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Abstract

We show that in a common high-dimensional covariance model, the choice of loss function has a 

profound effect on optimal estimation.

In an asymptotic framework based on the Spiked Covariance model and use of orthogonally 

invariant estimators, we show that optimal estimation of the population covariance matrix boils 

down to design of an optimal shrinker η that acts elementwise on the sample eigenvalues. Indeed, 

to each loss function there corresponds a unique admissible eigenvalue shrinker η* dominating all 

other shrinkers. The shape of the optimal shrinker is determined by the choice of loss function and, 

crucially, by inconsistency of both eigenvalues and eigenvectors of the sample covariance matrix.

Details of these phenomena and closed form formulas for the optimal eigenvalue shrinkers are 

worked out for a menagerie of 26 loss functions for covariance estimation found in the literature, 

including the Stein, Entropy, Divergence, Fréchet, Bhattacharya/Matusita, Frobenius Norm, 

Operator Norm, Nuclear Norm and Condition Number losses.
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1 Introduction

Suppose we observe p-dimensional Gaussian vectors Xi
i . i . d𝒩 0, Σp , i = 1, …, n, with Ʃ = 

Ʃp the underlying p-by-p population covariance matrix. To estimate Ʃ, we form the empirical 

(sample) covariance matrix S = Sn, p = n−1∑i = 1
n XiXi′; this is the maximum likelihood 

Proofs and Additional Results
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in various proofs. Notably, we prove Lemma 4, and provide detailed derivations of the 17 explicit formulas for optimal shrinkers, as 
summarized in Table 2. In addition, in the supplementary material we offer a detailed study of the large-λ asymptotics (asymptotic 
slope and asymptotic shift) of the optimal shrinkers discovered in this paper, and tabulate the asymptotic behavior of each optimal 
shrinker. We also study the asymptotic percent improvement of the optimal shrinkers over naive hard thresholding of the sample 
covariance eigenvalues.
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estimator. Stein [1, 2] observed that the maximum likelihood estimator S ought to be 

improvable by eigenvalue shrinkage.

Write S = VΛV′ for the eigendecomposition of S, where V is orthogonal and the diagonal 

matrix Λ = diag λ1, …, λp  contains the empirical eigenvalues. Stein [2] proposed to shrink 

the eigenvalues by applying a specific nonlinear mapping φ producing the estimate 

Σφ = Vφ Λ V′, where φ maps the space of positive diagonal matrices onto itself. In the 

ensuing half century, research on eigenvalue shrinkers has flourished, producing an 

extensive literature. We can point here only to a fraction, with pointers organized into early 

decades [3, 4, 5, 6, 7, 8], the middle decades [9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19], and 

the last decade [20, 21, 22, 23, 24, 25, 26, 27, 28, 29]. Such papers typically choose some 

loss function Lp:Sp
+ × Sp

+ 0, ∞ , where Sp
+ is the space of positive semidefinite p-by-p 

matrices, and develop a shrinker η with “favorable” risk 𝔼Lp Σ, Ση S .

In high dimensional problems, p and n are often of comparable magnitude. There, the 

maximum likelihood estimator is no longer a reasonable choice for covariance estimation 

and the need to shrink becomes acute.

In this paper, we consider a popular large n, large p setting with p comparable to n, and a set 

of assumptions about Ʃ known as the Spiked Covariance Model [30]. We study a variety of 

loss functions derived from or inspired by the literature, and show that to each “reasonable” 

nonlinearity η there corresponds a well-defined asymptotic loss.

In the sibling problem of matrix denoising under a similar setting, it has been shown that 

there exists a unique asymptotically admissible shrinker [31, 32]. The same phenomenon is 

shown to exist here: for many different loss functions, we show that there exists a unique 
optimal nonlinearity η*, which we explicitly provide. Perhaps surprisingly, η* is the only 

asymptotically admissible nonlinearity, namely, it offers equal or better asymptotic loss than 

that of any other choice of η, across all possible Spiked Covariance models.

1.1 Estimation in the Spiked Covariance Model

Consider a sequence of covariance estimation problems, satisfying two basic assumptions.

[ASY(γ)] The number of observations n and the number of variables pn in the n-th problem 

follows the proportional-growth limit pn/n → γ, as n → ∞, for a certain 0 < γ ≤ 1.

Denote the population and sample covariances in the n-th problem by Σ = Σpn and S = Sn,pn 
and assume that the eigenvalues ℓi of Σpn satisfy:

[SPIKE(ℓ1, …, ℓr)] The r “spikes” ℓ1 > … > ℓr ≥ 1 are fixed independently of n and pn, and ℓr+1 = 

… = ℓpn = 1.

The spiked model exhibits three important phenomena, not seen in classical fixed-p 
asymptotics, that play an essential role in the construction of optimal estimators. Drawing on 

results from [33, 34, 35, 36, 37, 38], we highlight:
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a. Eigenvalue spreading. Consider model [ASY(γ)] in the null case ℓ1 = … = ℓr = 1. 

The empirical distribution of the sample eigenvalues λ1n, …, λpn converges as n 
→ ∞ to a non-degenerate absolutely continuous distribution, the Marcenko-

Pastur or ‘quarter-circle’ law [33]. The distribution, or ‘bulk’, is supported on a 

single interval, whose limiting ‘bulk edges’ are given by

λ± γ = 1 ± γ 2 . (1.1)

b. Top eigenvalue bias. Consider models [ASY(γ)] and [SPIKE(ℓ1, …, ℓr)]. For i = 1, 

…, r, the leading sample eigenvalues satisfy

λin
a . s . λ ℓi , (1.2)

where the ‘biasing’ function

λ ℓ = ℓ + γℓ/ ℓ − 1 , ℓ ≥ ℓ+ γ , (1.3)

λ ℓ ≡ 1 + γ 2 = λ+ γ  for ℓ ≤ ℓ+(γ), the Baik-Ben Arous-Peché transition point

ℓ+ γ = 1 + γ . (1.4)

Thus the empirical eigenvalues λi are shifted upwards from their theoretical 

counterparts ℓi by an asymptotically predictable amount, of a size that exceeds γ 
even for very large signal strengths ℓi.

c. Top eigenvector inconsistency. Again consider models [ASY(γ)] and [SPIKE(ℓ1, 

…, ℓr)], noting that ℓ1 > … > ℓr are distinct. The angles between the sample 

eigenvectors v1n, …, vpn, and the corresponding “true” population eigenvectors 

u1n, …, upn, have non-zero limits:

uin, υ jn
a . s . δi, j ⋅ c ℓi 1 ≤ i, j ≤ r, (1.5)

where the cosine function is given by

c ℓ = 1 − γ / ℓ − 1 2

1 + γ / ℓ − 1 ℓ ≥ ℓ+ γ , (1.6)

and c(ℓ) = 0 for ℓ ≤ ℓ+(γ).
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Loss functions and optimal estimation. Now consider a class of estimators for the population 

covariance , based on individual shrinkage of the sample eigenvalues. Specifically,

Σ = Ση = η λ1 v1v1′ + … + η λp vpvp′ , (1.7)

where vi is the sample eigenvector with sample eigenvalue λi and η(λ) is a scalar 
nonlinearity, η : ℝ+ → [1, ∞), so that the same function acts on each sample eigenvalue. 

While this appears to be a significant restriction from Stein’s use of vector functions φ [2], 

the discussion in Section 8 shows that nothing is lost in our setting by the restriction to 

scalar shrinkers.

Consider a family of loss functions L = Lp p = 1
∞

 and a fixed nonlinearity η : [0, ∞) → ℝ. 

Define the asymptotic loss relative to L of the shrinkage estimator Ση in model [SPIKE(ℓ1, …, 

ℓr)] by

L∞ ℓ1, …, ℓr η = lim
n ∞

Lpn
Σpn

, Ση Sn, pn
, (1.8)

assuming such limit exists. If a nonlinearity η* satisfies

L∞ ℓ1, …, ℓr η* ≤ L∞ ℓ1, …, ℓr η (1.9)

for any other nonlinearity η, any r and any spikes ℓ1, … , ℓr, and if for any η the inequality is 

strict at some choice of ℓ1, … , ℓr, then we say that η* is the unique asymptotically admissible 
nonlinearity (nicknamed “optimal”) for the loss sequence L.

In constructing estimators, it is natural to expect that the effect of the biasing function λ(ℓ) in 

(1.3) might be undone simply by applying its inverse function ℓ(λ) given by

ℓ λ = λ + 1 − γ + λ + 1 − γ 2 − 4λ
2 λ > λ+ γ . (1.10)

However, eigenvector inconsistency makes the situation more complicated (and interesting!), 

as we illustrate using Figure 1. Focus on the plane spanned by u1, the top population 

eigenvector, and by v1, its sample counterpart. We represent ℓ1u1u1′ , the top rank one 

component of Ʃ, by the vector ℓ1u1 . The corresponding top rank one component of S is 

λ1v1v1′ , represented by λ1v1. If we apply the inverse function (1.10) to λ1, we obtain 

ℓ λ1 v1v1′ . Since v1 is not collinear with u1, there is a non-vanishing error ℓ λ1 v1v1′ − ℓ1u1u1′

that remains, even though ℓ λ1 − ℓ1 = Op n−1/2 . As the picture suggests, it is quite possible 

that a different amount of shrinkage, η λ1 v1v1′  will lead to smaller error. However, we will 

Donoho et al. Page 4

Ann Stat. Author manuscript; available in PMC 2018 September 24.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



see that the optimal choice of η depends greatly on the particular error measure Lp Σ, Σ  that 

is chosen.

To give the flavor of results to be developed systematically later, we now look at four error 

measures in common use. The first three, based on the operator, Frobenius and nuclear 

norms, use the singular values σj of Σ − Σ:

LO Σ , Σ = Σ − Σ
∞

= max
i

σi,

LF Σ , Σ = Σ − Σ
2

= ∑
i

σi
2

1/2
,

LN Σ , Σ = Σ − Σ
1

= ∑
i

σi,

LSt Σ , Σ = tr Σ−1 Σ − I − log det Σ−1 Σ .

(1.11)

The fourth is Stein’s loss, widely studied in covariance estimation [1, 9, 39].

For convenience, we begin with the single spike model Spike(ℓ), so that 

Σ = Σℓ = I + ℓ − 1 u1u1′ . When η is continuous, the losses have a deterministic asymptotic 

limit L∞ ℓ η  defined in−(1.8).

For many losses, including (1.11), this deterministic limiting loss has a simple form, and we 

can evaluate, often analytically, the optimal shrinkage function, namely the shrinkage 

function satisfying (1.9). For example, writing η* λ = η* ℓ λ , for the four popular loss 

functions (1.11) we find that on ℓ > 1 + γ the corresponding four optimal shrinkers are

η*
O ℓ = ℓ η*

F ℓ = ℓc2 + s2

η*
N ℓ = max 1 + ℓ − 1 1 − 2s2 , 1 η*

St ℓ = ℓ/ c2 + ℓs2 ,
(1.12)

where s2 = 1 − c2. Figure 2 shows these four optimal shrinkers as a function of the sample 

eigen value λ. These are just four examples; The full list of optimal shrinkers we discover in 

this paper appears in Table 2 below. In all cases, η* ℓ ≡ 1 for ℓ ≤ 1 + γ . Figure 3 in Section 

6 below shows all the full list of optimal shrinkers when γ = 1.

The main conclusion is that the optimal shrinkage function depends strongly on the loss 

function chosen. The operator norm shrinker η*
O simply inverts the biasing function λ(ℓ), 

while the other functions shrink by much larger, and very different, amounts, with η*
St

typically shrinking most. There are also important qualitative differences in the optimal 

shrinkers: η*
O is discontinuous at the bulk edge λ = λ+ γ . The others are continuous, but η*

N

has the additional feature that it shrinks a neighborhood of the bulk to 1.
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Remark. The optimal shrinker also depends on γ, so we might write η*(λ, γ). In model 

[ASY(γ)], one can use the same γ for each problem size n. Alternatively, in the n-th problem, 

one might use γn = pn/n. The former choice is simpler, as η* can be regarded as a univariate 

function of λ, and so we make it in Sections 1–6. The latter choice is preferable technically, 

and perhaps also in practice, when one has p and n, but not γ. It does, however, require us to 

treat η(λ, c) as a bivariate function – see Section 7.

1.2 Some key observations

The sections to follow construct a framework for evaluating and optimizing the asymptotic 

loss(1.8). We highlight here some observations that will play an important role. Beforehand, 

let us introduce a useful modification of (1.7) to a rank-aware shrinkage rule:

Ση, r = ∑
i = 1

r
η λi vivi′ + ∑

i = r + 1

p
vivi′, (1.13)

where the dimension r of the spiked model is taken as known. While our main results 

concern estimators Ση that naturally do not require r to be known in advance, it will be easier 

conceptually and technically to analyze rank-aware shrinkage rules as a preliminary step.

[OBS. 1] Simultaneous block diagonalization. (Lemmas 1 and 5). There exists a (random) 

basis W such that

W′ΣW = ⊕i Ai ⊕ I p − 2r

W′ Ση, r W = ⊕i Bi ⊕ I p − 2r,

where Ai and Bi are square blocks of equal size di, and Σdi = 2r. (Here and below, A ⊕ B 

denotes a block-diagonal matrix with blocks A and B).

[OBS. 2] Decomposable loss functions. The loss functions (1.11) and many others studied 

below satisfy

Lp Σ, Ση, r = ∑
i

Ldi Ai, Bi

or the corresponding equality with sum replaced by max.

[OBS. 3] Asymptotic deterministic loss. (Lemmas 3 and 7). For rank-aware estimators, when 

η and L are suitably continuous, almost surely

L∞ ℓ1, …, ℓr η = lim
p ∞

Lp Σ, Ση, r .
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[OBS. 4] Asymptotic equivalence of losses.(Proposition 2). Conclusions derived for rank-

aware estimators (1.13) carry over to the original estimators (1.7) because, under suitable 

condition

Lp Σ, Ση − Lp Σ, Ση, r P 0.

This relies on the fact that in the [SPIKE(ℓ1, …, ℓr)] model, the sample noise eigenvalues λin, i 
≥ r+1 “stick to the bulk” in an appropriate sense.

1.3 Organization of the paper

For simplicity of exposition, we assume a single spike, r = 1, in the first half of the paper. 

[OBS. 1], [OBS. 2] and [OBS. 3] are developed respectively in Sections 2, 3 and 4, arriving at 

an explicit formula for the asymptotic loss of a shrinker. Section 5 illustrates the 

assumptions with our list of 26 decomposable matrix loss functions. In Section 6 we use the 

formula to characterize the asymptotically unique admissible nonlinearity for any 

decomposable loss, provide an algorithm for computing the optimal nonlinearity, and 

provide analytical formulas for many of the 26 losses. Section 7 extends the results to the 

general case where r > 1 spikes are present. We develop [OBS. 4] , remove the rank-aware 

assumption and explore some new phenomena that arise in cases where the optimal shrinker 

turns out to be discontinuous. In Section 8 we show, at least for Frobenius and Stein losses, 

that our optimal univariate shrinkage estimator, which applies the same scalar function to 

each sample eigenvalue, in fact asymptotically matches the performance of the best 

orthogonally-equivariant covariance estimator under assumption [SPIKE(ℓ1, …, ℓr)]. Section 9 

extends to the more general spiked model with Σp = diag ℓ1, …, ℓr, σ2, …, σ2  for σ > 0 

known or unknown. Section 10 discusses our results in light of the high-dimensional 

covariance estimation work of El Karoui [24] and Ledoit and Wolf [26]. Some proofs and 

calculations are deferred to the supplementary article [40], where we also evaluate and 

document the strong signal (large-ℓ) asymptotics of the optimal shrinkage estimators, and the 

asymptotic percent improvement over naive hard thresholding of the sample covariance 

eigenvalues. Additional technical details and software are provided in the Code Supplement 

available online as a permanent URL from the Stanford Digital Repository [41].

2 Simultaneous Block-Diagonalization

We first develop [OBS. 1] in the simplest case, r = 1, assumping a rank-aware shrinker. In 

general, the estimator Ση and estimand Ʃ are not simultaneously diagonalizable. However, in 

the particular case that both are rank-one perturbations of the identity, we will see that 

simultaneous block diagonalization is possible.

Some notation is needed. We denote the eigenvalues and eigenvectors of the spectral 

decompostion Sn, pn
= VΛV′ by
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spec Sn, pn
= λ1n, …, λpn , v1n, …, vpn .

Whenever possible, we supress the index n and write e.g. S, λi and vi instead. Similarly, we 

often write Ʃp or even Ʃ for Σpn
.

Lemma 1. Let Ʃ and Σ be (fixed, nonrandom) p-by-p symmetric positive definite matrices 
with

spec Σ = ℓ, 1, …, 1 , u1, …, up (2.1)

spec Σ = η, 1, …, 1 , v1, …, vp . (2.2)

Let c = u1, v1  and s = 1 − c2 . Then there exists an orthogonal matrix W, which depends on 

Ʃ and Σ, such that

W′ΣW = A ℓ ⊕ I p − 2, (2.3)

W′ Σ W = B η, c ⊕ I p − 2, (2.4)

where the fundamental 2 × 2 matrices A and B are given by

A ℓ = ℓ 0
0 1 , B η, c = I2 + η − 1 c

s
c s . (2.5)

Proof. Let Δ = diag η, 1, …, 1 = I + η − 1 e1e1′ , where e1 denotes the unit vector in the first 

co-ordinate direction. It is evident that

Σ = I + ℓ − 1 u1u1′ , Σ = I + η − 1 v1v1′ . (2.6)

It is natural, then, to work in the “common” basis of u1 and v1. We apply one step of Gram-

Schmidt if we can, setting

z =
v1 − cu1 /s if s ≠ 0

up if s = 0.

Donoho et al. Page 8

Ann Stat. Author manuscript; available in PMC 2018 September 24.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



In the second–exceptional–case, v1 = ±u1, so we pick a convenient vector orthogonal to u1. 

In either case, the columns of the p × 2 matrix W2 = [u1 z] are orthonormal and their span 

contains both u1 and v1. Now fill out W2 to an orthogonal matrix W = W2 W2
⊥ . Observe 

now that if y lies in the column span of W2 and α is a scalar, then necessarily

W′ I p + αyy′ W = I2 + αyy ⊕ I p − 2, y = W2′ y .

The expressions (2.3) – (2.5) now follow from the rank one perturbation forms (2.6) along 

with

W2′ u1 =
u1′ u1
z′u1

= 1
0 ,  and W′2υ1 =

u1′ υ1
z′υ1

= c
s

.

3 Decomposable Loss Functions

Here and below, by loss function Lp we mean a function of two p-by-p positive semidefinite 

matrix arguments obeying Lp ≥ 0, with Lp(A, B) = 0 if and only if A = B. A loss family is a 

sequence L = Lp p = 1
∞ , one for each matrix size p. We often write loss function and refer to 

the entire family. [OBS. 2] calls out a large class of loss functions which naturally exploit the 

simultaneously block-diagonalizability property of Lemma 1; we now develop this 

observation.

Definition 1. Orthogonal Invariance. We say the loss function Lp(A, B) is orthogonally 
invariant if for each orthogonal p-by-p matrix O,

Lp A, B = Lp OAO′, OBO′ .

For given p and a given sequence of block {di} sizes ∑i di=p, consider block-diagonal matrix 

decompositions of p by p matrices A and B into blocks Ai and Bi of size di:

A = ⊕i Ai     B = ⊕i Bi . (3.1)

Definition 2. Sum-Decomposability and Max-Decomposability. We say the loss function 

Lp(A, B) is sum-decomposable if for all decompositions (3.1),

Lp A, B = ∑
i

Ldi
Ai, Bi .

We say that it is max-decomposable if if for all decompositions (3.1),

Lp A, B = max
i

Ldi
Ai, Bi .
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Clearly, such loss functions can exploit the simultaneous block diagonalization of Lemma 1. 

Indeed,

Lemma 2. Reduction to Two-Dimensional Problem. Consider an orthogonally invariant 
loss function, Lp, which is sum- or max-decomposable. Suppose that Ʃ and Σ satisfy (2.1) 
and (2.2) respectively. Then

Lp Σ , Σ = L2 A ℓ , B η, c .

Proof. Lemma 1 provides a change of basis W yielding decompositions (2.3) and (2.4). 

From the invariance and decomposability hypotheses,

Lp Σ , Σ = Lp W′ Σ W , W′ Σ W

= Lp A ℓ ⊕ I p − 2, B η , c ⊕ I p − 2
= L2 A ℓ , B η, c .

4 Asymptotic Loss in the Spiked Covariance Model

Consider the spiked model with a single spike, r = 1, namely, make assumptions [ASY(γ)] 

and [SPIKE(ℓ)]. The principal 2× 2 block estimator occurring in Lemmas 1 and 2 is 

B(η(λ1n),c1n) where λ1n is the largest eigenvalue of Sn and c1n = u1n, υ1n .If η is 

continuous, then the convergence results (1.2) and (1.5) imply that the principal block 

converges as n → ∞. Specifically,

B η λ1n , c1n
a . s . B η λ ℓ , c ℓ = :B ℓ, η , (4.1)

say, with the convergence occurring in all norms on 2 × 2 matrices.

In accord with [OBS. 3], we now show that the asymptotic loss (1.8) is a deterministic, 

explicit function of the population spike ℓ. For now, we will continue to assume that the 

shrinker η is rank-aware. Alternatively, we can make a different simplifying assumption on 

η, which will be useful in what follows:

Definition 3. We say that a scalar function η : [0, ∞) → [1, ∞) is a bulk shrinker if η(λ) = 

1 when λ ≤ λ+(γ), and a neighborhood bulk shrinker if for some ∊ > 0, η(λ) = 1 whenever 

λ ≤ λ+(γ) + ∊.

The neighborhood bulk shrinker condition on η is rather strong, but does hold for η*
N in 

(1.12), for example. (Note that our definitions ignore the lower bulk edge λ_ γ , which is of 

less interest in the spiked model.)

Lemma 3. A Formula for the Asymptotic Loss. Adopt models [ASY(γ)] and [SPIKE(ℓ)] with 
ℓ1, …, ℓr > ℓ+(γ). Suppose (a) that the family L = {Lp} of loss functions is orthogonally 
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invariant and sum- or max-decomposable, and that B L2 A, B  is continuous. Let 

Ση = Ση Sn, pn
 be given by (1.7), and let Ση, 1 be the corresponding rank-aware shrinkage 

rule (1.13) for r = 1. Suppose the scalar nonlinearity η is continuous on (λ+(γ), ∞) . Then

Lpn
Σpn

, Ση, 1
a . s . L2 A ℓ , B ℓ, η , (4.2)

Furthermore, if (b) η is a neighborhood bulk shrinker, then Lpn
Σpn

Ση  also has this limit 

a.s.

Each of the 26 losses considered in this paper satisfies conditions (a).

Proof. In the rank-aware case Ση = Ση, 1 satisfies

spec Ση = η λ1n , 1…, 1 , υ1n, …, υpn ,

Lemma 2 implies that

Lp Σ , Ση = L2 A ℓ , B η λ1n , c1n
a . s .

L2 A ℓ , B ℓ, η ,

where the limit on the right hand side follows from convergence (4.1) and the assumed 

continuity of L2.

Now assume that η is a neighborhood bulk shrinker. From (1.2) we know that λ1n
a . s . λ ℓ

From eigenvalue interlacing (see (7.11) below) we have λ2n ≤ μ1n, where μ1n is the largest 

eigenvalue of a white Wishart matrix Wpn-1(n,I), and satisfies μ1n
a . s . λ+, from [42]. Let ∊ > 

0 be small enough that λ+ + ∈ < λ ℓ  and also lies in the neighborhood shrunk to 1 by η. 

Hence, there exists a random variable n such that almost surely, λ2n < λ+ + ϵ < λ1n for all 

n > n . For such n, the first display above of this proof applies and we then obtain the second 

display as before.

5 Examples of Decomposable Loss Functions

Many of the loss functions that appear in the literature are Pivot-Losses. They can be 

obtained via the following common recipe:

Definition 4. Pivots. A matrix pivot is a matrix-valued function Δ(A, B) of two real positive 

definitee matrices A, B such that: (i) Δ(A, B) = 0 if and only if A = B, (ii) Δ is orthogonally 

equivariant and (iii) Δ respects block structure in the sense that
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Δ OAO′, OBO′ = O Δ A, B O′, (5.1)

Δ ⊕ Ai, ⊕ Bi = ⊕ Δ Ai, Bi (5.2)

for any orthogonal matrix O of the appropriate dimension.

Matrix pivots can be symmetric-matrix valued, for example Δ(A, B) = A – B, but need not 

be, for example Δ(A, B) = A−1B − I.

Definition 5. Pivot-Losses. Let g be a non-negative function of a symmetric matrix variable 

that is definite: g(A) = 0 if and only if A = 0, and orthogonally invariant: g(OΔO‵) = g(Δ) for 

any orthogonal matrix O. A symmetric-matrix valued pivot Δ induces an orthgonally-

invariant pivot loss

L A, B = g Δ A, B . (5.3)

More generally, for any matrix pivot Δ, set Δ = Δ′ Δ 1/2 and define

L A, B = g Δ A, B . (5.4)

An orthogonally invariant function g depends on its matrix argument Δ or |Δ| only through 

its eigenvalues or singular values δ1, ..., δp. We abuse notation to write g(Δ) = g(δ1, ..., δp). 

Observe that if g has either of the forms

g δ1, …, δp = ∑
j

g1 δ j     or     g δ1, …, δp = max
j

g1 δ j ,

for some univariate g1, then the pivot loss L(A, B) = g(Δ(A, B)) (symmetric pivot) or 

L(A,B)=g(|Δ|(A,B)) (general pivot) is respectively sum- or max-decomposable. In case Δ is 

symmetric, the two definitions agree so long as g1 is an even function of δ.

5.1 Examples of Sum-Decomposable Losses

There are different strategies to derive sum-decomposable pivot-losses. First, we can use 

statistical discrepancies between the Normal distributions 𝒩(0, A) and 𝒩(0, B):

1. Stein Loss [1, 9, 39]: Stein’s Loss is defined as

Lst A, B = tr A−1, B − I − log det B /det A .
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This is just twice the Kullback distance DKL 𝒩 0, B 𝒩 0, A . Stein’s loss is a 

pivot-loss with respect to Δ(A, B) = A−1/2BA−1/2 and 

g Δ = tr Δ − I − logdet Δ = Σi g1 δi , where g1(δ) = δ − 1 − log δ.

2. Entropy/Divergence Losses: Because the Kullback discrepancy is not symmetric 

in its arguments, we may consider two other losses: reversing the arguments we 

get Entropy loss Lent(A, B) = Lst(B, A) [11, 15] and summing the Stein and 

Entropy losses gives divergence loss:

Ldiυ A, B = Lst A, B + Lst B, A = tr A−1, B − I + tr B−1A − I ,

see [43, 18]. Each can be shown to be sum-decomposable, following the same 

argument as above.

3. Bhattarcharya/Matusita Affinity [44, 45]: Let

La f f A, B = 1
2log A + B /2

A 1/2 B 1/2 .

This measures the statistical distinguishability of 𝒩 0, A  and 𝒩 0, B  based on 

independent observations, since La f f = 1
2 log ∫ ϕA ϕB  with ϕA and ϕB the 

densities of 𝒩 0, A  and 𝒩 0, B . Hence convergence of affinity loss to zero is 

equivalent to convergence of the underlying densities in Hellinger or Variation 

distance. This is a pivot-loss w.r.t Δ(A, B) = A−1/2BA−1/2 and

g Δ = 1
4log det 2I + Δ + Δ−1 /4 = ∑

i
g1 δi ,

as is seen by setting C = A−1/2(A + B)B−1/2 and noting that C′C = (2I + Δ + Δ−1). 

Here,g1 δ = 1
4 log 2 + δ + δ−1 /4.

4. Fréchet Discrepancy [46, 47]: Let Lfre(A, B) = tr(A + B − 2A1/2B1/2). This 

measures the minimum possible mean-squared difference between zero-mean 

random vectors with covariances A and B respectively. This is a pivot-loss w.r.t 

Δ(A, B) = A1/2 − B1/2, and g Δ = tr Δ2 = Σi g1 δi  with g1(δ) = δ2.

Second, we may obtain sum-decomposable pivot-losses L(A, B) = g(Δ(A, B)) by simply 

taking g to be one of the standard matrix norms:

1. Squared Error Loss [3, 28, 25, 26]: Let LF, 1 A, B = A − B F
2 . This is a pivot-

loss w.r.t Δ(A, B) = A − B and g Δ = tr Δ′ Δ = Σi g1 δi  with g1(δ) = δ2.

2. Squared Error Loss on Precision [8]: Let LF, 2 A, B = A−1 − B−1
F
2 . This is a 

pivot-loss w.r.t Δ(A, B) = A−1 − B−1 and g(Δ)=tr Δ’Δ.
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3. Nuclear Norm Loss. Let LN, 1 A, B = A − B * where Δ * denotes the nuclear 

norm of the matrix Δ, i.e. the sum of its singular values. This is a kpivot-loss k 

w.r.t Δ(A, B) = A – B and g Δ = Σi δi .

4. Let LF, 3 A, B = A−1B − I F
2 . This is a pivot-loss w.r.t Δ(A, B) = A−1B – I. It 

was studied in [48, 6, 10] and later work.

5. Let LF, 7 A, B = logA−1/2BA−1/2
F
2 , where log() denotes the matrix logarithm1 

[51, 49]. This is a pivot-loss w.r.t

Δ A, B = log A−1/2BA−1/2 .

5.2 Examples of Max-Decomposable Losses

Max-decomposable losses arise by applying the operator norm (the maximal singular value 

or eigenvalue of a matrix) to a suitable pivot. Here are a few examples:

1. Operator Norm Loss [52]: Let LO, 1 A, B = A − B op .This is a pivot-loss w.r.t 

Δ(A, B) = A – B and g Δ = Δ
op

= maxiδi .

2. Operator Norm Loss on Precision: Let LO, 2 A, B = A−1 − B−1
op . This is a 

pivot-loss w.r.t. Δ(A, B) = A−1 − B−1.

3. Condition Number Loss: Let LO, 7 A, B = log A−1/2BA−1/2
op . This is a pivot-

loss w.r.t Δ(A, B) = log(A−1/2BA−1/2), related to [29]. In the spiked kmodel 

discussed below, LO,7 effectively measures the condition number of A−1/2BA−1/2.

We adopt the systematic naming scheme Lnorm,pivot where norm ∈ {F, O, N}, and pivot ∈ 
{and 1, ..., 7}. This set of 21 combinations covers the previous matrix norm examples and 

adds some more. Together with Stein’s loss and the others based on statistical discrepancy 

mentioned above, we arrive at a set of 26 loss functions, Table 1, to be studied in this paper.

6 Optimal Shrinkage for Decomposable Losses

6.1 Formally Optimal Shrinker

Formula (4.2) for the asymptotic loss has only been shown to hold in the single spike model 

and only for a certain class of nonlinearities η. In fact, the same is true in the r-spike model 

and for a much broader class of nonlinearities η. To preserve the narrative flow of the paper, 

we defer the proof, which is more technical, to Section 7. Instead, we proceed under the 

single spike model, and simply assume that L∞ ℓ η  from (4.2) is the correct limiting loss, 

and draw conclusions on the optimal shape of the shrinker η.

1The matrix logarithm transfers the matrices from the Riemannian manifold of symmetric positive semidefinite matrices to its tangent 
space at A. It can be shown that LF,7 is the squared geodesic distance in this manifold. This metric between covariances has attracted 
attention, for example, in diffusion tensor MRI [49, 50].
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Definition 6. Optimal Shrinker. Let L = Lp p = 1
∞

 be a given loss family and let L∞ ℓ η  be 

the asymptotic loss corresponding to a nonlinearity η, as defined in (4.2), under assumption 

[ASY(γ)] . If η∗ satisfies

L∞ ℓ η∗ = min
η

L∞ ℓ η , ∀ℓ ≥ 1, (6.1)

and for any η ≠ η∗ there exists ℓ ≥ 1 with L∞(ℓ, η*) < L∞(ℓ, η), then we say that η∗ is the 

formally optimal shrinker for the loss family L and shape factor γ, and denote the 

corresponding shrinkage rule by λ η* λ; γ, L .

Below, we call formally optimal shrinkers simply “optimal”. By definition, the optimal 

shrinkage rule η∗(λ ; γ, L) is the unique admissible rule, in the asymptotic sense, among 

rules of the form Ση Sn, p = Vη Λ V′ in the single-spike model. In the single spiked model 

(and as we show later, generally in the spiked model) one never regrets using the optimal 

shrinker over any other (reasonably regular) univariate shrinker. In light of our results so far, 

an obvious characterization of an optimal shrinker is as follows.

Theorem 1. Characterization of Optimal Shrinker. Let L = Lp p = 1
∞

 be a loss family. 

Define

F ℓ, η = L2
ℓ 0
0 1 , 1 + η − 1 c2 η − 1 cs

η − 1 cs 1 + η − 1 s2 . (6.2)

Here, c = c(ℓ) and s = s(ℓ) satisfy c2 ℓ = 1 − γ / ℓ − 1 2
1 + γ / ℓ − 1  and s2(ℓ) = 1 − c2(ℓ). Suppose that for 

any ℓ > ℓ+(γ), there exists a unique minimizer

η∗ ℓ : = argminη ≥ 1F ℓ, η . (6.3)

Further suppose that for every 1 ≤ ℓ ≤ ℓ+ γ  we have argmin η ≥ 1G η = 1, where

G ℓ, η = L2
ℓ 0
0 1 , 1 0

0 η
. (6.4)

Then the shrinker

η∗ λ = η∗ ℓ λ ℓ > λ + γ
1 1 ≤ ℓ ≤ λ + γ

,
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where ℓ(λ) is given by (1.10), is the optimal shrinker of the loss family L.

Many of the 26 loss families discussed in Section 3 admit a closed form expression for the 

optimal shrinker; see Table 2. For others, we computed the optimal shrinker numerically, by 

implementing in software a solver for the simple scalar optimization problem (6.3). Figure 3 

portrays the optimal shrinkers for our 26 loss functions. We refer readers interested in 

computing specific individual shrinkers to our reproducibility advisory at the bottom of this 

paper, and invite the reader to explore the code supplement [41], consisting of online 

resources and code we offer.

6.2 Optimal Shrinkers Collapse the Bulk

We first observe that, for any of the 26 losses considered, the optimal shrinker collapses the 

bulk to 1. The following lemma is proved in the supplemental article [40]:

Lemma 4. Let L be any of the 26 losses mentioned in Table 1. Then the rule η**(ℓ) = 1 is 

unique asymptotically admissible on [1,ℓ+(γ)] namely, for every ℓ ∈[1,ℓ+(γ)] we have 

𝔼L ℓ, η ≥ L ℓ, η * * , with strict inequality for at least one point in [1,ℓ+(γ)]

As part of the proof of Lemma 4, in Table 6 in the supplemental article [40], we explicitly 

calculate the fundamental loss function G(ℓ, η) of (6.4) for many of the loss families 

discussed in this paper.

To determine the optimal shrinker η∗(λ ; γ, L) for each of our loss functions L, it therefore 

remains to determine the map λ η* λ  or equivalently ℓ η* λ ℓ  only for ℓ > ℓ+(γ) This is 

our next task.

6.3 Optimal Shrinkers by Computer

The scalar optimization problem (6.3) is easy to solve numerically, so that one can always 

compute the optimal shrinker at any desired value λ. In the code supplement [41] we 

provide Matlab code to compute the optimal nonlinearity for each of the 26 loss families 

discussed. In the sibling problem of singular value shrinkage for matrix denoising, [53] 

demonstrates numerical evaluation of optimal shrinkers for the Schatten-p norm, where 

analytical derivation of optimal shrinkers appears to be impossible.

6.4 Optimal Shrinkers in Closed Form

We were able to obtain simple analytic formulas for the optimal shrinker η∗ in each of 18 

loss families from Section 3. While the optimal shrinkers are of course functions of the 

empirical eigenvalue λ, in the interest of space, we state the lemmas and provide the 

formulas in terms of the quantities ℓ, c and s. To calculate any of the nonlinearities below for 

a specific empirical eigenvalue λ, use the following procedure:

1. If λ ≤ λ+(γ) set η∗(λ) = 1. Otherwise:

2. Calculate ℓ(λ) using (1.10).

3. Calculate c(λ) = c(ℓ(λ)) using (1.6) and (1.10).

4. Calculate s(λ) = s(ℓ(λ)) using s ℓ = 1 − c2 ℓ .

Donoho et al. Page 16

Ann Stat. Author manuscript; available in PMC 2018 September 24.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



5. Substitute ℓ(λ) c(λ) and s(λ) into the formula provided to get η∗(λ).

The closed forms we provide are summarized in Table 2. Note that ℓ, c and s refer to the 

functions ℓ(λ), c(ℓ(λ)) and s(ℓ(λ)) These formulae are formally derived in a sequence of 

lemmas that are stated and proved in the supplemental article [40]. The proofs also show that 

these optimal shrinkers are unique, as in each case the optimal shrinker is shown to be the 

unique minimizer, as in (6.3), of (6.2). We make some remarks on these optimal shrinkers by 

focusing first on operator norm loss for covariance and precision matrices:

η∗ λ;γ . LO, 1 = η∗ λ;γ . LO, 2 =
ℓ, ℓ > ℓ+ γ
1, ℓ ≤ ℓ+ γ . (6.5)

This asymptotic relationship reflects the classical fact that in finite samples, the top 

empirical eigen value is always biased upwards of the underlying population eigenvalue [54, 

55]. Formally defining the (asymptotic) bias as

bias η, ℓ = η λ ℓ − ℓ,

we have bias(λ(ℓ),ℓ) > 0. The formula η∗(λ) = ℓ shows that the optimal nonlinearity for 

operator norm loss is what we might simply call a debiasing transformation, mapping each 

empirical eigenvalue back to the value of its “original” population eigenvalue, and the 

corresponding shrinkage estimator Ση uses each sample eigenvectors with its corresponding 

population eigenvalue. In words, within the top branch of (6.5), the effect of operator-norm 
optimal shrinkage is to debias the top eigenvalue:

bias = η∗ ⋅ ;γ . LO, 1 , ℓ = bias = η∗ ⋅ ;γ . LO, 2 , ℓ = 0, ∀ℓ > ℓ+ γ .

On the other hand, within the bottom branch, the effect is to shrink the bulk to 1. In terms of 

Definition 3 we see that η∗ is a bulk shrinker, but not a neighborhood bulk shrinker.

One might expect asymptotic debiasing from every loss function, but, perhaps surprisingly, 

precise asymptotic debiasing is exceptional. In fact, none of the other optimal nonlinearities 

in Table 2 is precisely debiasing.

In the supplemental article [40] we also provide a detailed investigation of the large-λ 
asymptotics of the optimal shrinkers, including their asymptotic slopes, asymptotic shifts 

and asymptotic percent improvement.

7 Beyond Formal Optimality

The shrinkers we have derived and analyzed above are formally optimal, as in Definition 6, 

in the sense that they minimize the formal expression L∞(ℓ|η) So far we have only shown 

that formally optimal shrinkers actually minimize the asymptotic loss (namely, are 

asymptotically unique admissible) in the single-spike case, under assumptions [ASY(γ)] and 

[SPIKE(ℓ)], and only over neighborhood bulk shrinkers.
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In this section, we show that formally optimal shrinkers in fact minimize the asymptotic loss 

in the general Spiked Covariance Model, namely under assumptions [ASY(γ)] and [SPIKE(ℓ1,

…,ℓr)], and over a large class of bulk shrinkers, which are possibly not neighborhood bulk 

shrinkers.

We start by establishing the rank r analog of Lemma 1. For a vector ℓ ∈ ℝr, let Δr(ℓ) = 

diag(ℓ1,…,ℓr)

Lemma 5. Assume that Ʃ and Σ are fixed matrices with

spec Σ = ℓ1…ℓr, 1…, 1 , u1, …, up

spec Σ = η1…ηr, 1…, 1 , υ1, …, υp .

Let Ur and Vr denote the p-by-r matrices consisting of the top r eigenvectors of Ʃ and Σ
respectively. Suppose that [Ur Vr] has full rank 2r, and consider the QR decomposition

UrVr = QR,

where Q has 2r orthonormal columns and the 2r × 2r matrix R is upper triangular. Let R2 

denote the 2r × r submatrix formed by the last r columns of R. Fill out Q to an orthogonal 
matrix W = [Q Q⊥]. Then in the transformed basis we have the simultaneous block 
decompositions

W′ Σ W = Σ2r
∘ ⊕ I p − 2r,   Σ2r

∘ = Δr ℓ ⊕ Ir (7.1)

W′ Σ W = Σ2r
∘ ⊕ I p − 2r,   Σ2r

∘ = I2r + R2 Δr η − 1 R2′ . (7.2)

Proof. We start with observations about the structure of Q and R. Since the first r columns of 

Q are identically those of Ur, we let Zr be the n-by-r matrix such that Q = [Ur Zr]. For the 

same reason, R has the block structure

R =
Ir × r R12
0r × r R22

,

where the matrices R12 and R22 satisfy Vr = UrR12 + ZrR22 , so that

R12 = U′rVr   R22 = Z′rVr . (7.3)

Since Vr has orthogonal columns, we have

Donoho et al. Page 18

Ann Stat. Author manuscript; available in PMC 2018 September 24.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Ir = V′rVr = R′12R12 + R′22R22
R′22R22 = I − R′12R12 .

(7.4)

Let H be a p×r matrix whose columns lie in the column span of Q and let Δ be an r × r 
diagonal matrix. Observe that

W′ I + H Δ H′ W = I + W′H Δ H′W
= I2r + Q′H Δ H′Q ⊕ I p − 2r = C2r ⊕ I p − 2r,

say, since the columns of Q⊥ are orthogonal to those of H. By analogy to (2.6), we may 

write

Σ = I + Ur Δr ℓ − Ir U′r,   Σ = I + Vr Δr η − Ir V′r (7.5)

and so both of the form I + HΔH′, with H = Ur and Vr respectively. We find that

Q′Ur =
Ir
0

,   Q′Vr =
R12
R22

= R2,

We can then compute the value of C2r in the two cases to be given by Σ2r
∘  and Σ2r

∘

respectively, which establishes (7.1) and (7.2), and hence the lemma.

We intend to apply Lemma 5 to Ʃ and Σ = Ση, r , the “rank-aware” modification (1.13) of 

the estimator Ση in (1.7). Assume now that Σ and the p × r matrix Vr,n formed by the top 

eigenvectors of V are random.

Lemma 6. The rank of [Ur Vr,n] equals 2r almost surely.

Proof. Let ∏r(V) be the projection that picks out the first r columns of an orthogonal matrix 

V. For a fixed r-frame Ur, we consider the event

A = V ∈ Op : rank Ur∏r V < 2r ,

where Op is the group of orthogonal p-by-p matrices. Let PΣ dΛ, dV  denote the joint 

distribution of eigenvalues Λ = diag(λ1,...,λp) and eigenvectors V when S ~ Wp(n, Ʃ). As 

shown by [56], PƩ is absolutely continuous with respect to vp × μp’, the product of Lebesgue 

measure on ℝp and Haar measure on O(p). Since μp(A) = 0, it follows that PƩ(A) = 0.

Lemma 7. Adopt models [ASY(γ)] [SPIKE(ℓ1,…,ℓr)]and with ℓ1,…,ℓr > ℓr > ℓ+(γ). Suppose the 

scalar nonlinearity η is continuous on (λ+(γ), ∞). For each p there exists w.p. 1 an 

orthogonal change of basis W such that
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W′ΣW = Σ2r ⊕ I p − 2r,   W′Ση, rW = Σ2r ⊕ Ip − 2r, (7.6)

where the 2r ×2r matrices Σ2r , Σ2r satisfy

Σ2r = ⊕i = 1
r , A ℓi , Σ2r

a . s . ⊕i = 1
p , B ℓi, η , (7.7)

and the 2 × 2 matrices A(ℓ), B(ℓ, η) are defined at (2.5).

Suppose also that the family L = {Lp} of loss functions is orthogonally invariant and sum- or 
maxdecomposable, and that B → L2r (A, B) is continuous. Then

Lp Σ , Ση, r
a . s . ∑ /max i = 1, …r L2 A ℓi , B ℓi, η . (7.8)

If η is a neighborhood bulk shrinker, then Lp Σ , Ση  also has this limit a.s.

This is the rank r analog of Lemma 3. The optimal nonlinearity η∗ is continuous on [0,∞) 

for all losses except the operator norm ones, for which η∗ is continuous except at λ = λ (γ)

+. Our result (7.7) requires only continuity on (λ+(γ), ∞) and so is valid for all 26 loss 

functions, as is the deterministic limit (7.8) for the rank-aware Ση, r . However, as we saw 

earlier, only the nuclear norm based loss functions yield optimal functions that are 

neighborhood bulk shrinkers. To show that (7.8) holds for Lp Σ , Ση  for most other 

important shrinkage functions, some further work is needed – see Section 7.1 below.

Proof. We apply Lemma 5 to ∑ and Ση, r on the set of probability 1 provided by Lemma 6. 

First, we rewrite (7.2) to show the subblocks of R:

Σ2r
∘ = I2r +

R12
R22

Δr η n − 1 R′12 R′22 ,

where we write η(n) = (η(λ1,n),…, η(λr,n)) to show explicitly the dependence on n. The 

limiting behavior of R may be derived from (7.3) and (7.4) along with spiked model 

properties (1.2) and (1.5), so we have2, as n → ∞,

2For simplicity, we chose the QR decomposition to make the sign of s(ℓi) positive.
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R12 = U′rVr, n a . s . Δr c

R22 R′22 = I − R12 R′12 a . s . Δr s2

R22 a . s . Δr s .
(7.9)

Here c = (c(ℓ1),…, c(ℓr)) and s = (s(ℓ1),…, s(ℓr)).

Again by (1.2) λi,n →a.s. λ(ℓi) > λ+(γ) and so continuity of η above λ+ (γ) assures that Δr 

(η(η)–1) → Δr(η −1), where η = (ηi) and ηi = η(λ(ℓi)). Together with (1.5), we obtain 

simplified structure in the limit,

Σ2r
∘

a . s . I2r +
Δr η − 1 c2 Δr η − 1 cs

Δr η − 1 cs Δr η − 1 s2 . (7.10)

To rewrite the limit in block diagonal form, let Π2r be the permutation matrix corresponding 

to the permutation defined by

(1,…,2r) ⟼ (1,r + 1, 2, r + 2, 3,…, 2r).

Permuting rows and columns in (7.1) and (7.10) using Π2r to obtain

Σ2r : = ∏2r′ Σ2r
∘ ∏2r = ⊕i − 1

r A 𝓁i ,

Σ2r : = ∏2r′ Σ2r
∘ ∏2r a . s . ⊕i − 1

p B 𝓁i, η ,

we obtain (7.7). Using (7.6), the orthogonal invariance and sum/max decomposability, along 

with the continuity of L2r(A,·), we have

Lp Σp , Ση, r = Lp Σ2r ⊕ I p − 2r, Σ2r ⊕ I p − 2r

= L2r Σ2r , Σ2r

= L2r ∏2r′ Σ2r∏2r , ∏2r′ Σ2r∏2r a . s . L2r ⊕i = 1
r A ℓi , ⊕i = 1

p B ℓi, η

= ∑ /max i = 1, …rL2 A ℓi , B ℓi, η ),

which completes the proof of Lemma 7.

7.1 Removing the rank-aware condition

In this section we prove Proposition 2 below, whereby the asymtotic losses coincide for a 

given estimator sequence Ση and the rank-aware versions Ση, r . This result is plausible 

because of two observations:
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1. Null eigenvalues stick to the bulk, i.e. for i ≥ r + 1 exceptions , most eigenvalues 

λin λ+(γ) and the few exceptions are not much larger. Hence, if η is a 

continuous bulk shrinker, we expect Ση to be close to Ση, r ,

2. under a suitable continuity assumption on the loss functions Lp, L Σ , Ση should 

then be close to L Σ , Ση, r .

Observation 1 is fleshed out in two steps. The first step is eigenvalue comparison: The 

sample eigenvalue λin arise as eigenvalues of XX′/n when X is a pn-by-n matrix whose rows 

are i.i.d draws from 𝒩 0, Σpn
. (0, ∑pn). Let ∏ :  ℝ

pn ℝ
pn − r

 denote the projection on the 

last pn – r coordinates in ℝ
pn and let μ1n ≥ … ≥ μpn−r,n denote the eigenvalues of ∏X(∏X)

′/n. By the Cauchy interlacing Theorem (e.g. [57, p. 59]), we have

λin ≤ μi − r, n   for r + 1 ≤ i ≤ pn, (7.11)

where the (μin) are the eigenvalues of a white Wishart matrix Wpn−r(n, I).

The second step is a bound on eigenvalues of a white Wishart that exit the bulk. Before 

stating it, we return to an important detail introduced in the Remark concluding Section 1.1.

Definition 3 of a bulk shrinker depends on the parameter γ = lim p/n through λ+(γ). Making 

that dependence explicit, we obtain a bivariate function η(λ, c). In model [ASY(γ)]and in the 

n-th problem, we might use η(λ, cn) either with cn = γ or cn = p/n. For Proposition 1 below, 

it will be more natural to use the latter choice. We also modify Definition 3 as follows.

Definition 7. We call η : [0, ∞) × (0, 1] → [1, ∞) a jointly continuous bulk shrinker if η(λ, 

c) is jointly continuous in λ and c, satisfies η(λ, c) = 1 for λ ≤ λ+(c) and is dominated: η(λ, 

c) ≤ Mλ for some M and all λ.

The following result is proved in [58, Theorem 2(a)].

Proposition 1. Let μin i = 1
N  denote the sample eigenvalues of a matrix distributed as WN(n, 

I), with N/n → γ > 0. Suppose that η(λ, c) is a jointly continuous bulk shrinker and that cn 

− N/n = O(n−2/3). Then for q > 0,

η μin, cn − 1
ℓq ℝN P 0. (7.12)

The continuity assumption on the loss functions may be formulated as follows. Suppose that 

A, B1, B2 are p-by-p positive definite matrices, with A satisfying assumption [SPIKE(ℓ1,…, 

ℓr)] and spec(Bk) = [(ηki), (vi)], thus B1 and B2 have the same eigenvectors. Set η1 = max 

{η11, η21} . We assume that for some q ∈ [1, ∞] and some continuous function C(ℓ1, η1 ) 

not depending on p, we have
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Lp A, B1 − Lp A, B2 ≤ C ℓ1, η1 η1 − η2 ℓq ℝp (7.13)

whenever η1 − η2 ℓq ℝp ≤ 1. Condition (7.13) is satisfied for all 26 of the loss functions of 

Section 3, as is verified in Proposition 1 in SI.

In the next proposition we adopt the convention that estimators Ση of (1.7) and Ση, r of (1.13) 

are constructed with a jointly continuous bulk shrinker, which we denote η(λ, cn).

Proposition 2. Adopt models [ASY(γ)] and [SPIKE(ℓ1,…, ℓr)]. Suppose also that the family L 
= {Lp} of loss functions is orthogonally invariant and sum- or max- decomposable, and 

satisfies continuity condition (7.13). If η(λ, cn) is a jointly continuous bulk shrinker with cn 

= pn/n, then

Lp ∑ , ∑η − Lp ∑ , ∑η, r P 0,

and so Lp Σ , Ση  converges in probability to the deterministic asymptotic loss (7.8).

proof in the left side of (7.13), substitute A=∑, B1 = Ση and B2 = Ση, r . By definition ,Ση

and Ση, r share the same eigenvectors. The components of η1‒η2 then satisfy

η1i − η2i =
η λin, cn − 1 i ≥ r + 1

0 1 ≤ i ≤ r .

We now use (7.11)to compare the eigenvectors λin of the spiked model to those of a suitable 

white Wishart matrix to which Proposition 1 applies. The fuction η↑(μ,c) = max{η(λ,c),1 ≤ 

λ ≤ μ} and is non-decreasing and jointly continuos. Hence η(λin, cn) ≤ η↑(λin, cn) ≤ η↑

(μi‒r,nin,cn), and so

Σ
i = r + 1

p
η λin, cn − 1

q
≤ Σ

j = 1
p − r

η μ jn, cn − 1
q
,

with a corresponding bound for q = ∞. From continuity condition (7.13),

Lp Σ , Ση − Lp Σ , Ση, r ≤ C ℓ1, η λ1n, cn η μ jn, cn − 1
ℓq ℝp − r .

The constant C(ℓ1,η(λ1n,cn)) remains bounded by (1.2). The ℓq norm converges to 0 in 

probability, applying Proposition 1 to the eigenvalues of Wpn−r(n, I), with N = pn − r, noting 

that cn − N/n = r/n = O(n−2/3).
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7.2 Asymptotic loss for discontinuous optimal shrinkers

Formula (6.5) showed that the optimal shrinker η*(λ, γ) for operator norm losses LO,1,LO,2 

is discontinuous at ℓ = ℓ+ γ = 1 + γ . In this section, we show that when η* is used, a 

deterministic asymptotic loss exists for LO,1, but not for LO,2. The reason will be seen to lie 

in the behavior of the optimal component loss F*(ℓ) = L2[A(ℓ),B(ℓ, η*)]. Indeed, calculation 

based on (6.2), (6.5) shows that for ℓ ≥ ℓ+,

F* ℓ = ℓaγ ℓ − 1
ℓ − 1 + γ

1/2
F* ℓ+ =

γ a = 1
γ

1 + γ a = − 1

as ℓ ↓ ℓ+, where indices a = 1 and −1 correspond to F*
O, 1 and F*

O, 2 respectively. Importantly, 

F*
O, 1 is strictly increasing on [ℓ+,∞) while F*

O, 2 is strictly decreasing there.

Proposition 3. Adopt models [ASY(γ)] and [SPIKE(ℓ1,…, ℓr)] with ℓr > ℓ+(γ). Consider the 
optimal shrinker η*(λ, γ ) with γn = pn/n given by (6.5) for both LO,1 and LO,2. For LO,1, 
the asymptotic loss is well defined:

Ση − Σ ∞ − Ση, r − Σ ∞ P 0. (7.14)

However, for LO,2,

Ση
−1 − Σ−1

∞ − Ση, r
−1 − Σ−1

∞
𝒟 W . (7.15)

where W has a two point distribution in which

W = F*
O, 2 ℓ+ − F*

O, 2 ℓr with prob 1 − F1 0

0 otherwise,

and F1 0 = ℙ TW1 ≤ 0  for a real Tracy-Widom variate TW1 [59].

Roughly speaking, there is positive limiting probability that the largest noise eigenvalue will 

exit the bulk distribution, and in such cases the corresponding component loss F*(ℓ+) – which 

is due to noise alone – exceeds the largest component loss due to any of the r spikes, namely 

F*(ℓr). Essentially, this occurs because precision losses L O, F, N , 2 a Σ , a Σ  decrease as 

signal strength a increases. The effect is not seen for L{F,N},2 because the optimal shrinkers 

in those cases are continuous at ℓ+ !

Proof. For the proof, write ∥·∥ for ∥·∥∞. Let W = [W1 W2] be the orthogonal change of basis 

matrix constructed in Lemma 7, with W1 containing the first 2r columns. We treat the two 
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losses LO,1 and LO,2 at once using an exponent a = ±1, and write ηa(λ) for ηa(λ, γn). Thus, 

let

Δ = Δn = Ση
a − Ση, r

a = ∑
i = r + 1

p
ηa λi − 1 υiυi′,

and observe that the loss of the rank-aware estimator

Ψ = Ψn = Ση, r
a − Σa = ∑

i = 1

r
ηa λi − 1 υiυi′ − ∑

i = 1

r
ℓi

a − 1 uiui′

lies in the column span of W1. We have Ση
a − Σa = Ψn + Δn , and the main task will be to 

show that for a = ±1,

Ψn + Δn = max Ψn , Δn + oP 1 . (7.16)

Assuming the truth of this for now, let us derive the proposition. The quantities of interest 

in(7.14), (7.15) become First, note from Lemma 7 that

Ση
a − Σa − Ση, r

a − Σa = Ψn + Δn − Ψn

= max Δn − Ψn , 0 + oP 1 .

First, note from Lemma 7 that

Ψn a . s . max
1 ≤ i ≤ r

F* ℓi . (7.17)

Observe that for both a = 1 and −1,

Δn = max
i ≥ r + 1

⏐ η * a λin − 1 ⏐ = ⏐ ηa λr + 1, n − 1 ⏐ .

The rescaled noise eigenvalue p2/3 λr + 1, n − λ+ γn
𝒟

σ γ W has a limiting real Tracy-

Widom distribution with scale factor σ(γ) > 0 [60, Prop. 5.8]. Hence, using the discontinuity 

of the optimal shrinker η*, and the square root singularity from above

η* λr + 1, n, γn =
ℓ+ γn + OP p−1/3 λr + 1, n > λ+ γn

1 λr + 1, n ≤ λ+ γn .

Consequently, recalling that F* ℓ+ = 1 + γ a − 1 , we have
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Δn P F* ℓ+ I TW > 0 . (7.18)

For LO,1, with a = 1, F*(ℓ) is strictly increasing and so from (7.17) and (7.18), we obtain 

Ψn ≥ Δn + oP 1  and hence (7.14).For LO,2, with a = −1, F* (ℓ) is strictly so on the 

event TW > 0,

Δn − Ψn
𝒟

F* ℓ+ − F* ℓr > 0,

which leads to (7.15) and hence the main result.

It remains to prove (7.16). For a symmetric block matrix,

max A , C ≤ A B
B′ C

≤ max A , C + B . (7.19)

Apply this to W′ Ψ + Δ W with

An = W1′ Ψ + Δ W1,

Bn = W1′ Ψ + Δ W2 = W1′ Δ W2
Cn = W2′ Ψ + Δ W2 = W2′ Δ W2,

,

since Ψ W2 = 0. Hence

Ψn + Δn = max An , Cn + OP Bn . (7.20)

We now show that ∥ΔW1∥ →P 0. Using notation from Lemma 5,

W1 = Ur Vr R−1 = Ur Vr − UrR12 R22
−1 .

Since Δvk = 0 for k = 1,…, r,

Δ W1 ≤ Δ Ur 1 + R12R22
−1 .

From (7.9), we have R12R22
−1 Δr c/s = c ℓ1 /s ℓ1 , and hence is bounded. Observe 

that Δuk
= ∑i = r + 1

p δin
a vi′uk vi, where we have set δin = η(λi, γn)−1. Note from (6.5) that 

δin = 0 unless λi > λ+(γn). With Nn = #{i ≥ r + 1 : λin > λ+(γn)}, we then have
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Δ Ur ≤ r max
k = 1, …, r

Δuk
2 ≤ r Δ Nn max

k ≤ r; i > r
υi′uk . (7.21)

From (7.18) we have ∥Δn∥ = OP (1). Since each vi, i > r is uniformly distributed on Sp−1, a 

simple union bound based on (7.23) below yields

max
i > r, k ≤ r

vi′uk
2 = OP

log p
p . (7.22)

It remains to bound Nn. From the interlacing inequality (7.11),

Nn ≤ Nn = # j ≥ 1 : μ jn > λ+ γn ,

where {μjn} are the eigenvalues of a white Wishart matrix Wpn−r(n, I). This quantity is 

bounded in [58, Theorem 2(c)], which says that Ñn = Op(1). In more detail, we make the 

correspondences N ← pn − r, γN ← (pn − r)/n and cN ← pn/n so that cN − γN = r/n = o(n
−2/3) and obtain EÑn→ c0 = 0.17.

From (7.21) and the preceding two paragraphs, we conclude that Δ Ur = OP p−1/2 logp

and so Δ W1 P 0.

Returning to (7.20), we deduce now that ∥Bn∥ ≤ ∥ΔW1∥ →P 0. From the definition of W1 we 

have W1′ Ψ W1 = Ψ  and hence the inequalities

An − Ψn ≤ W1′ Δ W1 P 0.

Now observe that ∥Cn∥ ≤ ∥Δn∥. Apply (7.19) to W′ΔW to get

Δn ≤ Cn + W1′ Δ W1 + W2′ Δ W1 ,

and hence that ∥Cn∥ ≥ ∥Δn∥ − oP (1). Thus ∥Cn∥ = ∥Δn∥ + oP (1). Inserting these results into 

(7.20), we obtain

Ψn + Δn = max An , Cn + oP 1 = max Ψn , Δn + oP 1 ,

which completes the proof of (7.16), and hence of Proposition 3.

Finally, we record a concentration bound for the uniform distribution on spheres. While 

more sophisticated results are known [61], an elementary bound suffices for us.
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Lemma 8. If U is uniformly distributed on Sn-1 and u ∈ Sn-1 if fixed, then for M < 0 and n ≥ 
4,

P U, u ≥ 2 Mn−1log n ≤ π /2 ⋅ n1/2 − M . (7.23)

Proof. Since U1
2 ≔ U, u 2 has the Beta 1

2 , n − 1
2  distribution,

P U1
2 ≥ a ≤ B 1

2, n − 1
2

−1∫a

1
t
− 1

2 1 − t

n − 3
2 dt ≤ γn 1 − a

n
2 − 1

,

where by Gautschi’s inequality [62, 63, (5.6.4)]

γn = B 1
2, 1

2 /B 1
2, n − 1

2 = π Γ n
2 / Γ n − 1

2 < πn/2

Since (1 − x/m)m < e−x for x, m > 0, and 4/n ≥ 2/(n − 2) for n ≥ 4,

P U1
2 ≥ 4Mn−1logn < πn/2 1 − Mlogn

n/2 − 1
n/2 − 1

< π /2 ⋅ n1/2 − M .

8 Optimality Among Equivariant Procedures

The notion of optimality in asymptotic loss, with which we have been concerned so far, is 

relatively weak. Also, the class of covariance estimators we have considered, namely 

procedures that apply the same univariate shrinker to all empirical eigenvalues, is fairly 

restricted.

Consider the much broader class of orthogonally-equivariant procedures for covariance 

estimation [2, 19, 64], in which estimates take the form Σ = V Δ V′ Here, Δ = Δ (Λ) is any 
diagonal matrix that depends on the empirical eigenvalues ∧ in possibly a more complex 

way than the simple scalar element-wise shrinkage η(∧) we have considered so far. One 

might imagine that the extra freedom available with more general shrinkage rules would lead 

to improvements in loss, relative to our optimal scalar nonlinearity; certainly the proposals 

of [2, 19, 26] are of this more general type.

The smallest achievable loss by any orthogonally equivariant procedure is obtained with the 

“oracle” procedure Σoracle = V Δoracle V′, where

Δoracle = argminΔL Σ , V Δ V′ , (8.1)

the minimum being taken over diagonal matrices with diagonal entries ≥1. Clearly, this 

optimal performance is not attainable, since the minimization problem explicitly demands 

perfect knowledge of Σ, precisely the object that we aim to recover. This knowledge is never 
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available to us in practice – hence the label oracle3. Nevertheless, this optimal performance 

is a legitimate benchmark.

Interestingly, at least for the popular Frobenius and Stein losses, our optimal nonlinearities 

η* deliver oracle-level performance – asymptotically. To state the result, recall expression 

(6.2) for these losses: F ℓ, Δ = L2 A ℓ , B ℓ, Δ .

Theorem 2. (Asymptotic optimality among all equivariant procedures.) Let L denote 
either the direct Frobenius loss LF,1 or the Stein loss Lst. Consider a problem sequence 
satisfying assumptions [ASY(γ)] and [SPIKE(ℓ1,…, ℓr)]. We have

lim
n ∞

Lpn
Σ, Σoracle =P  L∞ 𝓁1…, 𝓁r η* = ∑

i = 1

r

F 𝓁i, η* ,

where η* is the optimal shrinker for the losses LF,1 or Lst in Table 2.

In short, the shrinker η*(), which has been designed to minimize the limiting loss, 

asymptotically delivers the same performance as the oracle procedure, which has the lowest 

possible loss, in finite-n, over the entire class of covariance estimators by arbitrary high-

dimensional shrinkage rules. On the other hand, by definition, the oracle procedure 

outperforms every orthogonally-equivariant statistical estimator. We conclude that η* – as 

one such orthogonally-invariant estimator – is indeed optimal (in the sense of having the 

lowest limiting loss) among all orthogonally invariant procedures. While we only discuss the 

cases LF,1 and Lst, we suspect that this theorem holds true for many of the 26 loss functions 

considered.

Proof. We first outline the approach. We can write Σ and Σ−1 in the form I + F , and 

ΣΔ = I + Δ with

F = ∑
k = 1

r
βkukuk′ , Δ = ∑

i = 1

p
Δi vivi′

where βk = ℓk − 1 for LF,1 and ℓk
−1 − 1 for LSt and Δi = Δi − 1. Write

tr F Δ = ∑
i = 1

p
Δi bi, bi ≔ ∑

k = 1

r
βk uk′vi

2 . (8.2)

For both L = LF,1 and LSt, we establish a decomposition

3The oracle procedure does not attain zero loss since it is “doomed” to use the eigenbasis of the empirical covariance, which is a 
random basis corrupted by noise, to estimate the population covariance.
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Lp Σ , ΣΔ = ∑
i = 1

r
F ℓi, Δi + a Δi − 1 ϵi + ∑

i = r + 1

p
H bi, Δi . (8.3)

Here, a is a constant depending only on the loss function,

ϵi = bi − βic ℓi
2, (8.4)

and

H b, Δ = Δ − 1 2 − 2 Δ − 1 b for LF, 1

Δ − 1 1 + b − log Δ for LSt .
(8.5)

Decomposition (8.3) shows that the oracle estimator (8.1) may be found term by term, using 

just univariate minimization over each Δi. Consider the first sum in (8.3), and let F ℓi, Δi

denote the summand. We will show that

min 
Δi

F ℓi, Δi
P min 

Δi
F ℓi, Δi , (8.6)

and that

∑
i = r + 1

p
min 

Δi
H bi, Δi = OP

log2p
p . (8.7)

Together (8.6) and (8.7) establish the Theorem.

Turning to the details, we begin by showing (8.3). For Frobenius loss, we have from our 

definitions and (8.2) that

ΣΔ − Σ
F
2 = tr Δ − F Δ − F ′ = ∑

i = 1

p
Δi − 1 2 − 2 Δi − 1 bi + ∑

i = 1

r
ℓi − 1 2 .

For i ≥ r + 1, each summand in the first sum equals H(bi, Δi) and for i ≤ r, we use the 

decomposition bi = (ℓi − 1)c(ℓi)2 + ∈i. We obtain decomposition (8.3) with a = −2 and

F ℓ, Δ = ℓ − 1 2 − 2 ℓ − 1 Δ − 1 c2 + Δ − 1 2 .

For Stein’s loss, our definitions yield
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LSt Σ, ΣΔ =trΔ + trF + trFΔ − log ΣΔ / Σ

= ∑
i = 1

p
Δi 1 + bi − log Δi + ∑

k = 1

r
βk + log 𝓁k .

Again, for each i ≥ r + 1, each summand in the first sum equals H(bi, Δi) and with bi = (ℓi ‒ 
1)c(ℓi)2 + ∈i we obtain (8.3) with a = 1 and

F ℓ, Δ = ℓ−1 − 1 + Δ − 1 c2/ℓ + s2 − log Δ /ℓ .

It remains to verify (8.6) and (8.7). Theorem 1 says that for 1 ≤ i ≤ r,

ϵi = ∑
k = 1

r
βk uk′ vi

2 − δk, ic ℓi
2 P 0,

which yields (8.6). From (8.5), we observe that in our two cases

h b ≔ min 
Δ

H b, Δ = −b2

−b + log 1 + b
= O b2 , (8.8)

Now, using (8.2) and (7.22), we get

max
r + 1 ≤ i ≤ p

bi ≤ r max
1 ≤ k ≤ r

|βk| ⋅ max
i > r, k ≤ r

uk′ vi
2 = OP

log p
p .

From the previous two displays, we conclude

∑
i = r + 1

p
min
Δi

H bi, Δi = ∑
i = r + 1

p
h bi = OP

log2p
p .

which is (8.7), and so completes the full proof.

9 Optimal Shrinkage with common variance σ2 ≠ 1

Simply put, the Spiked Covariance Model is a proportional growth independent-variable 

Gaussian model, where all variables, except the first r, have common variance σ. Literature 

on the spiked model often simplifies the situation by assuming σ2 = 1, as we have done in 

our assumption [SPIKE(ℓ1,…, ℓr)] above. To consider optimal shrinkage in the case of general 

common variance σ2 > 0, assumption [SPIKE(ℓ1,…, ℓr)] has to be replaced by

[SPIKE(ℓ1,…, ℓr|σ2)] The population eigenvalues in the n-th problem, namely the eigenvalues 

of Σpn, are given by (ℓ1,…, ℓr, σ2,…, σ2), where the number of “spikes” r and their 

amplitudes ℓ1 >…> ℓr ≥ 1 are fixed independently of n and pn.
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In this section we show how to use an optimal shrinker, designed for the spiked model with 

common variance σ2 = 1, in order to construct an optimal shrinker for a general common 

variance σ2, namely, under assumptions [ASY(γ)] and [SPIKE(ℓ1,…, ℓr|σ2)].

9.1 σ2 known

Let Σp and Sn,p be population and sample covariance matrices, respectively, under 

assumption [SPIKE(ℓ1,…, ℓr|σ2)]. When the value of σ is known, the matrices Σp = Σp /σ2and 

the sample covariance matrix Sn, p = Sn, p/σ2 constitute population and sample covariance 

matrices, respectively, under assumption [SPIKE(ℓ1,…, ℓr)]. Let L be any of the loss families 

considered above and let η be a shrinker. Define the shrinker η corresponding to η by

η : λ σ2 ⋅ η λ /σ2 . (9.1)

Observe that for each of the loss families we consider, Lp (σ2A, σ2B) = σ2κLp(A, B), where 

κ ∈ {−2, −1, 0, 1, 2} depends on the family {Lp} alone. Hence

Lp Σp , Ση Sn, p = σ2κLp Σp , Ση Sn, p

It follows that if η* is the optimal shrinker for the loss family L, in the sense of Definition 6, 

under Assumption [SPIKE(ℓ1,…, ℓr)] , then η*is the optimal shrinker for L under Assumption 

[SPIKE(ℓ1,…, ℓr|σ2)]. Formula (9.1) therefore allows us to translate each of the optimal 

shrinkers given above to a corresponding optimal shrinker in the case of a general common 

variance σ2 > 0.

9.2 σ2 unknown

In practice, even if one is willing to assume a common variance σ2 and subscribe to the 

spiked model, the value of σ2 is usually unknown. Assume however that we have a sequence 

of estimators σn n = 1, 2…,where for each n, σn is a real function of a pn-by-pn positive 

definite symmetric matrix argument. Assume further that under the spiked model with 

general common variance σ2, namely under assumptions [ASY(γ)] and [SPIKE(ℓ1,…, ℓr |σ2)], 

the sequence of estimators is consistent in the sense that σn Sn, pn
σ, almost surely. For a 

continuous shrinker η, define a sequence of shrinkers ηn n = 1, 2, …by

ηn : λ σn
2 ⋅ η λ /σn

2 . (9.2)

Again for each of the loss families we consider, almost surely,

lim
n ∞

Lpn
Σpn

, Σηn
Sn, pn

= σ2κ lim
n ∞

Lpn
Σpn

, Ση Sn, pn
.
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We conclude that, using (9.2), any consistent sequence of estimators σn yields a sequence of 

shrinkers with the same asymptotic loss as the optimal shrinker for known σ2. In other 

words, at least inasmuch as the asymptotic loss is concerned, under the spiked model, there 

is no penalty for not knowing σ2.

Estimation of σ2 under Assumption [SPIKE(ℓ1,…, ℓr |σ2)] has been considered in [65, 66, 31] 

where several approaches have been proposed. As an simple example of a consistent 

sequence of estimators σn, we consider the following simple and robust approach based on 

matching of medians [32]. The underlying idea is that for a given value of n the sample 

eignevalues λr+1,…, λpn form an approximate Marčenko-Paster bulk inflated by σ2, and that 

a median sample eigenvalue is well suited to detect this inflation as it is unaffected by the 

sample spikes λ1,…, λr.

Define, for a symmetric p-by-p positive definite matrix S with eigenvalues λ1,…, λp the 

quantity

μ S =
λmed

μγ
, (9.3)

where λmed is a median of λ1,…, λp and μγ is the median of the Marčenko-Pastur 

distribution, namely, the unique solution in λ−(γ) ≤ x ≤ λ+(γ) to the equation

∫
λ− γ

x λ+ γ − t t − λ− γ

2πγt dt = 1
2,

where as before λ± γ = 1 ± γ 2. Note that the median μγ is not available analytically but 

can easily be obtained numerically, for example using remarks on the Marčenko-Pastur 

cumulative distribution function included in SI. Now for a sequence {Sn,pn} of sample 

covariance matrices,define the sequence of estimators

σn :   Sn, pn
μ Sn, pn

. (9.4)

Lemma 9. Let σ2 > 0, and assume [ASY(γ)] and [SPIKE(ℓ1, … , ℓr|σ2)]. Then almost surely

lim
n ∞

σn Sn, pn
= σ .

In summary, using (9.1) (for σ2 known) or (9.2) with (9.4) (for σ2 unknown) one can use the 

optimal shrinkers for each of the loss families discussed above, designed for the case σ = 1, 

to construct a shrinker that is optimal, for the same loss family, under the spiked model with 

common variance σ2 ≠ 1.
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10 Discussion

In this paper, we considered covariance estimation in high dimensions, where the dimension 

p is comparable to the number of observations n. We chose a fixed-rank principal subspace, 

and let the dimension of the problem grow large. A different asymptotic framework for 

covariance estimation would choose a principal subspace whose rank is a fixed fraction of 

the problem dimension; i.e. the rank of the principal subspace is growing rather than fixed. 

(In the sibling problem of matrix denoising, compare the “spiked” setup [32, 31, 53] with 

the “fixed fraction” setup of [67].)

In the fixed fraction framework, some of underlying phenomena remain qualitatively similar 

to those governing the spiked model, while new effects appear. Importantly, the relationships 

used in this paper, predicting the location of the top empirical eigenvalues, as well as the 

displacement of empirical eigenvectors, in terms of the top theoretical eigenvalues, no longer 

hold. Instead, a complex nonlinear relation exists between the limiting distribution of the 

empirical eigenvalues and the limiting distribution of the theoretical eigenvalues, as 

expressed by the Marčenko-Pastur (MP) relation between their Stieltjes transforms [33, 68].

Covariance shrinkage in the proportional rank model should then, naturally, make use of the 

so-called MP Equation. Noureddine El Karoui [24] proposed a method for debiasing the 

empirical eigenvalues, namely, for estimating (in a certain specific sense) their 

corresponding population eigenvalues; Olivier Ledoit and Sandrine Peché [25] developed 

analytic tools to also account for the inaccuracy of empirical eigenvectors, and Ledoit and 

Michael Wolf [26] have implemented such tools and applied them in this setting.

The proportional rank case is indeed subtle and beautiful. Yet, the fixed-rank case deserves 

to be worked out carefully. In particular, the shrinkers we have obtained here in the fixed-

rank case are extremely simple to implement, requiring just a few code lines in any scientific 

computing language. In comparison, the covariance estimation ideas of [24, 26], based on 

powerful and deep insights from MP theory, require a delicate, nontrivial effort to implement 

in software, and call for expertise in numerical analysis and optimization. As a result, the 

simple shrinkage rules we propose here may be more likely to be applied correctly in 

practice, and to work as expected, even in relatively small sample sizes.

An analogy can be made to shrinkage in the normal means problem, for example [69]. In 

that problem, often a full Bayesian model applies, and in principle a Bayesian shrinkage 

would provide an optimal result [70]. Yet, in applications one often wants a simple method 

which is easy to implement correctly, and which is able to deliver much of the benefit of the 

full Bayesian approach. In literally thousands of cases, simple methods of shrinkage - such 

as thresholding - have been chosen over the full Bayesian method for precisely that reason.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Reproducible Research

In the code supplement [41] we offer a Matlab software library that includes:

1. A function to compute the value of each of the 26 optimal shrinkers discussed 

to high precision.

2. A function to test the correctness of each of the 18 analytic shrinker fomulas 

provided.

3. Scripts that generate each of the figures in this paper, or subsets of them for 

specified loss functions.
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Figure 1: 
Shrinking empirical eigenvalue λ1 to a value η(λ1) that is smaller than the inverse function ℓ
(λ1) may reduce the error of estimation.
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Figure 2: 
Vertical axis: optimal shrinkers η* from (1.12), shown as functions η*(ℓ(λ)) of the empirical 

eigenvalue λ, horizontal axis. Here γ = lim pn/n = 1, so λ+(γ) = 4. (Color online.)
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Figure 3: 
Optimal Shrinkers for 26 Component Loss Functions for γ = 1 and 4 ≤ λ ≤ 10. Upper 

Left:Frobenius-norm-based losses; Lower Left: Nuclear-Norm based losses; Upper Right: 

Operator-norm-based losses; Lower Right: Statistical Discrepancies. (Color online; curves 

jittered in vertical axis to avoid overlap.) The supplemental article [40] contains an larger 

version of these plots. Reproducibility advisory: The code supplement [41] includes a script 

that reproduces any one of these individual curves.
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Table 1:

Systematic notation for the 26 loss functions considered in this paper.

MatrixNorm

Pivot Frobenius Operator Nuclear

A − B LF,1 LO,1 LN,1

A−1 − B−1 LF,2 LO,2 LN,2

A−1B − I LF,3 LO,3 LN,3

B−1A − I LF,4 LO,4 LN,4

A−1 B + B−1 A − 2I LF,5 LO,5 LN,5

A−1/2 BA−1/2 − I LF,6 LO,6 LN,6

Log(A−1/2 BA−1/2) LF,7 LO,7 LN,7

Statistical Measures

St Ent Div

Stein Lst Lent Ldiv

Affinity Laff

Fréchet Lfre
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Table 2:

Optimal shrinkers η*(λ) for 18 of the loss families L discussed. Values shown are shrinkers for λ > λ+(γ). All 

shrinkers obey η*(λ) = 1 for λ≤λ+(γ). Here, ℓ, c and s depend on λ (and implicitly on γ) according to (1.10), 

(1.6) and s = 1 − c2. In cases marked “N/A” the optimal shrinker does not seem to admit a simple closed 

form, but can be easily calculated numerically.

Pivot MatrixNorm

Frobenius Operator Nuclear

A − B ℓc2 + s2 ℓ max(l + (ℓ − l)(l − 2s2), l)

A−1 − B−1
ℓ

c2 + ℓs2 ℓ max ℓ
c2 + (2ℓ − 1) s2 , 1

A−1B − I
ℓc2 + ℓ2s2

c2 + ℓ2s2 N/A max ℓ
c2 + ℓ2s2 , 1

B−1A − I
ℓ2c2 + s2

ℓc2 + s2 N/A max ℓ2c2 + s2
ℓ , 1

A−1/2 BA−1/2 − I 1 + ℓ − 1 c2

c2 + ℓs2 2 1 + ℓ − 1
c2 + ℓs2 max ℓ − ℓ − 1 2c2 s2

c2 + ℓs2 2 , 1

Statistical Measures

St Ent Div

Stein
ℓ

c2 + ℓs2 ℓc2 + s2 ℓ2c2 + ℓs2

c2 + ℓs2

Fréchet ℓc2 + s2 2

Affine
1 + c2 ℓ + s2

1 + c2 + ℓs2
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