aggregation [91], and has shown to inhibit the 

aggregation of αSyn [92]. The coordination of Cu(II) does not differ between αSyn and 

βSyn, apart from the shift for the low-affinity binding site from His50 to His65 [67]. 

Nevertheless, the point mutation K10M induces slight changes on the Cu(I) coordination 

environment [75].
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2.3 Cu(II) and Zn(II) coordination to Amylin

Type 2 diabetes (T2D) has also been linked to the formation of amyloid aggregates in the 

pancreas. The fibrils are formed by amylin (hIAPP), a peptide stored in granules of β-cells, 

altogether with insulin and a considerable concentration of zinc (in the millimolar range) 

[93,94]. The ProIAPP undergoes proteolysis and post-translational modifications, which 

produce a C-terminal amidation, by the peptidylamidating monooxygenase complex from a 

Gly residue. Formation of a disulfide bond between Cys2 and Cys7 leads to “mature” 

amylin. Both C-term amidation and the disulfide bond are believed to have a biological role 

[14] (table 1). Amylin is co-secreted with insulin upon high glucose concentrations. Three 

fragments can be differentiated in the sequence: the N-terminal, containing residues 1-19, is 

related to the binding to insulin and membranes [95]; the amyloidogenic control peptide 

sequence (20-29) is the fragment most prone to aggregation, while residues 30-37 and 8-20 

would also contribute to self-association processes [96]. The metal ion binding properties of 

amylin arise mainly from the His18 residue and can be modulated by other amino acids or 

mutations in the sequence, as will be further described.

There is a controversy on the coordination mode of Cu(II) to monomers of human IAPP. The 

two common conclusions that can be extrapolated from the different studies are: the 

formation of a 1:1 complex and the anchoring role played by His18 [97–102]. The main 

differences arise from the amides adjacent to the His residue, which determine a 

coordination towards the N-terminal or the C- terminal region, using the model peptides 

hIAPP(14-22) and hIAPP(15-22) (Fig. 3.A). Quintanar and co-workers [99,102] have 

proposed a 3N1O equatorial binding mode at pH 7.5 for Ac-hIAPP(15-22)-NH2 supported 

by the use of different fragments of the peptide and spectroscopic and computational results 

(Fig. 3.A, left). Apart from the N1 of His18 being involved, the two following nitrogen 

amides (Ser19 and Ser20) would deprotonate and contribute to the coordination of Cu(II). 

The oxygen atom is provided by Ser20, either from the carbonyl group or mainly from the 

alcohol side chain. Moreover, Asn22 might contribute as an apical ligand. In the case of 

Magrì et al. [101] two species are found at physiological pH for the peptide Ac-PEG-

hIAPP(14-22)-NH2: one with two deprotonated amides and another with 3 deprotonated 

amides, forcing the coordination toward the N-terminal region (Fig. 3.A, right). Both groups 

have used mutations and truncations of the peptide to more carefully study the Cu(II) 

coordination to hIAPP, but both are lacking control experiments by blocking the N- or C- 

terminal respectively. Moreover, the use of mutated peptides gives useful but not complete 

information on the case of very dynamic peptides. Using more advanced EPR methods or 

specific site labeling would help on the elucidation of the structure for Cu(II)-hIAPP 

complexes. In addition, Rowińska-Żyrek [100] has researched the coordination of Cu(II) and 

Zn(II) to the monomeric form of the membrane disrupting fragment of the peptide, which 

compromises residues 1-19. With a 4N (1Nim and 3NN-), besides His18 being crucial, the 

coordination mode is forced towards the N-terminal as only one amide is available after 

His18. Two very recent articles have also described the importance of the N-terminal amine 

in the coordination of Cu(II) at physiological pH, as described for Aβ and non-acetylated 

αSyn [103,104]. Cu(II) binding to the full-length peptide had not been studied before, and 

therefore the coordination to the N-terminal amine was not considered. These are relevant 

results, but it should be noted that, further and more specialized research should be done to 
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specifically address the controversies. As in the case of Aβ and αSyn, which have been 

studied for longer time, many structures are proposed at the beginning. Converging to a 

widely-accepted coordination mode takes time and effort from different groups. As for 

example, whether the NH2- and the Nim constitute two different binding sites with different 

affinities, and how they would be modified by pH, ratio, etc. conditions must still be 

carefully researched. We encourage to further study the coordination chemistry of Cu(II)-

hIAPP complexes.

Determining the role of zinc in the coordination and aggregation of amylin could be crucial 

in the development of T2D. Zn(II) ions are stored in the granules of β-cells in the pancreatic 

islet, and are secreted into the blood stream altogether with insulin [105]. In addition, zinc 

concentration in the pancreas is one of the highest in the body, and many patients share a 

zinc deficiency [3,106]. Therefore, many are the groups who have studied the effect of 

Zn(II) in the aggregation of IAPP. Up to now, the role of His18 on the coordination of zinc is 

quite undeniable, as in the case of Cu(II). An oxygen atom of the contiguous residue Ser19 

could also bind zinc [107] (Fig. 3.B, left). For the membrane disrupting fragment, 

hIAPP(1-19), the N-terminal amine, together with the Nim of His18 and 2 molecules of 

water coordinate zinc at physiological pH [100] (Fig. 3.B, right). As zinc contributes to the 

formation of hexamers of insulin [108], some authors have also stated the possibility of zinc 

bridging several molecules of amylin, which could have an impact on the aggregation [109–

111].

While hIAPP amyloid fibrils have been found in vivo in diabetic patients, mIAPP is thought 

to be not amyloidogenic, as there is no evidence of amyloid deposit formation in rats. The 

two significative differences between the two forms of peptide are: the mutation of His18 by 

an arginine residue, and the presence of three Pro at positions 25, 28, 29. One of the 

hypothesis which could explain the lack of amyloidogenity is the increase water solubility 

upon the proline substitution [112,113]. Besides, the role of His18 in the binding of metal 

ions should not be dismissed. Cu(II) coordination to different fragments of mIAPP has been 

studied by spectroscopic [114] and spectrometric methods [115], as well as using the 

hIAPP(H18A) mutation [99]. A 1:1 complex would be formed at physiological pH, but with 

a lower affinity than hIAPP. Lacking His18, deprotonated amides and Arg, Ser or Asp side 

chains would contribute to the coordination of Cu(II). Mainly, the oxygen from the hydroxyl 

group of Ser19. A very recently study on the full-length mIAPP reveals an important role for 

the N-terminal amine on the coordination of Cu(II) [104]. The authors proposed a different 

metal-loading for mIAPP and hIAPP as one of the possible origins in the different toxicity. 

In the case of Zn(II) a dynamic binding could be stabilized between different conformations 

[116], with an important contribution of Asn14 [115].

As it has been seen in the previous section 2, mutations on the peptide and proteins 

sequences can have direct effects on the coordination of Cu and Zn, but mainly there are 

indirect consequences to their binding modes. For example, as seen for A2V and A2T Aβ 
mutants, for which their coordination modes are similar to the WT, but there is an impact on 

the pKa transition between component I and component II. Something similar has been 

described for the mutant Aβ (H6R) or (Ac-)αSyn (H50Q). This could be further reflected 

on their aggregative properties or the redox capability of Cu-Aβ complexes, for example. 
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For this it is important, not only to check the coordination mode but also the implications on 

other parameters such as pKa, binding affinities, net charge, morphology of the complex, etc.

3 Impact of Cu and Zn on the aggregation of Aβ, αSyn and hIAPP

3.1 Common ground

Metal ions such as Cu and Zn can impact the aggregation of intrinsically disordered peptides 

and proteins, either by changing the kinetics of the process or the morphologies of the 

aggregates formed (Fig. 4). The influence of the metal ions in the aggregation of IDPs’ has 

been thoroughly reviewed in the last years (especially for Aβ) [1,3,12,85,125–129], 

including an article in this special issue [130].

Literature in the field of aggregation of amyloidogenic peptides and proteins is very 

extensive and it is common to find different tendencies in aggregation. A typical issue 

encountered by researchers working on amyloid aggregation is the irreproducibility of their 

experiments. Indeed, the aggregation of the peptides/proteins is highly dependent on many 

different factors such as concentration, starting state of the peptide/protein batch (i.e. fully 

monomeric vs trace of oligomers’ seeds), pH, temperature, nature of container (i.e. glass vs 

plastic), etc. Even a subtle variation on an unknown critical parameter will dramatically 

modify the outcome of the aggregation assay.

Another difficulty of amyloid aggregation field is the nature of the aggregates themselves: 

from amorphous to organized morphologies. If organized, it could be as oligomers (i.e. an 

assembly made of a limited number of peptides/proteins) or fibrils (i.e. an assembly made of 

a large number of peptides/proteins). Recent structures have been obtained using full-peptide 

or fragments (as well as chemically modified fragments) and X-ray crystallography, solid-

state NMR and cryo-electronic microscopy [131–135]. These visualizations are possible 

organized states (i.e. oligomers/fibril) of amyloidogenic peptides/protein when they 

aggregate.

The techniques used to investigate aggregation are another pitfall. Indeed, depending of the 

assay chosen, it will favor a specific type of aggregate. For instance, the Thioflavin T (ThT) 

assay is sensitive for fibrils whereas oligomers will be observed using specific antibodies or 

FRET-pair fluorophores [136,137]. Amyloidogenic peptides/proteins (i.e. Aβ, αSyn, IAPP) 

share the ability to aggregate via a similar autocatalytic pathway where the starting point is 

monomers and the end point is fibrils. Transient species include oligomers, protofibrils and 

protofilaments. Oligomers are considered as the most toxic ones. The off-pathway 

aggregation leads to amorphous aggregates. Figure 4 illustrates these aggregation pathways 

as well as the most common techniques used to study them. On the top of this intricate 

mechanism, metal ions can shift equilibrium toward various directions. Due to this intrinsic 

complexity, experimental conditions and techniques used, the interpretation of the impact of 

metal ions on amyloid aggregation may vary a lot. Nevertheless, some common trends can 

be found in presence of metal ions. Especially relevant is the case of zinc, for which even 

small sub-stoichiometric quantities have a big influence on the aggregation of the Aβ 
peptide [43,44,138–142]. Intra and inter-molecular Zn binding promotes a fast aggregation 

of amorphous aggregates. Zn-induced aggregation even predominates in the presence of Cu 
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[138], for which a protecting role has been assigned for zinc [143]. The influence of Cu(II) 

on the Aβ aggregation seems to be mainly dependent on its concentration [144], and leads to 

the production of highly cytotoxic oligomers [139,145,146]. There is also in vitro evidence 

of the impact of metal ions on the fibrillation of αSyn [67,74,81,82,147,148], and hIAPP 

[94,98,99,107,109,110,149–153], with notable controversy as well on the pro- or anti-

aggregatory roles of Cu and Zn, as well be further outlined.

3.2 Effect of mutations on metal-induced aggregation of Aβ, αSyn and hIAPP

3.2.1 Amyloid-β peptide—Whereas H6R and D7N familial mutation do not affect the 

Aβ production via secretases pathway from APP [154], D7H mutation increase the total 

amount of Aβ and the Aβ42/Aβ40 ratio [122]. Aggregates promoted by these mutant 

peptides are described as oligomers. Consistent with the nature of aggregates, viability 

assays of these mutated Aβs showed higher level of toxicity [122,155]. It is likely that the 

H6R mutation will influence aggregating properties since this mutation has been show to 

impact Cu(II) binding. In contrast, it is possible that Cu(II)-mediated aggregation with D7N-

Aβ will not significantly change from WT as its Cu(II) coordination remains unchanged and 

so it does not have an important impact on the aggregation [54].

Cu(II)-mediated aggregation of D7H-Aβ also seem to differ from WT (likely due its extra 

histidine ligand) [122]. Ying and co-workers [55] propose an important effect of the Cu-Aβ 
interaction kinetics on the roles of metal-Aβ interaction linked to aggregation, since 

formation of a copper-bridge complex is faster for H6R and D7N modified peptides than for 

the WT. Likewise, D7H-Aβ has shown a high propensity to aggregate in presence of Zn(II) 

ions. A recent study has proposed an important role for the extra His by the formation of a 

homodimer by two Zn(II) ions [59]. The English mutation, H6R, also seems to favor the Zn-

induced dimer formation, as seen in section 2.1 [58].

Other FAD N-term mutations are also very interesting. Whereas A2T is protective against 

AD [51], A2V cause an early onset of disease at least on homozygous carriers [50], as it has 

been said in section 2.1. Since the difference between a threonine and a valine is subtle, 

various studies were conducted to disentangle molecular basis of the remarkable difference 

in term of AD [50,51][156–162]. Whereas A2T mutation induces a decrease of the overall 

amount of Aβ (Aβ40/Aβ42) via β-secretase pathway, A2V increases it [50,51,158,162]. The 

A2 mutation also affects the Aβ aggregation propensity [50,157,158,161,162]. Indeed, 

Molecular Dynamics (MD) simulation predicts that monomeric Aβ state differ between WT, 

A2T and A2V [159], as well as the oligomers formed and analyzed by Ion Mobility-Mass 

Spectrometry [160], in contrast to D7N [163]. Another intriguing point is that A2V mutation 

is causative of AD, only on homozygous carriers [50], suggesting a mixture of WT and A2V 

Aβ peptides might be less toxic via different aggregation properties. These hypotheses have 

been tested and confirmed that a mixture of A2V and WT is less toxic than individual 

peptides [50], and oligomer formation and aggregation properties are altered in presence of 

A2 mutants [157,158,160].

Furthermore, in the study of Somavarapu et al. [53], reviewed in section 2.1, Cu(II) shows a 

more pronounced propensity to extend the lag phase, especially for the pathogenic A2V. A 

fast, low intensity ThT response has been observed at the first hours of the in vitro 
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aggregation experiment. They hypothesize that a faster interpeptide exchange due to the 

stabilization of component I (see section 2.1) could be the underlying cause of the formation 

of amorphous aggregates in the early hours of aggregation. Although A2 mutations are 

really interesting due to their fickle effects on the disease, only too few studies have been 

investigated the impact of metal ions on these mutations.

As the coordination of Cu(II) between the human and murine Aβ peptides differs, 

aggregation is also influenced by alteration of Cu(II) binding mode. As for the coordination, 

R5G is the key mutation impacting the reduction of Cu(II)-induced aggregation [164].

3.2.2 α-Synuclein—As with Aβ, metal ions modulate aggregation of αSyn. In presence 

of Cu(II) or Zn(II) and cross-linking reagents, multimeric species were observed on SDS-

PAGE. Other metal ions in the same conditions were not effective to do so, suggesting these 

two metal ions would be able to promote αSyn self-assembly [165]. The effect of Cu(II) on 

aggregation kinetics has been investigated using ThT fluorescence [124,148,166,167], and 

signals broadening NMR spectroscopy [78]. Cu(II) promotes aggregation by accelerating it. 

In contrast, Anandhan et al. [168] based on PAGE experiments suggested Cu(II) changes the 

folded state of αSyn rather than increase its aggregation. Cu(II) also affect αSyn 

aggregation morphology as well as its pathway. Indeed, highlighted by time-dependent 

electronic microscopy and statistical analysis, Zhang et al. [166] showed that Cu(II) 

enhances the formation of small annular species likely oligomers. Moreover, predominance 

of these species occurs at an early stage of aggregation (before the appearance of fibrils) 

supporting their oligomeric or protofibrils nature [166,167]. Similar annular morphology 

enhanced in presence of Cu(II) has been observed on former independent studies [169,170].

Although less studied and maybe less potent than Cu(II), Zn(II) seems also able to impact 

αSyn aggregation. Zn(II) dramatically increases intermolecular interaction illustrated with 

αSyn bound to surface and on the tip of AFM [171]. It can induce multimeric species 

observed in SDS-PAGE when co-incubated with cross-linking reagents [165]. However, 

other study suggested Zn(II) has a minimal effect on the aggregation kinetic followed by 

ThT [81]. Disparity between studies may be explained by difference in experiments 

conditions as aggregation is highly dependent of concentration, pH, metal/protein ratio, 

techniques used, as described in section 3.1. Taking together, these various results suggest 

that metal ions, especially Cu(II), can modulate aggregation propensity of αSyn via different 

means. For instance, Cu(II) seems capable of accelerating aggregation as well as drifting its 

pathway towards oligomers.

It is worth noting that genetic mutations that exacerbate PD also impact αSyn aggregation 

[89,172], and some of them are related to metal binding site. In the case of the pathological 

H50Q mutant, Cu(II) has been described to enhance the aggregation of the protein 

[63,73,124], and change from fibrillar morphology to amorphous aggregates. The exact role 

of Cu(II) in the increasing of aggregation remains unclear, as H50Q mutation can enhance 

aggregation by itself [89]. Acetylation of the N-term of αSyn and βSyn has shown to result 

in α-helical forms in vitro [92,173]. Cu(I) stabilizes the formation of long and structure α-

helical segments [79], while for Cu(II), more equivalents are needed to see an effect on the 

aggregation of Ac-αSyn compared to the non-acetylated form [72].
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3.2.3 Amylin—hIAPP is a highly amyloidogenic peptide. Nevertheless, its aggregation 

can be modulated by different factors as pH and β-cell components [174]. In vitro 
experiments have shown that a lower pH slows the fibrillation of IAPP, via protonation of 

His18 [175]. Considering this residue as key for the coordination of copper and zinc, it 

would be interesting to elucidate the role of metal ions in the modulation of hIAPP and 

mIAPP aggregation. A consensus is given for the inhibitory effect on fibril formation upon 

zinc binding [3,11]. The origin of the amyloid formation inhibition could be electrostatic, 

due to repulsion of adjacent β-sheets in presence of zinc [107], although this result could be 

concentration-dependent [109,110]. Another hypothesis is the ability of Zn(II) to stabilize 

prefibrillar aggregates during lag phase, preventing the equilibrium towards mature fibrils 

[150]. A similar effect has been found for Cu(II): the formation of several conformers, such 

as small globular aggregates and oligomers, produces an off-pathway that could increase the 

energetic barrier to form amyloid fibrils, explaining the inhibition of fibril formation 

[98,99,102,152]. These Cu-induced conformers could be more toxic than fibrils and zinc-

induced aggregates [152]. What is clear is that in vitro results are not able yet to elucidate 

the role of metal-binding in the toxicity of amyloid deposits in T2D.

Genetic factors such as the mutation of key residues in the sequence, can lead to drastic 

changes in the coordination of metal ions, and the impact these have on the aggregation and 

ROS production. Mutation of Ser20 by a Gly residue is linked to the early onset of T2D in 

Asiatic populations. The S20G mutation accelerates the aggregation of the peptide, 

compared to the wild-type amylin. One possible explanation is that as Gly is less bulky than 

Ser, the effect can be due to a decrease of sterically impediments [176–178]. Moreover, as 

Ser20 would be implicated in the coordination of Cu(II), its substitution reduces the ability 

to bind copper, and its inhibitory effect could be affected [102].

The impact that metal ions could have on the aggregation of mIAPP has not been thoroughly 

studied. Using the fragment hIAPP(15-22)H18A, which contains the key mutation of His18, 

showed that Cu(II) was not able to induce such an inhibitory effect on the aggregation of this 

fragment [99]. In the case of zinc, it has been proposed that the aggregation of mIAPP would 

be accelerated by increasing the pH and the concentration of zinc, although it could have, as 

in the case of the hIAPP, a ratio-dependent impact [116].

3.3 Conclusion

The impact of Zn and Cu on the aggregation of amyloidogenic peptides and proteins is 

undeniable. Furthermore, metal ions could be key also in presence of mutations and post-

translational modifications. Since, even in some cases the coordination is not greatly 

modified, the impact of metal ions is visible on most of the cases. Mutations can also help to 

understand the link between ROS and aggregation and will be further reviewed in the next 

section.
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4 Production of reactive oxygen species catalyzed by Cu-peptides

4.1 Introduction and biological relevance

Cu-ions can be very efficient catalysts for the reduction of dioxygen resulting in the 

generation of reactive oxygen species (ROS, like HO•, H2O2 and O2
•-) [179–183]. An 

overproduction of ROS induces oxidative stress. Oxidative stress has been observed in 

several amyloidogenic diseases, including AD, PD and diabetes [184–187]. However, it is 

not known to what extent or if at all the complexes of Cu with amyloidogenic peptides and 

proteins (Aβ, αSyn and IAPP) contribute directly to the observed oxidative stress.

Although for AD and PD is clear that 1) Cu can bind to Aβ/αSyn [188–190], 2) oxidative 

stress occurs [181] and 3) Cu metabolism is altered [191–193], the proof that the Cu bound 

to Aβ or αSyn contributes directly to the oxidative stress is missing. The same holds also for 

in vivo studies in AD model organisms, i.e. an altered metabolism on amyloidogenic 

peptides, ROS production and Cu is reported [191,192], but how they are connected is not 

very well described.

In cellulo studies with Cu and amyloidogenic peptides were also conflicting: some showed 

that Cu increases the toxicity of Aβ or αSyn, others showed the contrary. Moreover, one of 

the inherent problem is that Cu can be a catalytic center and a structural element. As a 

structural element, Cu-binding to the amyloidogenic peptides changes the structure and 

hence the aggregation behavior. As a catalytic center it can trigger reactions, in particular 

ROS production. This means that changes in toxicity upon Cu-binding to Aβ/αSyn or 

amylin could be direct due ROS production of Cu bound to the peptides or indirect via the 

change in aggregation states. Analyzing the toxicity of mutants can suffer from the same 

problem, to decipher if the mutations impact Cu-binding only, aggregation or both.

4.2 ROS Chemistry of Cu complexes with Aβ, αSyn and IAPP in the test tube

During the last two decades, understanding of the chemistry of ROS production by these Cu-

peptides in the test tube has significantly advanced, especially for Cu-Aβ, but also for Cu-

αSyn, since the first studies reported for Cu complexes with APP [194], Aβ [195,196] and 

αSyn [197]. However, less is known for amylin compared to the other ones. Here we report 

mainly on the mechanistic studies performed in vitro. These studies generally showed that 

the Cu complexes with Aβ and αSyn are active in the production of ROS in the presence of 

dioxygen and the physiological relevant reducing agent ascorbate (Fig. 5). Cu-Aβ and Cu–

αSyn were more active than several tested Cu-binding proteins and peptides [198–200]. 

They were less active than Cu in buffer [180], but this seems less relevant as non-

biomolecule bound Cu is quasi inexistent in vivo.

For Cu-Aβ it has been shown that the production of H2O2 goes via two consecutive one 

electron reductions (reaction 1 and 2) and not via a simultaneously two electrons reduction 

(reaction 4) [201]. For αSyn and IAPP this is not known. The abbreviation DHA in the 

figure stands for dihydro ascorbic acid. The redox potential values were reported by 

Halliwell and Gutteridge [202].
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These studies aimed mostly at answering the following questions: (i) how active the Cu 

complexes (Aβ, αSyn and IAPP) are in ROS production? (ii) What is the impact of 

mutations, specifically disease related mutations and the impact of the aggregation state? 

(iii) What is the molecular mechanism? (iv) What is the impact of oxidative damages to 

peptide/protein itself on coordination, aggregation and ROS production?

4.2.1 Comparison of activity in ROS production—It has been proposed that Cu 

bound to the flexible peptides and proteins Aβ, αSyn and IAPP, contributes to oxidative 

stress observed in AD, PD and T2D by catalyzing the production of ROS. There is a 

discussion in the literature if Aβ and αSyn quench Cu-based ROS production or promotes it. 

It is clear that Aβ and αSyn quench ROS production compared to Cu in the buffer. However, 

in biological environment Cu is always bound to biomolecules, mostly proteins. Thus, the 

real question is if Cu-complexes of amyloidogenic proteins produce more ROS than Cu-

biomolecules present under healthy conditions. Comparison made with several Cu-proteins 

and peptides suggested indeed, that Cu-Aβ and –αSyn are more efficient in ROS production 

[200].

The activity of Cu-Aβ and Cu-αSyn has been compared in presence of ascorbate, 

monitoring the production of H2O2 and HO•, at a ratio of 1.2 or 2 peptide to Cu [198,199]. 

Both report a faster ROS production by Cu-αSyn and Cu-βsyn compared to Cu-Aβ. 

However, in such type of experiments it is important to make sure that there is no or 

neglectable contribution of non-peptide bound Cu, because as stated above, free Cu is very 

efficient in catalyzing ROS production.

There is no report on a direct comparison between IAPP with Cu-αSyn or Cu-Aβ. 

Nonetheless, ROS production by Cu-IAPP was observed in the presence and absence of a 

reducing agent [123,203,204].

4.2.2 Impact of mutations on ROS production—The impact of mutation or 

derivatization has been studied, including mutations connected to familial AD [56]. Single 

mutations have a relatively modest impact and no clear-cut correlation between ROS 

production and familial mutations was observed. The murine Aβ1-16 showed a slight 

decrease in the ROS production rate [56]. However, these studies have been done on the 

soluble Cu-binding domain, and hence does not involve the possible change in ROS 

production via a change in aggregation state.

To our knowledge, no study evaluating the impact of familial mutations on the rate of ROS 

production by Cu-αSyn is reported. As proposed by Valensin and co-workers, the effect on 

the ROS production upon acetylation of the terminal amine should be checked, as it 

influences the Cu(II) coordination but not that of Cu(I) [80] (and ref. therein).

For IAPP the only comparison known was with the rat sequence, which lacks the amino acid 

His18, hence the main Cu(II)-binding site is missing. Moreover, the comparison was limited 

to the H2O2 detection in the absence of any reducing agent and thus not under catalytic 

conditions [203]. This might explain the surprising effect when Cu-rat-IAPP did not show 

H2O2 production in contrast to human-IAPP. Considering the absence of a main Cu(II/I) 
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binding site (His), one would expect more Cu in the buffer, that is very competent in ROS 

production.

4.2.3 Impact of aggregation state on ROS production—For αSyn and Aβ, the 

production of ROS seemed to be lower in the fibrillary or extensive aggregated forms [198]. 

If this is due to a different coordination or a lower accessibility (or both) is not clear. An 

important question, is the capacity of oligomeric forms to catalyze ROS. As these are 

supposed to be the most toxic species, a higher competence for ROS activity could 

contribute to explain their higher toxicity whenever in presence of metal ions as it has been 

proposed for αSyn [205,206]. Here the results are conflicting, as some publications report a 

higher activity for oligomers [200] and some others not [198]. However, there are different 

types of oligomers with different structures, which could explain the different reactivity 

observed. More work, particularly on the characterization of the oligomeric species present, 

would be necessary to clarify this point.

4.2.4 Mechanism of ROS production—The mechanism has been mainly studied on 

Cu-Aβ1-16, containing the Cu-binding domain. This peptide is non-aggregating and hence a 

fairly complete model for the monomeric Aβ, but a more limited model for the aggregated 

Cu-Aβ.

Cu-Aβ catalyzes the stepwise one electron reduction of dioxygen to HO• i.e. dioxygen is 

bound to Cu(I)-Aβ, reduced and superoxide is released [201]. This is likely the rate limiting 

step, as this is thermodynamically an uphill reaction [207]. Then another Cu(I)-Aβ can 

reduce superoxide to H2O2 etc. No indication for a two electrons reduction going directly 

from dioxygen to H2O2 was observed (Fig. 5) [201].

So far, the most developed model is based on the so-called resting states and in-between 

state [23]. The resting states are the most populated coordination of Cu(II) and Cu(I). As 

described above, their coordination sphere is very different, which implies a large 

reorganization from the resting state of Cu(II) to the resting state of Cu(I). This 

reorganization includes also at least one proton transfer at the N-terminal amine (protonated 

in Cu(I), deprotonated in Cu(II)). Such a large reorganization is sluggish and hence not 

efficient in redox cycling between Cu(II) and Cu(I), which is the underlying base of ROS 

production. Indeed, this view has been supported by electrochemical studies. These studies 

suggested that the redox cycling passes via an in-between state, which is very competent in 

Cu redox cycling and supposed not to involve a proton transfer on the peptide (but on the 

substrate depending on the reaction (Fig. 5)) [208].

Based on these electrochemical studies in the absence of a substrate, an in-between state has 

also been suggested for the chemical redox reactions, by dioxygen and ascorbate (Fig. 5). 

Recently, the analysis of a multitude of Aβ derivatives resulted in the proposition of an in-

between state and the ligands involved (Fig. 6) [56].

No mechanistic studies of this type were reported for Cu-αSyn or Cu-IAPP. However, some 

comments and suggestions can be given. Cu-αSyn has also two very different “resting” 

states for Cu(II) and Cu(I) (see above). Thus, by analogy with Aβ, an “in-between state” 
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may also be anticipated, since αSyn is also a very flexible protein and such an in-between 

state would be dynamically achievable. Moreover, analyzing the damage of HO• attack in 

Cu-αSyn, which is assumed to mainly react with the most nearby residues (i.e. ligands) 

showed that Met1 is much more efficiently oxidized than Met5 [209,210]. This indicates that 

the ROS producing state is not the Cu(I) resting state (see Fig. 2). Thus, the in-between state 

in Cu-αSyn likely involves the ligation of S of Met1, and maybe Asp2 (as this residue is 

bound in either resting state).

In the case of IAPP, the resting state of Cu(I) is not known. But because IAPP has only one 

His and no Cys or Met, one can assume that Cu(I) is very loosely bound, and once Cu(II) is 

reduced to Cu(I), the latter will decoordinate rapidly. The Cu(II) resting state involves two 

amidate ligations, that stabilize Cu(II) against reduction. Thus, in ROS measurements, more 

care must be taken for IAPP, to exclude contribution of unbound Cu.

4.2.5 Redox potentials—Measuring of reduction and oxidation potentials of Cu-Aβ 
and Cu-αSyn (but not IAPP) complexes by cyclic voltammetry has been reported in the 

literature (Table 3). Such studies are important to understand the reaction mechanism; 

however, one must keep in mind that in these electrochemical studies no chemical substrate 

is present, and hence the mechanism could be different. The electrochemical study on Cu-

Aβ in the absence of substrates revealing a low populated in-between state was the base of 

the proposition that also in the mechanism of ROS production an in-between state is present 

as discussed in section 4.2.4 (although of different structure than the one in of 

electrochemistry) [201,208].

These studies were done under different experimental conditions and therefore the redox 

potential values differ from one to another when comparing the same peptide fragments. 

Parameters that can have an influence in the redox potential values include pH, Cu-Peptide 

ratio, and scan rate. It is important to add enough peptide to avoid contribution of free Cu (or 

Cu bound elsewhere). A titration of Aβ to Cu at 0.2 mM showed that up to 5 equivalents 

were needed to suppress completely the contribution of Cu outside the main binding site at 

pH 6.7 [208]. Such experiment must be performed for each peptide and condition, since 

peptide, buffer, pH and concentration can impact the over-stoichiometry needed. Several 

studies use just 1:1 ratios, likely too low to suppress to measure purely the Cu bound to the 

main site (Table 3).

pH can influence the reduction and oxidation potential as well. For instance, the reduction of 

Cu(II)-Aβ in the resting state is more difficult in the component II compared to I, as the 

amide bond stabilizes Cu(II) (Table 3, ref. [211]). In line with this, the reduction potential is 

also lower for Cu-αSyn compared to component I on Aβ, as it involves an amide bond. 

Thus, one could predict that the reduction potential is even lower for Cu-IAPP, as Cu is 

bound to two amides (Fig. 3A).

This consideration is based on the reduction of the resting state. The cyclic voltammograms 

of all measurements show non-reversible behavior, in line with the different coordination 

site of the resting state of Cu(I) and Cu(II). However, the deepest analysis has been 
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performed for Cu-Aβ and showed that redox properties are more complicated. Balland et al. 

proposed a new mechanism, called preorganization electron transfer (POET) [208].

The POET consists of a low populated state (with similar coordination sphere for Cu(I) and 

(II)), that undergoes very efficient redox cycling due to very small reorganization energy. For 

Cu-Aβ a redox potential of 0.300 V (vs NHE) was found. Considering the flexibility of 

αSyn and IAPP, as well as the coordination difference between Cu(II) and Cu(I), a POET 

mechanism can be proposed for these complexes. It is therefore important, that a deep 

electrochemical analysis is made by using different scan rates, concentrations, buffers, ratios 

etc. to reveal these properties, as it was done for Cu-Aβ [208].

4.2.6 Oxidative damage of peptide and impact ROS production—The produced 

reactive oxygen species, and in particular HO•, can attack and modify the peptide itself. In 

the case of Aβ it was shown that the HO• radical attack mainly the N-terminal amine and the 

different His residues. The derivatization of these ligands reduces their Cu-coordination and 

therefore, the coordination sphere is modified. This leads to an increase in ROS production, 

as kind of a vicious circle [219]. ROS production measurements for Cu-αSyn showed an 

increase in the rate with time, indicating that Cu-coordination changes would be due to 

oxidative damage of the peptide [198]. If this higher active state of Cu is still bound to 

oxidized αSyn or if the higher activity is just due to the release of Cu from αSyn, and hence 

higher active “free” Cu, is unknown.

For Cu-Aβ it has been shown that the main peptide degradation occurs on the N-terminal 

Asp and the His. This leads to changes in the Cu(I) and Cu(II) coordination (resting state) 

and might also affect the in-between state explaining then the higher ROS production rate.

For the case of αSyn the main oxidation targets are Met1 and Met5 to form the respective 

sulfoxides, with the possibility to further oxidize them to the sulfone or to decompose. 

Decarboxylation of Asp2 and cleavage of the Met1-Asp2 bond, as well as other peptide 

bonds further away from the Cu-biding sites, were also observed. The oxidation of Met 

sulfur will highly impact the binding of Cu(I), but not much Cu(II) [210,220].

An important feature is also the fact that peptide oxidative damage can not only change Cu-

coordination and ROS production, but also the aggregation behavior. Lee and coworkers 

[197] have also shown that ROS production by Cu-αSyn yields protein oligomers, ending up 

in aggregation. Also in the case of Aβ, oxidative damage by Cu catalyzed ROS production 

can impact aggregation behavior and structure of aggregates [128,221]. For instance, when 

Tyr cross-linking was observed, stabilization of oligomers and fibrils can occur [222,223].

4.3 Conclusion

Cu-Aβ and Cu-αSyn are quite competent in catalyzing the production of ROS in the 

presence of dioxygen and ascorbate, at least more as the tested Cu-peptides and proteins. 

The efficiency of IAPP is not clear.
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All three peptides are flexible and have very different coordination spheres between the two 

Cu redox states (called resting states). Supported by electrochemistry, a large reorganization 

is needed to pass from Cu(I) to Cu(II) and vice versa.

Based on this, a similar mechanism can be proposed for Cu-αSyn (and maybe IAPP), that 

includes an in-between state. This in-between state is different from the resting state, which 

has a lower populated state but is dynamically accessible. This state is responsible for the 

ROS production. The efficiency of the ROS production depends on the population of the in-

between state in its reactivity. The reactivity is depending on the redox potential (of the in-

between state) and substrate binding/accessibility. The generated ROS can damage 

biomolecules like DNA, lipids, etc. but also the peptide itself. This will lead to a change in 

the Cu-coordination and for Cu-Aβ and Cu-αSyn to an increase in ROS production. Such 

oxidations can also affect the aggregation behavior, another important factor to consider.

Although misregulation of amyloidogenic peptides, copper and ROS are well documented in 

AD and PD (but not in diabetes), the importance of the direct ROS production by Cu-Aβ/

αSyn in cellulo and in vivo is not clear and remains an important open question.

5 General conclusions

In the present review, we have described the coordination modes of Cu and Zn ions to three 

peptides and protein of biological interest: Aβ, αSyn and amylin and to their familial and 

murine mutants. General coordination trends are shared by these peptides: (i) when available 

and close to other binding amino-acid residues, the N-terminal amine is the preferred 

anchoring sites for Cu(II), else His residues serve as the anchoring residues. As N ligands, 

His and deprotonated amide groups from the peptide bond complete the Cu(II) environment 

while as O ligands, carboxylate and carbonyl groups are endogenous ligands, and water 

exogenous ligand. (ii) His and to a lesser extent the N-terminal amine are the two preferred 

N-donor ligand of Zn(II), while carboxylate and water are the O-donor ligands. (iii) Cu(I) 

prefers Met, His and water. (iv) In addition, each metal ion adopts its favored geometry 

indicating that the nature of the metal binding site in these disordered peptides is not only 

metal-dependent but metal-driven too. This has two main consequences. First, regarding the 

modulation of the aggregation propensity of the amyloidogenic peptides, each metal ion 

does influence the process differently than the other ones. Secondly, regarding the 

production of ROS, the postulated mechanism relies on a complex redox process and relies 

on the intervention of an “in-between” state where the geometry around the Cu center is 

intermediate between those of Cu(I) and Cu(II).

As another very general feature, Cu and Zn coordination to familial and murine mutants are 

modified for the three kinds of peptides and protein, in line with mutations involving binding 

amino-acids residues. Mutations are also associated with different aggregation and ROS 

production ability, in link with different metal ions – peptides interactions. As mutations are 

either associated with early-onset of the disease (familial ones) or absence of disease 

(murine ones), this underlines the connection between metal ions and amyloid diseases.
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From current literature, it seems that the link between metal ions and amyloid diseases 

would be particularly relevant in the case of metal-induced aggregation, especially in the 

case of Aβ. Hence, further studies are needed to validate a similar connection mediated by 

ROS production. Future works will also address the connection between metal ions and 

amyloid diseases, via aggregation and/or ROS production, for the other two diseases (PD 

and T2D) of interest in the present review as well as for any amyloid-related pathologies.

Acknowledgements

The ERC aLzINK grant (ERC-StG-638712) is acknowledged for financial support (granted to C.H.). We 
acknowledge financial support from the University of Strasbourg Institute for Advanced Study (USIAS; to P.G., 
C.H. and P.F.), University of Strasbourg (IDEX program, PhD grant to A.S.) and the Frontier Research in Chemistry 
Foundation of Strasbourg (Installation grant to P.F.)

Abbreviations

AD Alzheimer's disease

AFM Atomic Force Microscopy

APP Amyloid Precursor Protein

Aβ Amyloid-β peptide

DHA Dihydro Ascorbic acid

EPR Electron Paramagnetic Resonance

FAD Familial Alzheimer's disease

hAβ hIAPP, human peptides

IAPP islet amyloid polypeptide

mAβ mIAPP, murine peptides

IDPs intrinsically disordered peptides/proteins

MD Molecular Dynamics

NAC Non-amyloid Component

Nim imidazole nitrogen

NMR Nuclear Magnetic Resonance

N-term N-terminal

PB phosphate buffer

PD Parkinson's disease

rAβ, rIAPP rat peptides
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SDS-PAGE Sodium Dodecyl Sulfate Polyacrylamide Gel 

Electrophoresis

T2D Type II diabetes mellitus

ThT Thioflavin T

WT Wild Type (no mutated peptide)

αSyn alpha-synuclein

βSyn beta-synuclein
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Fig. 1. 
Main coordination modes of (A) hAβwt (for Cu(II), Cu(I) and Zn(II)) and (B) mAβ for 

Cu(II) at physiological pH and for Zn(II).
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Fig. 2. 
Cu(II) and Cu(I) coordination to (A) α-synuclein, (B) Ac-α-synuclein and (C) β-synuclein.

Atrián-Blasco et al. Page 34

Coord Chem Rev. Author manuscript; available in PMC 2019 March 15.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



Fig. 3. 
(A) Representation of the two Cu(II) coordination models proposed for hIAPP with His18 as 

anchoring ligand, towards the C-terminal (left) and N-terminal (right). (B) Two different 

propositions for Zn(II) binding to monomeric hIAPP.
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Fig. 4. 
Schematic representation of some of the morphologies found in the aggregation pathway and 

off-pathway (amorphous aggregates) of amyloid peptides followed by ThT fluorescence 

assay and their TEM and AFM images. The most common techniques used to study the 

aggregation are listed.
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Fig. 5. 
Schematic mechanism of the ROS production by Cu-amyloidogenic peptides/proteins 

complexes in the presence of ascorbate (Asc) and dioxygen. Amyloidogenic peptides and 

proteins considered in this work are Aβ, αSyn and IAPP.
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Fig. 6. 
Schematic representation of the different coordination geometries around the Cu center in 

the equilibrium between the “resting state” (for Cu(II) on the left and Cu(I) on the right) and 

the “in between state”. While for Cu(II) a square planar geometry is favored, Cu(I) prefers a 

diagonal or tetrahedral geometry. In the “in between state”, where the electron transfer 

between the Cu and the substrate occurs, we can imagine a highly similar coordination 

sphere for Cu(II) and Cu(I) in which the substrate is involved. In this way a low re-

organization energy would be needed. Aβ, αSyn and IAPP are flexible peptides thus able to 

adapt to the Cu coordination requirements.

Atrián-Blasco et al. Page 38

Coord Chem Rev. Author manuscript; available in PMC 2019 March 15.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts

Atrián-Blasco et al. Page 39

Table 1

Amino acid sequences of hAβ1-42 peptide and its FAD mutants, mAβ1-42, hIAPP* and its mutants, mIAPP* 

peptides, and α- and β- synucleins proteins†. Metal-binding residues are marked in orange; point mutations in 

blue. The main sequence involved in aggregation is underlined. In gray: *C-terminal amidation of IAPP [14] 

and † N-terminal acetylation of αSyn and βSyn [15,16] occur in vivo.

hAβ1-42 DAEFRHDSGY10EVHHQKLVFF20AEDVGSNKGA30IIGLMVGGVV40IA

hAβ1-42

(A2T)
DTEFRHDSGY10EVHHQKLVFF20AEDVGSNKGA30IIGLMVGGVV40IA

hAβ1-42

(A2V)
DVEFRHDSGY10EVHHQKLVFF20AEDVGSNKGA30IIGLMVGGVV40IA

hAβ1-42

(H6R)
DAEFRRDSGY10EVHHQKLVFF20AEDVGSNKGA30IIGLMVGGVV40IA

hAβ1-42

(D7N)
DAEFRHNSGY10EVHHQKLVFF20AEDVGSNKGA30IIGLMVGGVV40IA

hAβ1-42

(D7H)
DAEFRHHSGY10EVHHQKLVFF20AEDVGSNKGA30IIGLMVGGVV40IA

mAβ1-42 DAEFGHDSGF10EVRHQKLVFF20AEDVGSNKGA30IIGLMVGGVV40IA

hIAPP

mIAPP

hIAPP
(S20G)

αSyn1-60 Ac_MDVFMKGLSKAKEGVVAAAEKTKQG25VAEAAGKTKEGVLYVGSKTKEGVVH50GVATVAEKTK

αSyn61-95 EQVTNVGGQVVTGVT75AVAQKTVEGQGSIAAATGFV

αSyn96-140 KKDQL100GKNEEGAPQEGILEDMPVDPDNEAY125EMPSEEGYQDYEPEA

βSyn1-60 Ac_MDVFMKGLSMAKEGVVAAAEKTKQG25VTEAAEKTKEGVLYVGSKTREGVVQ50GVASVAEKTK
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Table 2

Binding constants (Ka, M-1) for the highest affinity binding sites of the different peptides 

and proteins revised in this review.

peptide/protein Cu(II) Cu(I) Zn(II)

hAβ16 109 – 1010 [55,117–119] 107 – 1010 [57,118] 105 [120,121]

hAβ16 (A2T) ≈ hAβ16 WT [53]

hAβ16 (A2V)

hAβ16 (H6R) 108 [55,119] 2.4·103 [58] †

hAβ16 (D7N) 109 [55,119] 0.88·105 [121]

hAβ (D7H) > Aβ40 WT [122] 4.1·104 [59] ‡

mAβ16 3·109 [119] 2·106 [57] 1.53·104 [62]

hIAPP 105 – 106 [99,123] 106 [109]

hIAPP (S20G)

mIAPP 9·104 [123] 9·103 [116]

αSyn 107 [65,78] 105 – 106 [77,78] < 103 [83]

Ac-αSyn ca. 104 [72] * 104 – 105 [79]

βSyn 5·106 [67]

αSyn (H50Q) 105 [124]

Ac-αSyn (H50Q) too low [73]

*
This value is taken from the one for the low-binding affinity site found at His50, given in ref. [65].

†
Value calculated for the dimer formation Zn-(AβH6R)2 (M-2).

‡
Value calculated for dimer formation of Zn2-(Aβ1-10D7H)2 (M-3).
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Table 3
Compilation of electrochemical studies of Cu-Aβ and Cu-αSyn complexes.

Peptide Complex Redox Potential (V) [NHE]
†

Experimental Conditions Ref.

Electrolyte Solution Electrode Scan Rate (mV/s) Cu:peptide ratio‡

Cu-Aβ1-42 E° ~ 0.500–0.550 [0.699 – 
0.749]

(quasi-reversible)

PB pH 7.3 Ag/AgCl 
(1M KCl)
(indium/
tinoxide 
working 

electrode)

- 1:6
(17 μM)

[212]

Cu-Aβ1-16 Epa = 0.340
Epc = 0.650

Tris/HCl pH 7.4,
100 mM NaCl

NHE - 1:1
(1 mM)

[200]

Cu-Aβ1-28 Epa = 0.330
Epc = 0.630

Tris/HCl pH 7.4,
100 mM NaCl

NHE - 1:1
(1 mM)

[200]

Cu-Aβ1-16 Epa = 0.780 [0.979]
Epc = 0.085 [0.284]

PB 5 mM pH 7.4,
0.1M Na2SO4

10% DMSO

Ag/AgCl 20 1:1
(50 μM)

[213]

Cu-Aβ1-42 Epa = 0.600 [0.799]
Epc ~ 0.020 [0.219]

PB 5 mM,
pH 7.4,

0.1M Na2SO4

10% DMSO

Ag/AgCl 20 1:1
(50 μM)

[213]

Cu-Aβ1-40 E° = 0.100 [0.299] KCl 0.2 M,
pH 6.9

Ag/AgCl 50 1:1 [214]

Cu-Aβ1-16 0.300 vs (NHE)
(In-between state)

PIPES buffer 25 mM,
pH 6.7,

0.2 M KCl

SCE 20, 50, 100 1:5
(0.2 mM)

[208]

Cu-Aβ1-16 Epc = -0.076 [0.123]
Epa =-0.140 [0.059]
E°= 0.032 [0.231]

(pH 6.5, mainly Component 
I)

E° = -0.376 [-0.177]
(pH 8.5, mainly Component 

II)

PB 10 mM,
50 mM Na2SO4

Ag/AgCl 5 1:4
(100 μM)

[215]

Cu-Ac-Aβ1-16 E°=0.060 [0.259]
(pH 7.4, mainly Component 

I)
E° = -0.353 [-0.154]

(pH 9.5, Component II)

PB 10 mM,
50 mM Na2SO4

Ag/AgCl 5 1:4
(100 μM)

[215]

Cu-Aβ1-16 Epa - Epc = 0.450 [0.649] KNO3 96 mM
HNO3 4 mM

pH 7.4

Ag/AgCl 20, 100 0.9:1
(0.45 mM)

[216]

Cu-Aβ4-16 Epa = 0.830 [1.029] KNO3 96 mM
HNO3 4 mM

pH 7.4

Ag/AgCl 20, 100 0.9:1
(0.45 mM)

[216]

Cu-αSyn1-140 0.018 [0.217]
(quasi-reversible)

PB 5 mM pH 7.4,
0.1 M

Na2SO4

Ag/ AgCl 5 1:2
(50 μM)

[217]

Cu-αSyn1-19 0.053 [0.252]
(quasi-reversible)

PB 5 mM pH
7.4, 0.1 M
Na2SO4

Ag/ AgCl 5 1:2
(50 μM)

[217]

Cu-αSyn1-6 Epc (1) ≈ −0.365 [-0.166]
Epc(2) = −0.461 [-0.262]
Epa (1) ≈ −0.101 [0.098]
Epa (2) = −0.024 [0.175]

PB 10 mM
pH 7.4, 50

mM Na2SO4

Ag/ AgCl 5 1:1
(300 μM)

[209]
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*
All the redox potential values were obtained using a glassy carbon working electrode unless otherwise stated.

†
Conversion value for the Ag/AgCl electrode to NHE obtained from [218].

‡
Cu concentration is indicated in parenthesis.
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