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Abstract

Despite decades of research, the induction and maintenance of long-term allograft tolerance 

without immunosuppression remains an elusive goal in the field of solid organ and cell 

transplantation. Immunosuppressive medications frequently prevent or minimize acute cellular 

rejection but have failed to halt anti-donor antibody production and chronic organ rejection. Past 

efforts aimed at promoting lasting allograft tolerance have focused primarily on peripheral T cell 

depletion, augmentation of regulatory T cells, or induction via simultaneous hematopoietic stem 

cell transplantation and facilitation of donor chimerism. So far, none of these methods have led to 

consistently safe, feasible and long lasting donor organ acceptance. Over the course of the past 4 

decades, the study of a unique population of antigen-presenting cells known as dendritic cells 

(DCs) has shown promise for breaking new ground in achieving indefinite allograft survival 

without immunosuppression and its associated adverse effects. In this review, we discuss the 

discovery and early investigations of DCs and chronicle some of the key studies demonstrating 

their role in transplantation, particularly in indirect allorecognition, the immunologic pathway 

thought to drive chronic rejection and perhaps tolerance induction.

I. Identification and Characterization of Dendritic Cells

For many years, immunologists speculated that some unknown blood element, transferred in 

tandem with the donor allograft, likely played a crucial role in transplant outcomes (Figure 

1). In 1944, Medawar argued that donor-specific tissue antigen acted as a key element in 

promoting rejection.1 Owen’s seminal finding published in 1945, that fraternal twin calves’ 

placental cross-circulation leads to the production of chimerism, where each twin has the 

blood cells of both,2 laid the foundation for future studies that form the basis of 

immunologists’ understanding of tolerance induction for solid organ allografts. The extent of 

chimerism required, the precise reason for its establishment, as well as the feasibility of 

cellular depletion techniques used to achieve it, however, remain problematic.3
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Twelve years later, Snell observed that in fact, recipient pretransplant immunization with 

donor lymphoid cells sensitized the allograft to rejection more effectively than tissue antigen 

alone, suggesting that entrapped donor leukocytes significantly contribute to graft 

immunogenicity.4 Later, on encountering a renal allograft lesion in a rat model that 

histologically mimicked acute rejection but was inhibited by leukopenia, Elkins and 

Guttmann hypothesized that the lesion had been stimulated not by antigen, but by the 

interaction between “passenger leukocytes,” incidentally transferred with the allograft and 

host (recipient) leukocytes. The same authors soon after provided the first evidence of a 

graft-versus host response in a nonlymphoid organ, verifying the importance of donor-to-

recipient leukocyte transfer as one mechanism central to the immunogenicity of a 

transplanted allograft.56

In the early 1970s, Ralph Steinman and his colleagues identified a morphologically and 

functionally distinct, previously uncharacterized population of cells in the mouse spleen 

while investigating normal immune responses to transplanted tissue. Steinman called the 

cells “dendritic cells” (DCs) due to their low density and stellate structure.789 By 1980, he 

had demonstrated that DCs not only participated in immune responses, but that they were 

also uniquely potent immunologic stimulators, 100 times more so than macrophages.10 

These cells, which led to the award of a Nobel Prize in 2011 to Dr. Steinman, have been and 

continue to be the subject of intense interest to immunologists and clinicians, especially in 

the fields of transplantation and oncology.

II. Passenger lymphocytes are the primary barrier to prolonged allograft 

acceptance—Brief historical perspective

In light of the work of Steinman and others, Lafferty et al immunologically altered donor 

tissue by pretransplant tissue culture or irradiation to deplete passenger leukocytes1112 as a 

possible method of prolonging allograft survival. Their findings suggested that elimination 

of donor-derived, antigen-presenting “stimulator cells,” rather than the depletion of donor 

tissue antigen, which remained intact in treated cells, was responsible for producing 

tolerance by effectively preventing the timely signaling and mobilization of a pro-active T 

cell response.1213 Similar experiments by Sollinger and his team using cultured and 

uncultured thyroid allografts found that even in presensitized mice, tissue cultured in both a 

high oxygen and high pressure environment to deplete passenger leukocytes had prolonged 

allograft survival by rendering the original graft alloantigen unrecognizable by the 

histoincompatible host.14

Lechler and Batchelor were the first to suggest that passenger leukocytes, the so-called 

immunologic “stimulator cells,” may in fact be Steinman’s DCs. They restored 

immunogenicity to a syngeneic re-transplanted, passenger cell-depleted donor allograft by 

re-introducing donor leukocytes, confirming that both mismatched tissue antigen and the 

presence of passenger lymphocytes (presumed DCs) were required to stimulate allograft 

rejection.1512 Our group inactivated passenger cells using low-dose UVB irradiation with 

brief peritransplant immunosuppression to induce tolerance, initially to pancreatic islet 

allografts in a diabetic rat model16 and then to cardiac allografts. However, the presence of 
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retained donor DCs, even at a density as low as 1%, was enough to stimulate a robust in 

vitro response; macrophages at 10 times the cell concentration fell short of producing this 

effect.1718 UVB irradiation above a specified dose, which varied based on species, affected 

the viability of host progenitor cells and was thus too toxic to apply clinically for cellular 

transplants other than platelets.19

III. Dendritic cells’ functionality varies by subtype

The broad array of immune cells characterized as DCs can be subdivided into several 

categories, including monocyte (peripheral blood)-derived (moDC) and “classical,” myeloid 

(bone marrow)-derived (cDC), which either migrate from tissues or permanently reside in 

lymph nodes and are known as immunologic “sentinels,” the most effective activators of the 

naïve T cell response.202122 In the late 1980s and early 1990s, several studies revealed that 

mature DCs (mDCs) accelerate the early sensitization phase of the immune response and 

play a central role in transporting antigen from nonlymphoid organs to lymphoid tissue. DCs 

were shown to be professional antigen-presenting cells (APCs) with the capacity to produce 

an antigen-specific immune response, resulting in the expansion of an antigen-specific 

effector T cell population in the host.23

Consistent with earlier findings, Inaba et al demonstrated that the presence of even a small 

number of antigen-primed mDCs resulted in robust, antigen-specific CD4+ T cell reactivity, 

suggesting that DCs’ efficacy depends on their ability to home to a site that permits them to 

bind and activate large numbers of T cells relative to alloantigen, rather than primarily on the 

number of primed, autologous DCs present.24 Above all, other studies repeatedly showed 

that standard, peripheral DCs acted as in vivo instigators and amplifiers of an antigen-

specific T cell response, disruption of which could potentially lead to tolerance induction.24

Understanding the in vitro and in vivo generation of DC subsets, their unique mechanisms of 

antigen presentation, their migratory properties, the nature of their contact with native and 

donor T cells—and how to manipulate these interactions—became essential to the 

development of strategies to induce allograft tolerance.25

IV. The thymus is the site of immunologic education: Central deletion and 

regulatory T cell development are key mechanisms of tolerance induction 

by cell therapy

As early as 1959, Burnet proposed that immune cells fail to launch an anti-self reaction due 

to programmed deletion of autoreactive lymphocytes in the thymus.3 In the 1960s, Miller’s 

mouse studies of early neonatal thymectomy showed that unlike their healthy counterparts, 

neonatally thymectomized mice were deficient in germinal centers of lymphocyte 

proliferation and were both more susceptible to infection and developed prolonged tolerance 

to allogeneic skin grafts.26 Good and colleagues confirmed Miller’s findings of a 

quantitative deficiency of mature lymphoid structures in thymectomized mice, which 

resulted in loss of their splenic cells’ capacity to induce a graft-versus-host reaction.27 

Transplantation of allogeneic thymic grafts into thymectomized mice resulted in 
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development of chimerism, co-existence of both donor- and recipient-derived blood cells, 

such that the animal readily accepted skin grafts from both the donor and the host.28 More 

than twenty years later, the thymus was definitively identified as the site of T cell maturation 

and the anatomic location at which self-reactive T cells are commanded to self-destruct or 

are rendered anergic.293031

In order to stimulate lymphocyte production in the absence of a normally functioning 

thymus, as in the case of the inherited human equivalent of neonatal thymectomy, complete 

Di George’s Syndrome (also known as 22q11.2 deletion), Goldstein and White pioneered 

efforts to isolate and purify a thymus-derived lymphocytopoietic factor called thymosin.32 

We found it to enhance regeneration of lymphoid tissue in mice and to restore 

immunological competence to neonatally thymectomized rodents.3334 Our group also 

showed that thymosin combined with anti-thymocyte serum (ATS) potentiated prolongation 

of skin allograft survival in mice compared to ATS alone, while large, daily doses of 

thymosin resulted in accelerated rejection. We speculated that the augmented effectiveness 

of ATS was due to its more effective depleting action on the increased number of peripheral 

thymocytes mobilized by thymosin.3335

Years later, Markert performed postnatal allogeneic thymic transplant on infant patients with 

complete Di George anomaly (absence of the thymus) after trials of thymosin a1 proved to 

be only partially effective.36 After several months, recipients developed a diverse and 

functional T cell repertoire genetically matched to them. This outcome was thought to be 

due to migration of CD34+ recipient cells from the recipient marrow to the transplanted 

thymic tissue, a concept that supported the thymic role in T cell production and education 

and stimulated investigation into the development of tolerance following bone marrow 

transplant (BMT).36

V. Stage of maturation further determines DC function: Immaturity of DCs is 

essential to the development of tolerance

To more clearly define the immunologic role of various subsets of DCs and their 

relationships with the thymus, Kyewski et al, who had previously shown that DCs function 

as APCs within the thymic medulla37 established that intrathymic (IT) DCs could be 

distinguished from those in the periphery by their uniformly immature cell surface markers.
38 The discovery of persistent, multilineage donor chimerism among allograft recipients 

decades after transplantation, coupled with the revelation that a leukocyte-rich donor liver is 

most likely to be accepted by a recipient, convinced Thomson et al that donor-derived 

progenitor cells migrated and survived in the host, facilitating immunologic nonreactivity to 

the allograft.39 These findings supported the critical role of immature dendritic cells 

(imDCs) in tolerance induction and posited on how a single cell type, depending on its 

maturational state, could be so effective at initiating two, seemingly opposite immune 

processes, allograft rejection and allograft tolerance (Figure 2).38

Thompson et al subsequently discovered that activation and differentiation of DCs, leading 

to T cell stimulation, depends on nuclear translocation of nRelB, a member of the NFkB 

family of transcription factors, whereas their immature DC precursors present in 
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noninflamed tissue lack this protein.40 In this study, mDCs were found only in the presence 

of T lymphocytes, suggesting that cross talk between these subpopulations of cells, via high 

levels of accessory and co-stimulatory molecules, which are not present in imDC, is 

necessary to facilitate their migration and functionality.414243

Segovia et al described another type of recipient-derived myeloid DCs (which they termed 

“autologous tolerogenic dendritic cells,” or ATDC), which possessed the cell membrane 

gene TMEM176B, directing them to home first to the transplanted allograft for donor 

antigen exposure to prolong skin allograft survival in mice when paired with short-term, 

anti-CD3 immunosuppression. When treated synergistically with anti-CD3+, ATDCs 

produce CD8+ regulatory T cells (Tregs), which prevent skin allograft rejection. Mice who 

lacked the TMEM176B gene rejected the allograft outright. The authors point out that 

human monocyte-derived DCs are known to lack the TMEM176B gene, suggesting that a 

different mechanism may be responsible for the development of tolerance using monocyte-

derived DCs.44

The stark differences between IT and extrathymic encounters with antigen, where the latter 

reliably produces T cell responsiveness while the former seemingly curtails it, inspired 

Matzinger and Guerder to investigate the phenotype of DCs at various anatomical sites since 

they found out that the cells’ disparate functions were reflected in their different stages of 

maturation.45294647 While peripheral, splenic DCs were excellent initiators of mature T cell 

immune responses, those within the thymus were conversely the most effective inactivators 

of young, developing T cells.45 These findings led to the development of various methods of 

tolerance induction that rely on halting DC maturation long enough so that a critical number 

of imDC can be collected and manipulated. Conversion of cells originally destined to 

potentiate and amplify recognition of nonself to those with the ability to promote nonself 

antigen acceptance by misrepresentation of nonself antigens in the thymus (therefore 

“fooling Mother Nature”) may constitute effective tolerance induction clinically.

VI. Several pathways of allorecognition influence rejection and tolerance

Direct and indirect allorecognition by host T cells have been the primary focus of efforts to 

manipulate cell interactions in favor of tolerance (Figure 3). Direct allorecognition, which is 

thought to dominate early immunologic responses following allografting, occurs when host 

T cells recognize intact, nonself major histocompatibility complex (MHC) molecules 

(disparate to that of the host) on the surface of foreign APCs. Indirect recognition occurs 

when host CD4+ T cells recognize nonself allopeptides (derived from allograft MHC 

proteins) processed and presented by self MHC II molecules on native APCs; this process is 

also crucial to alloantibody production, in which direct responsiveness plays a supporting 

role.484950 Indirect allorecognition can also partially account for the initial alloresponse.51 

According to one model, the kinetics of graft rejection by the direct and indirect pathways 

are nearly identical, suggesting that differences noted in other models could be due to 

alloreactive T cell precursor frequencies, not an intrinsic disparity between pathways.50

As donor “passenger” APCs inevitably become less numerous over time, indirect 

recognition appears to “take over,” leading to chronic rejection. Indeed, years following 
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heart transplantation, patients have been shown to be hyporesponsive to directly, but not 

indirectly presented donor HLA antigens.52535455 Recent studies also suggest the existence 

of a third, “semi-direct” pathway relying on the transfer of allo-MHC-peptide complexes 

(MHC “cross-dressing”) to recipient APCs via cell-cell interactions and/or excretion of 

extracellular vesicles, which may also contribute to persistent recipient T cell activation by 

perpetuating the direct pathway for the life span of the transplanted allograft.565758

VII. Central intrathymic deletion and regulatory T cell development depend 

on intrathymic antigen presentation: Key mechanisms of tolerance 

induction by DCs

Based on mounting evidence regarding the central role of the thymus, we and others 

hypothesized that the mechanism of tolerance induction relies on IT antigen presentation 

(Figure 4).596061 Several studies demonstrated that direct IT inoculation with donor 

immunodominant allopeptide or with donor allopeptide-pulsed, myeloid-derived imDCs led 

to long term, donor-specific tolerance in transiently immunosuppressed rats, which was 

disrupted by early, but not late, thymectomy.62 Intravenous (IV) injection of donor 

allopeptide-primed imDC with or without a host T cell-depleting agent, but not allopeptide 

alone, also led to prolonged allograft survival, strongly supporting the idea that manipulation 

of T cell education in the thymus is needed to initiate systemic allograft tolerance.63 This is 

further supported by the finding that intravenously administered, allopeptide-primed imDC 

(but not mDC) tagged with indium-111 radiotracer home primarily to the thymus on single-

photon emission computed tomography (SPECT) imaging studies.6465 It has been shown 

that systemic, intravenous treatment with allopeptide alone, without immunosuppression, 

results in tolerance induction to cardiac allografts in rats via indirect interactions between 

CD8+ CD40Ig Tregs and dominant donor MHC class II molecules. These interactions lead 

to CD8+ Treg expansion in the presence of plasmacytoid DCs (pDCs), thus augmenting 

their immunosuppressive effect. The possible role of the thymus in this interaction is not 

discussed.66

Lee et al investigated the role of indirect recognition on chronic rejection of swine leukocyte 

antigen (SLA) class I-incompatible cardiac allografts in miniature swine and verified the 

significance of pretransplant intrathymic versus extrathymic donor allopeptide exposure. 

Consistent with our experience, recipient swine primed intravenously with donor-specific, 

immunodominant allopeptide alone rapidly developed the cardiac lesion emblematic of 

chronic rejection, unlike those that underwent direct IT injection of bare allopeptide or 

primed imDC.67

Tran et al studied the effectiveness of IT donor antigen inoculation paired with short-term 

anti-lymphocyte serum (ALS) with regards to producing sustained tolerance to rat islet 

xenografts. Unlike control mice, which received identical treatment and an allograft, the 

experimental xenograft recipients demonstrated no improvement in survival compared to 

treatment with ALS alone, despite a maximized donor inoculum and an increased interval 

between inoculation and transplantation. This study highlights the inherent differences in the 

immunologic response to allograft versus xenograft in transplantation.68
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Odorico et al examined factors that prevent the tolerogenic effect of IT donor antigen on 

allograft prolongation. Failure to inoculate all the thymic tissue present (including both lobes 

or any aberrant thymic tissue) resulted in allograft rejection. They concluded that thymic 

tissue free of donor allopeptide is capable of nurturing alloreactive cells to maturity and 

thus, could directly sabotage the development of tolerance despite the presence of donor 

allopeptide in other—even adjacent—thymic tissue where deletion and/or inactivation of 

alloreactive cells is taking place. This is particularly important in many species, including 

humans, in which thymic tissue is anatomically less well defined than in other animals.69

VIII. Timing of thymic manipulation and the need for peritransplant 

immunosuppression

The timing of DC inoculation and immunosuppression in relation to transplantation proved 

critical in the development of host unresponsiveness. We found that simultaneous 

allopeptide or donor allopeptide-primed imDC inoculation and islet or cardiac 

transplantation in rats using only peritransplant ATG resulted in acute allograft rejection, 

while inoculation at 7 days prior to allografting led to indefinite histoincompatible islet 

(>200d) or cardiac graft (>150d) acceptance and rejection of third party allografts without 

any posttransplant immunosuppression. Replacement of imDC with peptide-pulsed, mDC 

resulted in accelerated allograft rejection, as did IV injection of immunodominant 

allopeptide alone.7071

These studies suggest that the timing of IT donor allopeptide or of primed imDC exposure 

was critical to clinical outcomes. The “learning curve” in the host following IT or IV 

administration of allopeptide-primed, recipient-derived, imDCs, during which they either 

directly modulate T cell reactivity or effectively “teach” host thymocytes to delete reactive T 

cell clones and positively select migratory, donor-specific suppressor T cells, influences the 

nature of peripheral lymphoid responses to donor tissue over the course of several days. This 

process does not occur rapidly enough to protect simultaneously transplanted allograft and 

thus, indirect, IT presentation is the likely mechanism by which tolerance is induced (Table 

1a &1b).70

The T cell-depleting agent most commonly used by transplantation investigators is ATG. 

ATG is needed to deplete the periphery of most T cells before the periphery is populated by 

new, tolerogenic T cells generated in the thymus. It is best used just after exposure of the 

thymus to the foreign allopeptide. Once the emigration of the newly “educated” T cells that 

recognize foreign as self occurs, at the time of allografting, immunosuppression may also be 

used to shift the balance in favor of donor-specific regulatory cells as compared to anti-

donor effector cells that may persist.

IX. Potential clinical utility and challenges of delivery of immature DCs to 

the thymus

The major contributions of Steinman, Thompson and others, including our group, stimulated 

further investigations of the therapeutic potential for tolerance induction of imDC and of the 
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accessory cell interactions that explain DCs’ tolerogenic effect.72 Aware of the tendency of 

the aged human thymus to involute and therefore, to theoretically limit the applicability of 

tolerance induction in adult subjects by indirect IT exposure of alloantigens via the IV route, 

several groups have examined tolerance induction in thymectomized animals. Their models 

rely on passive co-transfer of donor immunodominant allopeptide-primed, syngeneic T cells 

and naïve, unmodified thymocytes. When combined with a single dose of ALS, this 

approach produced permanent graft acceptance in 70% of rodent subjects. Tested with 

simultaneous transplantation or a renal subcapsular thymic graft, rather than free 

thymocytes, the acceptance rate was 100%.737463

X. Critical role of donor-specific T cell development, migration and 

usefulness of passive transfer

Since cultured imDC express MHC II but not many other co-stimulatory molecules seen on 

the surface of mDCs, imDCs, in contrast to mDCs, fail to stimulate a robust immune 

response in mixed lymphocyte reaction (MLR) assay in vitro. Likewise, T cells harvested 

after transplantation from tolerant animals are hyporesponsive to donor antigen and after 

secondary transfer to untreated syngeneic recipients lead to tolerance despite consistent 

rejection of a third party allograft. These data suggest that imDCs not only induce, but also 

maintain tolerance by promoting expansion of a specialized, donor-specific, regulatory T 

cell population.7576

Given the evidence that IV or direct IT immunization with donor-specific, immunodominant 

allopeptide-primed imDCs induces tolerance that is disrupted by thymectomy,737463 we 

studied thymic emigration of Tregs produced as a result of intrathymic exposure to antigen. 

Such Tregs appear not just to induce but also to maintain tolerance in this model. When 

combined with ALS-induced depletion of mature, directly alloreactive T cells in the 

periphery, such cells, which contain responses from reactive T cells, can effectively prevent 

an early “attack” on the allograft, and thus maintain lasting tolerance.77

Passive transfer of various subsets of specific T cells obtained from tolerant recipients into a 

syngeneic, naïve, recipient prior to cardiac transplantation induced reliable allograft 

tolerance, depending on the type and dose of the infused T cells, with particular emphasis on 

the CD4+ ratio.77 Syngeneic CD4+CD25+ Treg cells completely suppressed the normal, 

inflammatory immune response of specific peptide-primed T cells whereas CD4+CD25− 

cells failed to halt in vitro proliferation in response to the same peptide in MLR assays. In 

vivo, co-transfer of “CD4+CD25+ but not CD4+CD25− thymic T cells simultaneously with 

immunodominant allopeptide-primed syngeneic T cells restored tolerance to thymectomized 

recipients.”77 When these tolerized rats received a second, syngeneic cardiac transplant, 

allograft acceptance remained uninterrupted while they were able to acutely reject third 

party cardiac transplants. This type of allograft tolerance induction has a very high 

specificity, as it relies on indirect allorecognition.77 Though the molecular mechanisms 

accounting for tolerance induction in this model remain incompletely understood, donor–

specific CD4 and CD8 Tregs are strongly implicated as playing a critical role.78

Rosen et al. Page 8

Transplantation. Author manuscript; available in PMC 2019 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Once the importance of regulatory CD4+ cells was established, the role and importance of 

CD8+CD28− suppressor T cells, which are known to share the transcription factor FOXP3 

with CD4+ regulatory cells but are antigen- and MHC I-specific, needed to be clarified. In 

another rat cardiac allograft tolerance model using transfusions of UVB-irradiated donor 

blood rich in modified DCs, we found that the CD8+ cells of tolerant recipients express 

FOXP3. When transferred to a naïve, secondary sygeneic host, those same cells induced 

tolerance only to tissue of the identical donor haplotype.78

In 1994, Ildstad and colleagues discovered a novel, bone marrow-derived cell population 

capable of facilitating reliable engraftment of purified stem cells without causing Graft-

versus-Host Disease (GVHD). These “facilitator cells” (FCs), as they were called, raised the 

possibility that BMT could be applied to treatment of nonmalignant diseases and perhaps be 

useful in transplantation.79 These cells have been successfully used clinically in a passive 

fashion by Leventhal et al in renal transplantation to induce tolerance in a small number of 

patients.8081 Interestingly, the primary sub-population of FCs found to be necessary for stem 

cell engraftment and tolerance induction has been recently identified as being composed of 

plasmacytoid precursor DCs.8283

Gregori et al investigated the proliferation of regulatory T cells and identified and 

characterized a novel subset of DCs, known as DC-10, which produce the immune-

modulating cytokine interleukin-10 (IL-10). They further outlined the pathway through 

which these unique cells induce differentiation of the Type 1 regulatory T cells (Tr1) 

responsible for suppressing immune responses.84 These and other studies using indirect 

antigen presentation to induce tolerance focused on the importance of the maturational state 

of DCs, their interactions with other immune cells and their ability to stimulate the 

development of specialized T and B suppressor populations to perpetuate long-term 

transplantation tolerance.

XI. Safety and reliability of dendritic cell therapies in large animal studies

Despite much success in rodent transplantation models, the application of DC to clinical 

therapies has remained slow. In 1994, Granger et al used donor DC infusions combined with 

simultaneous Rapamycin immunosuppression in SLA class I-mismatched swine to induce 

allograft prolongation.85 To test the role of the thymus in establishing and maintaining 

allograft tolerance, Yamada et al transplanted a donor thymo-kidney (recipient thymus tissue 

vascularized under the donor kidney capsule) weeks after recipient thymectomy of 

histoincompatible miniature swine. The presence of allogeneic DCs facilitated the education 

of recipient T cells recirculating to the donated thymus, leading to prolonged renal 

acceptance and stable organ function.86

Weiss performed combined cardiac and renal transplants in SLA class I-mismatched swine 

immunized with donor-derived “bare” MHC peptides 21 days prior to or 100 days after 

transplantation, where controls received 3rd party MHC peptides and all groups received the 

same peri-transplant immunosuppression. All recipients pretreated with donor-derived 

peptide acutely rejected the allograft while all other peptide-treated animals had the same 

outcomes as the untreated controls. In swine, as in rodents, T cells stimulated via indirect 
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recognition with “bare” donor antigen act as a barrier to induction of long-term tolerance but 

cannot break maintenance of already-established tolerance.87

As recently as 2013, Ezzelarab et al tested the influence of imDC-induced T regulatory cells 

on nonhuman primate (NHP) organ transplant survival. Extrapolating from previous studies, 

they immunosuppressed the animals with a combination of costimulation-blocking agents 

and were able to propagate a population of donor monocyte-derived, stably hyporesponsibe 

imDCs low in MHC class II and costimulatory molecule expression and resistant to 

cytokine-induced maturation. The primates received infusions of these cells 7 days prior to 

allograft transplantation, with either a short- or long-term costimulation blockade and a 6-

month Rapamycin taper. Compared to control animals, which received no DC infusion, cells 

from experimental primates demonstrated higher levels of markers of immaturity, lower 

levels of proteins facilitating homing to lymphoid tissue, maturation resistance, weaker 

stimulation of CD4+ and CD8+ T cells and fewer CD8+CD95+ memory cells, both in vitro 

and in vivo. This study was the first to demonstrate the effectiveness of imDC infusion in 

prolonging renal allograft survival.88 The authors concluded, despite practical limitations, 

that infusion with unprimed, donor-derived imDC was of superior therapeutic value 

compared to the use of donor antigen-primed, recipient imDC.89 Given the challenge of 

obtaining immature, donor, myeloid-derived DCs prior to transplantation in the clinical 

setting and their proven inefficiency in comparison to recipient-derived cells,90 the 

successful use of donor allopeptide-primed, recipient imDC in large animals has become of 

critical importance, since they have the potential to be clinically applicable in both living 

and deceased donor transplantation and are relatively safe for the patient. Peche et al also 

tried injecting unprimed recipient imDC on the day of transplantation, thus precluding the 

danger of recipient immunization against donor antigen.90 Though they did achieve some 

success at allograft prolongation in rats with this method, the results fell short of inducing 

specific tolerance with indefinite survival or acceptance of second set allografts.90

XII. Discussion

As data regarding these DCs and their unique potency has accumulated, so, too, have 

questions regarding the conditions under which they hold the most promise in organ 

transplantation. Debates persist about the usefulness of donor- versus recipient-derived DCs, 

whether to rely on those of marrow or monocyte origin, the ideal stage of maturation for 

their various functions, the need for priming with a single immunodominant allopeptide 

versus several donor allopeptides, the timing of donor immunopeptide-primed imDC 

infusion, the protocol for administration and withdrawal of simultaneous and/or repeated 

dose(s) of peritransplant immunosuppression, and whether these should be lymphocyte 

depleting agents, co-stimulatory blockers, mTOR inhibitors, calcineurin inhibitors or 

perhaps multiple medications. Solutions are needed to identify the most effective, yet least 

toxic method for lymphocyte depletion, evaluation of age/thymic regression on outcomes 

and whether thymic hormones or donated thymus could contribute to thymic regeneration.

Despite reported success of tolerance induction with monocyte-derived donor DCs, the 

comparative benefits and similar safety profile of DC harvested from the recipient periphery, 

rather than from the donor or the bone marrow, is the next frontier for a clinically relevant 
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large animal model that takes advantage of cell mobilization and leukapheresis techniques 

already well-developed in humans. The unpredictability of deceased donor transplantation 

makes adequate harvesting and preparation of donor-derived DC difficult, if not impossible. 

Recipient-derived imDCs would be readily accepted and give recipients of deceased donor 

allografts a similar opportunity for long-term, immunosuppression-free tolerance as those 

who receive allografts from living donors. Preparation of recipient imDCs broadly primed 

with the most common donor Class I and II MHC allopeptides in a given population (for 

example, see reference)91 within a few weeks of a projected transplant could allow a large 

number of individuals to benefit from this technique of tolerance induction.

The age of the thymus may be critical in tolerance induction. In patients who lack a critical 

volume of healthy thymic tissue, the development of tolerance may be very difficult, unless 

the thymus can be rejuvenated, perhaps with hormones or cellular replacement. The effect of 

the status of the reticuloendothelial scaffold that forms the thymic wall and the lower 

concentrations of thymic hormones secreted by the aging thymus on the education of naïve 

thymic T cells by the imDCs is unknown, as is the threshold for the critical mass of thymic 

tissue or the thymic elements that serve as a “schoolhouse” for delivered allopeptides. 

Studies are in progress on the use of co-transplantation of vascularized donor thymus or 

donor thymocytes as well as the possible use of thymic hormones for host thymus 

“reconstitution” in aging patients.

DCs have been repeatedly shown to be unique and potent participants in the immune 

response, both in rejection and in tolerance induction. Why, then, are we not yet uniformly 

and effectively using cell therapy in the field of vascularized organ transplantation? An 

ongoing, early clinical trial of cell therapy, the ONE Study in Europe and in the United 

States focuses on passive infusion of various hematopoietic, regulatory cell types, including 

dendritic cells, regulatory T cells and macrophages to “strengthen regulatory immune 

responses against donor alloantigens.”92 The hypothesis proposes that this will facilitate 

tolerance and lower or eliminate the need for commonly-prescribed immunosuppressive 

medications associated with toxicity, malignancy and infection.93 This approach does not 

emphasize donor specificity or address the transient effect of passive infusions. There is still 

somewhat of a paucity of consistent experimental data in large animals using tolerogenic 

DCs in transplantation and thus, human clinical trials in this area have lagged. The ONE 

Study currently underway in Europe is the first to conduct a phase I clinical trial examining 

the effect of recipient-derived DCs on renal transplant patients.93 Our failure to precisely 

identify tolerance in patients, allowing us to safely and confidently attempt discontinuation 

of immunosuppression, which itself may interfere with tolerance induction and/or 

maintenance, is another important obstacle.

Although large animal models such as swine and NHP are helpful prototypes for assessing 

the possible use of protocols in humans, better defined and goal-oriented large animal 

studies to address the critical questions raised in this review are still needed to more 

comprehensively evaluate the immunologic potential of DCs, their safety and efficacy. DCs 

will be deemed appropriate for testing in the context of transplantation in humans when 

reproducible conditions are established to induce long-term, donor-specific tolerance with 

minimal adverse effects.
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Abbreviations (in alphabetical order)

ALS anti-lymphocyte serum

APC antigen presenting cell

ATS anti-thymocyte serum

DC(s) dendritic cell(s)

FC(s) Facilitator cell(s)

imDC immature dendritic cell

IT intrathymic

mDC mature dendritic cell

MHC major histocompatibility complex

MLR mixed lymphocyte reaction

NHP nonhuman primate

SLA swine leukocyte antigen

Treg regulatory T cell
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Figure 1. 
Timeline represen;ng changes in the understanding of visceral allograO immunogenicity. 

(Tx, transplant; DC, dendri;c cell)
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Figure 2. 
Schema;c representa;on of myeloid- (bone marrow) and monocyte-derived dendri;c cell 

development, including a simplified comparison of surface markers and other characteris;cs 

present at different stages of matura;on. (imDC, immature dendri;c cell; mDC, mature 

dendri;c cell; MHC, major histocompa;bility complex; CD, cluster of differen;a;on; IL, 

interleukin
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Figure 3. 
Schema;c representa;on of the post-transplant immunologic response, from both the direct 

and indirect pathways of allorecogni;on. (DC, dendri;c cell; Ag, an;gen; MHC, major 

histocompatability complex; Th1, Type 1 T helper cell; Th2, Tupe 2 T helper cell)
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Figure 4. 
Flow chart comparing the basic func;ons of mature versus immature dendri;c cells and their 

contribu;ons to immunologic s;mula;on versus tolerance. (DC, dendri;c cell)
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