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Abstract

Hypothesis-driven research has led to many scientific advances, but hypotheses cannot be tested in 

isolation: rather, they require a framework of aggregated scientific knowledge to allow questions to 

be posed meaningfully. This framework is largely still lacking in microbiome studies, and the only 

way to create it is by discovery-, tool-, and standards-driven research projects. Here we illustrate 

these issues using several such non-hypothesis-driven projects from our own laboratories, 

including spatial mapping, the American Gut Project, the Earth Microbiome Project (which is an 

umbrella project integrating many smaller hypothesis-driven projects), and the knowledgebase-

driven tools GNPS and Qiita. We argue that an investment of community resources in 

infrastructure tasks, and in the controls and standards that underpin them, will greatly enhance the 

investment in hypothesis-driven research programs.

Introduction

Microbiome research is making dramatic progress, with thousands of papers now published 

each year linking specific microbes and/or host-microbe co-metabolites to specific diseases, 

physiological properties, or environmental parameters. Much of this research is performed in 

a traditional, hypothesis-driven way, or at least presented as a rational reconstruction that fits 

this model, much as Darwin re-wrote much of his discovery-driven work as hypothesis 
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driven to increase its respectability under the influence of contemporary philosophers of 

science such as William Whewell (1). However, it should be noted that hypothesis-driven 

science was not always so respectable -- Isaac Newton famously wrote “Hypotheses non 
fingo”, or “I feign no hypotheses”, in an essay appended to the second edition of the 

Principia (2) -- so the tradition of modifying how science is framed to meet respectability 

criteria dates back at least 300 years. What can be framed as a testable hypothesis suffers 

important limitations based on what we can measure and what we already know.

Ten years ago Chris Anderson, editor of Wired magazine, set off an international debate with 

his article “The End of Theory: The Data Deluge Makes the Scientific Method Obsolete” 

(3). The idea was that with enough data, hypotheses will emerge (“Let the data speak for 

itself”) has become widely discussed in the rapidly growing data science profession. A 

thoughtful review of this topic was written in EMBO Reports in 2015-”Could Big Data be 

the end of theory in science? A few remarks on the epistemology of data-driven science” (4). 

As the author points out:

“Francis Bacon, the “father of the scientific method” himself, in his Novum Organum 

(1620), argued that scientific knowledge should not be based on preconceived notions but on 

experimental data. Deductive reasoning, he argued, is eventually limited because setting a 

premise in advance of an experiment would constrain the reasoning so as to match that 

premise. Instead, he advocated a bottom-up approach: In contrast to deductive reasoning, 

which has dominated science since Aristotle, inductive reasoning should be based on facts to 

generalize their meaning, drawing inferences from observations and data.”

We recently reviewed experimental design considerations for traditional hypothesis-driven 

microbiome studies elsewhere (5, 6), and do not discuss these issues further in this review. 

Here we describe the danger of jumping too soon into hypothesis testing, and describe the 

need for four major categories of non-hypothesis-driven research: better spatial and abstract 

maps, better tools, and better standards. Given space constraints, we illustrate these 

primarily using the American Gut Project (7), the Earth Microbiome Project (8), and tools 

we developed in our laboratories.

The challenge of unknown unknowns

In microbiome research, a recurring challenge has been that factors intuitively suspected to 

drive differences in the microbiome are less important than other, more surprising factors. 

For example, sex has a small impact on microbiomes across the human body (9, 10) and has 

a much weaker effect than many other variables such as age (even within adults), or the time 

of year the sample was collected(11, 12). However, sex is far more frequently reported than 

time of year. Similarly, although long-term dietary habits are correlated with the overall 

composition of the human microbiome within and between populations (7, 13–16), and 

dietary changes over months can lead to changes in overall microbiome composition larger 

than the differences between arbitrarily chosen individuals (17, 18), but short-term changes 

have transient effects smaller than typical differences between individuals (14, 19). 

However, many studies focus on short-term rather than long-term diet. Perhaps even more 

surprisingly, factors such as temperature and pH have much smaller impacts on 
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environmental microbiomes than salinity(8, 20), and even the saline vs. non-saline 

difference is much smaller than the host-associated vs free-living difference (8, 21). Samples 

from different parts of the same person’s body differ more from one another in their overall 

microbial communities than radically different free-living microbial communities, such as 

soils versus oceans (8). Differences of this magnitude can also occur within the gut of a 

single person, with sufficiently large perturbation (7).

Because factors of large effect are often unknown and unreported, studies testing hypotheses 

concerning intuitively obvious factors of small effect are often subject to important 

confounding variables, that, when uncovered, prompt complete reinterpretation of the study. 

For example, suppose an investigator is unaware that cage effects are important in the 

microbiome (22), and profiles microbiomes in two cages each of two different genotypes of 

mice. The results will likely be driven by which cages happens to resemble each other more 

closely. If the variable of cage is not measured, or not tested in an unsupervised model, this 

important confounding variable will likely remain undiscovered, and the interpretation of the 

experiment entirely incorrect

Similarly, a frequent practice is to discard unannotated microbes or unannotated molecules, 

focusing on the subset of microbes or molecules that can be matched to an existing database. 

Because databases of both microbes and molecules are heavily biased (microbes, by studies 

of known pathogens that come from only a few taxonomic groups, and molecules, by 

commercially available compounds), the entities that best discriminate among classes of 

samples may be lost in the analysis: often, only 60% of sequences and 2% of molecular 

features from an untargeted metabolomics experiment can be annotated by existing 

references (23, 24). However, a rational reconstruction of why the annotatable microbes or 

molecules are plausibly connected to a phenotype of interest can frequently be developed, 

especially given the characteristics of these highly multivariate datasets that can lead to high 

false discovery rates when the true number of implicitly tested hypotheses is considered 

(25).

The need for spatial maps

An important metaphor in science and information visualization is the idea of the map. As 

data volumes increase, it is frequent that the main research activity in a field moves from 

tests of hypotheses of differences in individual variables among sites, to tests of these 

hypotheses with replicates at each site, to spatially or temporally explicit sampling, to 

detailed spatial maps that reveal otherwise unsuspected patterns. This progression has 

occurred in 16S rRNA ampliconbased microbiome studies over the past decade (8, 26), and 

increasingly characterizes mass spectrometry-based metabolome studies over the past four 

years (27–32).

The value of spatial maps is so self-evident that the results are often cursed by obviousness. 

For example, the finding that metabolomes cluster by individual, as revealed by principal 

coordinates analysis (PCoA), is interesting (Fig. 1A). However, the finding that a given 

molecule such as lauryl sulphate (m/z 355.219) is distributed across the body of one of the 

two individuals, but is absent from the other individual is obvious (Fig. 1B), especially when 
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subject A, who is male, reports using the skin care product Nivea for Men, the source of the 

molecule(28). Similarly, the finding that samples from four individuals differ significantly in 

levels of specific purines between and within subjects might well prompt further 

investigation. However, a spatial map with dense sampling of the same individuals (Fig. 1C) 

makes it obvious that the molecule is something that is touched and consumed, and 

sometimes spilled, allowing one to guess that it is caffeine; similarly, the spatial map reveals 

that one person likely spends time in the ocean based on the distribution of Synechococcus 
spp. (Fig. 1D) (30).

We have no idea where most microbes and molecules occur in and on the human body, in 

natural environments, or in human-constructed and human-impacted environments. Spatial 

maps could make many of these distributional patterns obvious, just as John Snow’s map of 

cholera instantly led to the hypothesis that this disease was water-borne and stemmed from 

the Broad Street pump, reinforced by the map’s revelation that the block that drank alcohol 

rather than pump water was spared from cholera (33). In an analogous manner, 

systematically collected maps of microbes and molecules across different spatial scales will 

fundamentally transform the types of questions that can be asked of microbiome and 

metabolomics data.

The need for abstract maps

Despite the intuitive appeal of spatial maps, the value of abstract maps, including ordinations 

such as principal coordinates analysis (PCoA), non-metric multidimensional scaling 

(NMDS), tdistributed stochastic neighbor embedding (t-SNE), and network diagrams from 

object similarity (sequence or spectrum) or co-occurrence, is also considerable. The correct 

data frame and distance metric often immediately reveal the key result, without a specific 

hypothesis in mind. Consider the starting and ending time point of a fecal transplantation 

series (34) (Fig. 2A), where the different clusters are obvious, but the direction and meaning 

of this difference are not. Placing these samples in the context of the Human Microbiome 

Project data (10) reveals immediately that the difference between start and endpoint is much 

greater than the difference between healthy and diseased samples, and adding intermediate 

timepoints shows that the transition occurs rapidly. The map thus enables new hypotheses 

about how to move individuals along a desired trajectory in the abstract space. A major 

driving force behind both the Earth Microbiome Project (8) and the American Gut Project 

(7) has been to build out these abstract maps for additional sample types and populations.

An important question in building maps is often whether, given a fixed sequencing budget, it 

is better to have more points (samples), or more accurate or detailed characterization of each 

point. In our experience, for amplicon sequencing, having more samples outweighs the value 

of having more sequences per sample, down to surprisingly low thresholds. For example, 

Fig. 3 shows the Earth Microbiome Project dataset (8) sampled at 500,000 sequences per 

sample, 1000 sequences per sample, and just 200 sequences per sample. The overall 

patterns, e.g. the host/non-host split and the saline/non-saline split, are much clearer with 

more samples than with more precision about the location of each sample in PCoA space. 

Multinomial sampling considerations make it immediately clear why this is true: with 100 

sequences per sample, the standard error in inferring the proportion of a taxon at 5% 
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frequency is ~√(100*.95*.05) or 2.18%, or nearly 50% error in proportion; the standard error 

at a taxon at 1% frequency is ~√(100*.99*.01) or 0.99%, essentially 100% error. 

Consequently, even low-abundance taxa are sampled accurately enough to place a sample in 

a map with surprisingly few sequences. Logically, this must be true, or all ordination 

diagrams in microbial ecology before nextgeneration sequencing would have been useless.

The need for improved tools

Amplicon studies have been greatly enabled by improvements in processing pipelines, 

distance metrics, and reference databases, which we have recently reviewed elsewhere (35), 

greatly enabling hypothesis-driven studies about relative abundance of particular microbial 

taxa and their placement on abstract maps such as those produced by the Earth Microbiome 

Project (8) and the American Gut Project (7). As we extend these projects to other data 

types, notably shotgun metagenomics and metabolomics, we face new challenges that can 

best be solved by new tools. However, tool production is fundamentally itself more of an 

engineering than a hypothesis-driven activity, especially when the main advances are in user 

interfaces (32, 36) or in software engineering (37).

Although most 16S rRNA fragments can now be identified, in shotgun metagenomics only a 

small fraction of the sequences can typically be associated with known taxonomy or 

function. Genome assembly is especially valuable in identifying biosynthetic pathways, 

allowing taxonomic resolution at the species or strain level, and generating high-resolution 

single nucleotide polymorphism (SNP) profiles to characterize novel strains and confirm 

functional variants (38). Consequently, methods that can identify genetic variation from 

lower-coverage data, and that can estimate features of interest from less data or with efficient 

target capture, are needed for improved sample throughput. Shotgun metagenomics also 

often requires host DNA depletion because total DNA extracts from biological specimens 

can be dominated by host DNA (39).

Metabolomics poses different challenges (40). According to NHGRI, the cost per megabase 

of raw genome DNA sequence reduced in cost by almost six orders of magnitude since 

2001(41), but mass spectrometry only decreased in cost by only two orders of magnitude 

during this period (40). However, the main limitation in metabolomics is the enormous 

chemical diversity, which hinders molecular identification and impacts the choice of 

extraction solvents, separation methods, instrumentation, and data analysis approaches. 

Because the multiplexing strategies that are successful in both amplicon- and shotgun-based 

sequencing approaches are not available in mass spectrometry, instrument time is directly 

proportional to the number of samples and limiting for large-scale projects. As with 

sequencing a decade ago, most molecular features found in a sample are unidentified, and 

many are likely technical artifacts, e.g. adducts formed in the gas phase, solvent artifacts 

(42) and multimers of the same compound (40). Better methods and incentives for 

aggregating community knowledge (24) (e.g. retention of knowledge of the large number of 

manual annotations performed by the community) and for automatically assigning unknown 

mass peaks and fragmentation spectra to molecules and have an estimation of error rates 

(43), as opposed to heuristics subject to personal interpretation rules (44), are urgently 

needed. Global Natural Products Social molecular networking (GNPS) (24) offers 
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alternative solutions for computational mass spectrometry infrastructure. Spectral datasets 

can be publicly deposited with a unique identifier and transformed to “living data”, as they 

will be continuously searched against reference libraries to update users on new 

identifications. Furthermore, annotations can also be made by the scientific community 

within GNPS and propagated to all other data sets in the public domain with notifying 

subscribers on new annotations. Other expanded capabilities include automated species 

metabolome references (45) and the Molecular Explorer (24) for cross-searching annotated 

MS/MS spectra between datasets. Connections between several datasets, within the same 

knowledge base or between different spectral repositories such as Metabolights (46) and 

Metabolomics Workbench (47), can be made to highlight annotated compounds found in 

several data sets Such analysis is trivial in sequencing but still novel in mass spectrometry.

Integration of taxonomic, genomic and metabolomic data remains an important unsolved 

challenge. Although genome mining can successfully identify the sources of individual 

natural products (48), matching an overall taxonomic or functional microbiome profile to a 

molecular profile remains difficult because of procedural and analytical differences in data 

acquisition. In particular, the likelihood of time lags in chemical production or in genomic 

response to environmental changes, which may appear on different timescales, reduce the 

power of correlation approaches based on cross-sectional data (49). In cases where microbial 

and molecular composition is driven by a dominant effect (e.g. a dataset composed of soil 

and fecal samples will divide into two clusters driven by the difference between soil and 

feces), the molecular and metagenomic datasets will appear concordant by Procrustes 

analysis (50), but this is an artifact of the approach. An integrated systems biology approach 

that maps all data layers onto common pathways is likely needed, but cannot be performed 

today because most genes, pathways, and molecules are unknown and because even known 

system components lack coherent ontological conventions across databases.

The Need for Standards

Another branch of non-hypothesis-driven research critically important for framing precise 

hypotheses is standards development. In microbiome science these broadly take three tracks: 

analytical standards for determining the accuracy and fidelity of readouts, procedural 

standards for sample collection and handling, and annotation standards for integrating 

results across studies.

The lack of agreed-on standards stems from the origin of microbiome science in the 

discipline of ecology, where fundamental questions revolved around finding new kinds of 

organisms to fill out the phylogenetic tree of life (51), and finding statistically significant 

differences in microbial diversity or composition among samples within an individual study. 

Because the goal was to test whether any difference existed in the microbiome as a function 

of disease, physiological, or environmental state, biases (including missing taxa, or missing 

classes of molecules) were unimportant if a difference could be discovered. However, this 

situation diverges radically from the present, where physicians and engineers expect to be 

able to measure the correct, absolute abundance of all microbes or molecules in a given 

sample simultaneously. The realities of nucleic acid or organic extraction, detection methods 

for sequences and molecules, and downstream data processing do not support this important 
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goal. Without consistent and welldefined measurements underpinned by a mechanistic 

causal model of error and bias, the state of microbiome-based predictions could be 

characterized as more like astrology than like astronomy, as pre-science rather than science.

To improve sample readout, we need known reference standards that can be spiked into 

samples at different stages, from original specimen to extracted DNA or compounds, that are 

agreed on, widely used, and have inexhaustible supply. Previous efforts, such as the HMP 

standards, have been limited by insufficient availability of materials, taxonomic complexity, 

or both. KatharoSeq in particular (52) benefits from having different spike-in standards at 

the level of primary sample and DNA, allowing different sources of contamination to be 

tracked down. Comparable development in mass spectrometry would be of tremendous 

value.

Sample collection and storage can bias specimen readout (53–55), but for most sample types 

the implications of different forms of degradation are unknown. Consequently, the 

conservative recommendation is always to expensively collect pristine samples (e.g. flash-

frozen in liquid nitrogen), even though more practical methods would often suffice. For a 

few sample types, such as amplicon processing of stool, considerable data is now available 

on a range of conditions (55–58), and researchers can make informed decisions about which 

methods to use, as we did for citizen-scientists in the American Gut Project after exploring 

the limits of what can and cannot be usefully obtained for amplicon collection from stool 

shipped at room temperature (7). However, we know much less about the implications of 

sample degradation for most other types of biospecimens, and for the implications for 

reading out different molecular fractions with mass spectrometry (although see (59)).

Finally, integrating samples from different studies remains challenging because of 

differences in annotation (often called “metadata”). For example, different studies may refer 

to “stool”, “feces”, “gut”, or other synonyms, or rely on different units of measurement. 

Efforts such as the Genomic Standards Consortium MIxS family of standards (60), the Earth 

Microbiome Project Ontology (EMPO) (8), and other annotation schemes assist 

considerably in these tasks, but have been applied to relatively few datasets to date. The 

potential for natural language processing (NLP) and/or data-based methods for 

automatically applying annotations is considerable. These strategies were successful in Qiita 

for inferring EMPO annotations for tens of thousands of samples from the researcher-

reported “sample_type.” However, further development is needed to enable researchers to 

“discover” variables and controlled vocabularies that can be generally applied.

Conclusions

Although hypothesis-driven science has immense value, it depends to a considerable degree 

on a framework of maps, tools, and standards whose own development often does not fit 

meaningfully into a hypothesis-driven framework. However, without these developments, 

hypotheses more explicit than “differences in the microbiome” or “elevation or depletion of 

specific pre-defineid taxa or molecules” cannot be tested, and completely new ideas about 

how to read out or control the microbiome will not be developed.
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Extraordinary advances in data collection technologies leave us in a world where we 

regularly make make millions of observations of organisms about which we know virtually 

nothing -- as exemplified by the recent ‘discovery’ of the most abundant phage in the human 

gut via metagenome mining (61). To bring about a future of precision medicine and 

precision ecological remediation, where we can specify precise microbiome changes and 

bring them about through defined interventions, a vast amount of non-hypothesis-driven 

research, often dismissed as “technical work” or “fishing expeditions”, remains to be done.
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Figure 1. 
Spatial analysis based on metabolomics of skin samples and a human habitat. A) Principal 

coordinates analysis (Hellinger distance) of metabolomics data of skin swabs obtained from 

several hundreds locations on the human body of four volunteers. B) The detection of lauryl 

sulfate (m/z 355.219) from the shampoo Nivea for Men on a male volunteer. C) The 

distribution of caffeine (m/z 195.088) on four individuals and office environment. D) The 

distribution of Synechococcus spp. on within that same office environment.
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Figure 2. 
Untangling the meaning of complex microbial interactions through meta-analyses. (A) 

Principal coordinates analysis (unweighted UniFrac) of Clostridium difficile Infection 

subjects, before and after a fecal transplant, along with the fecal donor and 10 untreated 

subjects (34). (B) Principal coordinates analysis (unweighted UniFrac) of the Human 

Microbiome Project (HMP) (10) combined with the data in panel A, the longitudinal 

samples for subjects 1–4 are connected as lines displaying the temporal variability and the 

shift from a disjointed untreated state of the patients vs. the healthy frame of the HMP. A 
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high-resolution version can be found athttps://www.dropbox.com/sh/paq9sdiqvzp5mog/

AABTUuRkZlHzlPbsN0riWIICa?dl=0.
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Figure 3. 
Broader sampling improves abstract maps of the microbial world in the Earth Microbiome 

Project, even with low resolution. All panels show principal coordinates analysis of 

unweighted UniFrac distances between samples. (A) Samples rarefied to 500,000 sequences, 

showing only those exceeding this threshold sampling depth. (B) Samples rarefied to 1000 

sequences. (C) Samples rarefied to 200 sequences. Even with few observations per sample, 

the overall relationships among sample types are preserved; in contrast, the overall pattern is 

lost with too few samples no matter how exquisitely characterized.
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