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Abstract

Objective: Cortical spreading depolarizations (CSDs) are intense and ubiquitous depolarization 

waves relevant for the pathophysiology of migraine and brain injury. CSDs disrupt the blood-brain 

barrier (BBB), but the mechanisms are unknown.

Methods: A total of six cortical SDs (CSDs) were evoked over 1h by topical application of 300 

mM KCl or optogenetically with 470 nm (blue) LED over the right hemisphere in anesthetized 

mice (C57BL/6J wild type, Thy1-ChR2-YFP line 18 and cav-1-/-). BBB disruption was assessed 

by Evans Blue (2% EB, 3ml/kg, intra-arterial) or Dextran (200 mg/kg, Fluorescein, 70,000 MW, 

intra-arterial) extravasation in parietotemporal cortex at 6–24h after CSD. Endothelial cell 

ultrastructure was examined using transmission electron microscopy 0–24h after the same CSD 

protocol in order to assess vesicular trafficking, endothelial tight junctions and pericyte integrity. 

Mice were treated with vehicle, isoform non-selective ROCK inhibitor fasudil (10 mg/kg, IP 30 

min before CSD), or ROCK-2 selective inhibitor KD025 (200 mg/kg, PO bid for 5 doses before 

CSD).
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Results: We show that CSD-induced BBB opening to water and large molecules is mediated by 

increased endothelial transcytosis starting between 3 and 6 hours and lasting approximately 24 

hours. Endothelial tight junctions, pericytes and basement membrane remain preserved after 

CSDs. Moreover, we show that CSD-induced BBB disruption is exclusively caveolin-1-dependent, 

and requires rho-kinase 2 activity. Importantly, CSD-induced BBB disruption is independent of 

tissue hypoxia, as hyperoxia failed to prevent CSD-induced BBB breakdown.

Interpretation: Our data elucidate the mechanisms by which CSDs lead to transient BBB 

disruption, with diagnostic and therapeutic implications for migraine and brain injury.
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Cortical spreading depolarizations (CSDs) are intense neuroglial pandepolarization waves 

that slowly propagate (millimeters per minute) within contiguous gray matter (Leao, 1944). 

Evolutionarily highly conserved from insect to man, CSDs are the electrophysiological 

substrate of migraine aura (Ayata, 2010), and numerous recurrent CSD waves occur 

spontaneously for hours and days after brain injury, worsening the outcome (Lauritzen et al., 

2011; von Bornstadt et al., 2015). As such, CSD is central to the pathophysiology of many 

neurological disorders (Ayata and Lauritzen, 2015).

During CSD propagation, massive transmembrane ion and water shifts lead to elevated 

extracellular concentrations of K+ and virtually every neurotransmitter and neuromodulator 

molecule measured to date. These changes engulf cerebral vasculature like a tsunami wave, 

triggering blood flow responses larger than any other observed in the brain, disrupting the 

cerebrovascular reflexes (e.g. neurovascular coupling), and opening the blood-brain barrier 

(BBB) (Ayata and Lauritzen, 2015). Although MMP-9 upregulation has been implicated 

(Gursoy-Ozdemir et al., 2004), the effects of CSD on BBB constituents, and the underlying 

mechanisms, are unknown. Given the importance of both the BBB and CSDs in the 

pathophysiology of migraine and brain injury (Dreier, 2011; Lauritzen et al., 2011), we 

examined the ultrastructural features and molecular mechanisms underlying CSD-induced 

cerebrovascular hyperpermeability. Our data demonstrate for the first time that CSDs, 

without attendant tissue injury, open the BBB by activating caveolin-1 and rho-associated 

kinase (ROCK)-dependent endothelial transcytosis.

MATERIALS AND METHODS

Animals

A total of 199 C57BL/6J wild type (male, 22–36 g), 6 Thy1-ChR2-YFP line 18 (male, 25–

30 g; B6.Cg-Tg(Thy1-COP4/EYFP)18Gfng/J; Jackson Laboratories, Bar Harbor, ME, 

USA), and 6 caveolin-1 knockout (cav-1-/-) and age-matched control mice (male, 25 g, JAX: 

004585) were used. All experiments were approved by the Massachusetts General Hospital 

Institutional Animal Care and Use Committees following the NIH Guide for Use and Care 

of Laboratory Animals.
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CSD induction and monitoring

Mice were anesthetized with isoflurane (2.5% induction, 1% maintenance in 70% N2O/30% 

O2), and rectal temperature was kept at 37 ± 0.5°C throughout the anesthesia. Femoral artery 

was catheterized for continuous measurement of blood pressure (PowerLab; ADInstruments, 

Colorado Springs, MO, USA) and injection of Evans blue or 70 KDa-FITC-dextran. Two 

burr holes were drilled (1.5 mm anterior, 1.5 mm posterior, 2 mm lateral to the bregma) for 

CSD monitoring by extracellular steady (DC) potential and electrocorticogram recordings 

using a differential amplifier (EX1; Dagan Corporation, Minneapolis, MN), glass capillary 

microelectrodes (tip diameter ~10 μm, filled with 1M NaCl) placed 200 μm deep into the 

cortex, and an analog to digital converter (PowerLab; ADInstruments, Colorado Springs, 

CO). A third burr hole over occipital cortex (<500 μm dural exposure) was used to briefly (< 

1 min) apply a cotton ball soaked in 300 mM KCl. Cortex was immediately washed with 

normal saline as soon as a CSD was detected. In our experience, small area and brief time of 

exposure, as well as high K+ clearance capacity of the brain tissue, limit K+ transfer by 

convection in paravascular spaces, so that extracellular K+ concentrations always remain 

stable when measured by K+-selective electrodes >1 mm away from the KCl application site 

(data not shown). The amplitude and duration at half-amplitude of the first CSD in each 

hemisphere were measured. In a separate cohort we induced CSDs non-invasively through 

intact skull using transgenic mice expressing channelrhodopsin-2 (Thy1-ChR2-YFP) in 

neurons as previously described (Chung et al., 2018; Houben et al., 2016). Briefly, the skull 

was exposed by midline scalp incision and cleared of connective tissue. Care was taken to 

prevent bone drying with application of mineral oil in order to maintain skull translucency. 

A 400 μm diameter optical fiber was positioned over motor cortex (2 mm anterior and 2 mm 

lateral to bregma). CSDs were induced optogenetically with 470 nm (blue) LED (MF470F3, 

DC2100; Thorlabs, Newton, NJ, USA) delivered for 10 seconds at 3 mW total power. A 

microscope objective USB camera (AmScope, MU300, Irvine, CA, USA) coupled to a 

dissecting stereomicroscope illuminated with unfiltered white light was used to take time-

lapse intrinsic signal images every 2 seconds. The intrinsic signal is a well-established 

method to detect blood volume changes caused by CSDs (Chung et al., 2018; Yuzawa et al., 

2012). CSDs were detected in real time by subtraction of adjacent images using MATLAB 

(Mathworks, Natick, MA, USA). Every stimulus under these conditions resulted in a CSD. 

After CSD inductions, local anesthetic (lidocaine gel 2%) was applied and mice were 

allowed to recover from anesthesia until the time of sacrifice using 5% isoflurane inhalation.

Brain water content

Six or 48 hours after CSD, parietotemporal cortex from CSD and nCSD sides were removed, 

weighed, and dried at 99°C for 48 hours and reweighed. Water content (%) was calculated as 

[(wet weight- dry weight)/wet weight] × 100.

Evans blue leakage

Evans blue (2%) was injected (3 ml/kg, 60 mg/kg) via femoral artery right after the last 

CSD. At this dose level, vast majority (>98%) of EB is bound to plasma proteins, 

predominantly albumin (Saunders et al., 2015). Mice were transcardially perfused with cold 

0.9% NaCl, and parietotemporal cortex from CSD and nCSD hemispheres were dissected, 
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weighed and homogenized in a sevenfold volume of 50% trichloroacetic acid with 

sonication for 2 min. After centrifugation (3000 G for 20 min), the supernatants were diluted 

fourfold with ethanol. Fluorescence intensity was measured by a microplate fluorescence 

reader (620 nm excitation, 680 nm emission; Wallac, Perkin Elmer, Wellesley, 

Massachusetts, USA). Calculations were based on external standard readings, and 

extravasated dye was expressed as ng/mg tissue.

Dextran extravasation

Dextran (200 mg/kg, Fluorescein, 70,000 MW, Anionic, Lysine Fixable; Thermo Fisher 

Scientific, Waltham, MA, USA) was injected through femoral artery 6 or 48 hours after the 

last CSD. After 1 hour of dextran circulation, the brains were removed and freshly frozen in 

2-methylbutane on dry ice. Cryosections (12 μm) were obtained and mounted on gelatinized 

slides. After air drying for 15 min, sections were post-fixed in 4% PFA at room temperature 

for 15 min, washed in PBS and co-stained with isolectin B4 to visualize blood vessels 

(1:500; I21411, Molecular Probes, CA, USA). Sections were cover-slipped with mounting 

medium containing DAPI (Vector, Burlingame, CA, USA), dried overnight and analyzed 

with a laser scanning confocal microscope. Quantification of vessel leakage was performed 

as previously described (Ben-Zvi et al., 2014). In brief, confocal images of 12 μm-thick 

brain sections from tracer-injected animals were co-stained with lectin and analyzed using 

ImageJ (NIH, MD, USA). The same acquisition parameters were applied to all images and 

the same threshold was used. Tracer-positive area outside a vessel (parenchyma) was used as 

a parameter for leakage. For each hemisphere, at least 10 sections of a fixed lateral cortical 

plate area were scored. Average representation of each leakage group was calculated for 

ipsilateral and contralateral hemispheres.

Transmission electron microscopy (TEM)

Tissue processing for TEM was performed as described previously (Ben-Zvi et al., 2014). 

For analysis of endothelial ultrastructure (i.e. TJs and vesicles) mice were perfused through 

the heart with PBS followed by fixative solutions. The brain was removed, post-fixed and 

washed. Coronal 50 μm-thick brain sections were processed free floating. Ultrathin sections 

were then cut, collected on grids, counterstained and examined under a 1200EX electron 

microscope (JEOL USA Inc., MA, USA) equipped with a 2k CCD digital camera 

(Advanced Microscopy Techniques Corp., MA, USA). All ultrastructural quantifications 

were performed using ImageJ (NIH, MD, USA). Measures of tight junction structure 

(length, width, thickness and angle) as well as basement membrane thickness were 

performed on 10 images (40,000x magnification) per hemisphere (nCSD vs. CSD; n=3 

mice) at each time point post-CSD (0h, 3h, 6h, 12h, 24h, and 48h). Basement membrane 

thickness (nm) was measured manually using ImageJ; three measures were obtained per 

capillary profile and averaged. To quantify endothelial vesicle counts, each capillary profile 

was imaged by two electron micrographs (12,000x magnification), each covering half the 

capillary profile. Endothelial vesicles were manually counted in 10 capillary cross sectional 

profiles per hemisphere (nCSD vs. CSD; n=3 mice) at each time point post-CSD (0h, 3h, 6h, 

12h, 24h, and 48h). (i.e. 20 micrographs/hemisphere/time point). Vesicle counts from 10 

capillaries were averaged within each animal to obtain a single data point per animal. The 

coefficient of variation of vesicle counts within each animal was 54±2% (mean ± SEM) 
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when averaged across a representative cohort. Data were expressed as number per 

endothelial cytoplasmic area (μm2) for “free” cytoplasmic vesicles, or per plasma membrane 

length (μm) for membrane-connected vesicles.

For analysis of transcytosis/leakage, Horseradish peroxidase (HRP) type II (10 mg/20 g in 

PBS; Sigma Aldrich, MO, USA) was injected through femoral artery catheter 6 and 24 

hours after CSD induction. After 30 min of HRP circulation, brains were dissected and fixed 

in a sodium-cacodylate-buffered mixture followed by PFA and washes. Tissue sections (50 

μm) were then processed free floating. To reveal HRP as an electron dense precipitate, 

sections were incubated in a Tris-HCl buffer containing 3–3’ diaminobenzidine and H2O2, 

post-fixed in osmium tetroxide, and dehydrated and embedded in epoxy resin (Ben-Zvi et 

al., 2014). Imaging and quantification of HRP-filled vesicles followed the same protocol as 

above.

Histology

Immunohistochemistry was performed as previously described (Ben-Zvi et al., 2014; 

Lacoste et al., 2014). Pericyte coverage of cortical vessels was quantified by analyzing the 

proportion of total CD31-positive endothelial length also positive for pericyte marker NG2. 

Pericyte coverage of brain microvascular networks was quantified on low magnification 

confocal images as the ratio between the total area of NG2-positive capillaries and the total 

area of CD31-positive capillaries.

Pharmacological studies

Mice were randomized to receive vehicle (saline, 0.1 ml), or isoform-nonselective ROCK 

inhibitor fasudil (10 mg/kg; Tocris Bioscience, Bristol, UK) via intraperitoneal injection 1 

hour before CSD induction. The ROCK2-selective inhibitor KD025 (formerly SLx-2119) 

(200 mg/kg; Kadmon Corp. LLC, NY, USA) or its vehicle (0.4% methylcellulose) was 

administered every 12h via orogastric gavage for 48 hours before to 24 hours after CSD 

induction. These doses were chosen based on prior reports in mice from our laboratory (Lee 

et al., 2014; Shin et al., 2007).

RT-qPCR

Total RNA was isolated from CSD and non-CSD brain tissue using illustra RNAspin Mini 

Kit (GE Healthcare Life Sciences, Pittsburg, PA, USA) and reverse transcription was 

performed using SuperScript III first-strand synthesis system (Invitrogen, Carlsbad, CA, 

USA) according to the manufacturer’s recommendations. The following primers were used: 

ROCK1 5’-CTGCTGAAGTCGTGCTTGCA-3’ (forward primer) and 5’-

AGCATGTTATCGGGCTTCACA-3’ (reverse primer); ROCK2, 5’-CTGAA-

TGAAATGCAGGCTCAA-3’ (forward primer) and 5’-CCCTGGTCCACTGCCTATAC-3’ 

(reverse primer). The PCR products were quantified by ABI Prism® 7500 Sequence 

Detection System.

Study design and statistical analysis

Non-CSD hemispheres served as the control for CSD hemispheres within each animal. All 

experiments testing an intervention (ROCK inhibition, cav-1-/- knockout) were carried out 
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and analyzed in a blinded fashion. Analyses were made by Prism 6 (GraphPad Software, 

Inc., CA, USA). Data are presented as mean ± S.E.M or as whisker-box plots. Whenever 

appropriate, differences between groups were determined by t-test (two-group comparisons), 

or one-way or two-way ANOVA (multigroup comparisons) followed post-hoc analysis. In 

the absence of pilot data, initial sample sizes were selected empirically and the data from 

these were used to calculate final sample sizes to achieve 80% power to detect 50% effect 

size (α=0.05). Sample sizes in EM cohorts (n=3 mice, 20 replicates per mouse) are typical 

for this method (Ben-Zvi et al., 2014). P value less than 0.05 was considered statistically 

significant.

RESULTS

Initial experiments aimed to characterize BBB opening after CSD and its time course. Brief 

topical (epidural) KCl application (300 mM for <1 minute followed by saline wash), the 

most frequently used depolarizing stimulus (Ayata, 2013; Karatas et al., 2013), reliably 

triggered a CSD in occipital cortex, which propagated across the ipsilateral hemisphere as 

detected electrophysiologically by two serially placed glass microelectrodes (Figure 1A). 

Using this approach in mice, we triggered 6 CSDs over an hour (Eikermann-Haerter et al., 

2012). Then, using three independent but complementary methods, we examined BBB 

integrity in the parietotemporal cortex, away from the KCl application site. The contralateral 

hemisphere served as an internal control, since CSD does not propagate between 

hemispheres under these experimental conditions (Ayata, 2013). First, we measured the 

parenchymal water content and found a marked increase at 6 hours post-CSD, and to a lesser 

extent at 24 hours, when compared with the contralateral hemisphere (Figure 1B). We next 

examined cerebral extravasation of Evans blue (EB) dye administered intravascularly 

immediately after the last CSD. At the selected dose, vast majority of EB binds to serum 

albumin (~65 kDa), and the complex (~70 kDa) does not cross an intact BBB (Saunders et 

al., 2015). As with cortical water content, EB extravasation significantly increased within 6 

hours after CSDs compared to the contralateral hemisphere, and progressed for at least 24 

hours (Figure 1C, left). In a separate group of mice, we found that even a single CSD was 

able to open the BBB, although its magnitude was smaller compared to 6 CSDs (Figure 1C, 

middle). Sham-operated mice showed very little EB leakage, and we found no histological 

evidence of cortical injury due to our CSD induction paradigm (Data not shown). 

Nevertheless, because epidural KCl application is somewhat invasive (i.e. requires 

craniotomy), we also triggered CSDs noninvasively through intact skull using optogenetics 

in channelrhodopsin-2 transgenic mice (Thy1-ChR2-YFP homozygous, line 18), and 

reproduced the EB leakage in the ipsilateral, but not the contralateral, hemisphere (Figure 

1C, right). The small yet consistent increase in parenchymal EB in the contralateral 

hemisphere in all these experiments likely reflects diffusion of EB from the ipsilateral 

hemisphere over time, and possibly contamination with ipsilateral EB during tissue 

preparation. Lastly, because EB has significant shortcomings to assess BBB leakage 

(Saunders et al., 2015), we confirmed these results by measuring the extravasation of 70 kDa 

FITC-dextran administered intravascularly 1 hour before sacrifice. We found significant 70 

kDa FITC-dextran leakage at 6 hours post-CSD, and complete closure of the BBB within 48 
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hours (Figure 1D). Altogether, these complementary methods converge to a transient 

opening of the BBB that starts within 6 hours after CSD and resolves within 48 hours.

We next examined the subcellular mechanisms underlying BBB leakage after CSD. Unlike 

peripheral endothelial cells, brain endothelial cells are characterized by highly specialized 

tight junctions (TJs) preventing water-soluble molecules from passing between adjacent 

cells, as well as by low rates of transcytosis from the vessel lumen to the brain parenchyma 

(Andreone et al., 2015; Chow and Gu, 2015). Therefore, after showing CSD-induced BBB 

permeability to large molecules, we examined the ultrastructural indices of BBB integrity 

following CSD in the same region of the cerebral cortex (i.e. remote from the KCl 

application site). Transmission electron microscopy (TEM) showed TJs as electron-dense 

linear structures where adjacent membranes are tightly opposed (Figure 2A). We did not find 

any change in TJ integrity, as both the space between endothelial cells and endothelial 

thickness at the TJ remained constant throughout our temporal analysis following CSDs 

(Figure 2A). Tight junctional length and angle did not appear significantly altered by CSD 

either (Figure 2B). We further examined functional integrity of TJs following intravascular 

horseradish peroxidase (HRP) injection (Andreone et al., 2017; Ben-Zvi et al., 2014; Reese 

and Karnovsky, 1967). Once exposed to diaminobenzidine and H2O2, an electron-dense 

reaction product precipitates and fills the vessel lumen. We found that TJ barrier function 

was preserved at all time points as HRP penetrated the intercellular spaces between 

neighboring endothelial cells only for short distances and stopped abruptly at TJ (a.k.a. 

kissing points; Figure 2C).

While TJs remained unaffected by CSD, we found a remarkable increase in endothelial 

transcytosis (Figure 3). Within 6 hours after CSD, the density of endothelial vesicles 

increased by more than 50% compared with the contralateral hemisphere, peaked around 6–

12 hours post-CSD, and gradually normalized over the next 24 hours (Figure 3A). This 

increase was evident in both cytoplasmic and plasma membrane-connected vesicles (Figure 

3B; see also luminal and abluminal plasma membrane-connected vesicles). Importantly, 

neither endothelial cross sectional area nor capillary diameter was altered at any time point 

after CSD, as relevant denominators for vesicle density (Figure 3C). Presence of vesicles 

filled with HRP, HRP exocytosis on the abluminal side, and accumulation within the 

basement membrane all confirmed the directional transport from vessel lumen to brain 

parenchyma via transcytosis (Figure 4).

The smaller size (~50 nm) and lack of electron-dense coating of the vesicles were consistent 

with caveolae rather than clathrin-coated vesicles. To distinguish between clathrin- and 

caveolin-dependent mechanisms of CSD-induced transcytosis, we assessed 70 kDa FITC-

dextran extravasation in cav-1-/- mice subjected to CSDs, and found that CSD-induced 

vascular leakage was completely absent in cav-1-/- mice compared with age-matched WT 

controls of the same genetic background (Figure 5). Because pericytes regulate the BBB in 

part by downregulating transcytosis (Armulik et al., 2010; Bell et al., 2010; Villasenor et al., 

2017), we also examined pericyte coverage and integrity, as well as their relationship to 

CSD-induced leakage. We found no change in the microvascular coverage by pericytes 6 

hours after CSD, at a time when transcytosis was already markedly increased (Figure 6A). 

Indeed, 70 kDa FITC-dextran often extravasated around capillary surfaces covered by 
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pericytes (Figure 6B). Ultrastructurally, pericytes appeared intact with normal attachment to 

the vessel wall and no sign of cellular distress (Figure 6C,D). Basement membrane thickness 

also remained unaffected by CSDs (Figure 6D). Together, these data establish that CSD-

induced BBB disruption is caveolae-dependent and does not involve TJ breakdown.

To further understand the molecular mechanisms regulating caveolae-mediated transcytosis 

and BBB leakage after CSD, we next examined ROCK as a critical regulator of actin 

cytoskeleton and endothelial permeability. Pre-treatment with isoform-nonselective ROCK 

inhibitor fasudil (10 mg/kg) abolished the increase in pinocytotic vesicle density after CSD 

compared to vehicle-treated animals (Figure 7A), and prevented HRP transcytosis (Figure 

7B), without altering the endothelial area or capillary diameter (Figure 7C). As a result, 

CSD-induced increase in water content, EB leakage and 70 kDa FITC-dextran extravasation 

were all significantly reduced or abolished by fasudil pre-treatment (Figure 8). Importantly, 

electrophysiological properties of CSDs (i.e. amplitude and duration) were normal in both 

cav-1-/- mice and mice treated with ROCK inhibitors (Table 1).

Suppression of BBB opening by fasudil might reflect a permissive role for ROCK in CSD-

induced vascular permeability. To address this question, we performed real time qPCR and 

found increased mRNA expression of both ROCK1 and ROCK2 isoforms in ipsilateral 

(CSD) cortical homogenates compared to the contralateral (non-CSD) hemisphere 6 hours 

after CSD (Figure 9A), strongly suggesting that ROCK is upregulated by CSD, rather than 

being just a permissive factor, as a critical step in BBB opening. To determine the ROCK 

isoform responsible for BBB opening, we next tested the ROCK2-selective inhibitor KD025 

(200 mg/kg twice daily for 48 hours before CSD) (Lee et al., 2014) and found it to be as 

effective as fasudil in preventing the BBB leakage (Figure 9B). This is consistent with data 

suggesting that ROCK2 is the predominant endothelial isoform regulating barrier function 

(Beckers et al., 2015; De Silva et al., 2016).

Last but not the least, CSDs are known to cause a transient oxygen supply-demand 

mismatch raising the possibility that tissue hypoxia may be the trigger for BBB opening 

(Piilgaard and Lauritzen, 2009; Takano et al., 2007; Yuzawa et al., 2012). To test this, we 

performed additional experiments by employing normobaric hyperoxia (100% oxygen 

inhalation) during the period of CSD induction (1 hour), which is known to abrogate the 

relative tissue hypoxia observed during CSD (Takano et al., 2007). Hyperoxic animals 

showed nearly identical increase in EB leakage 24 hours after CSDs (%192 ± 9 of 

contralateral; n=6) compared with the normoxic group (%196 ± 9 of contralateral), arguing 

against hypoxia as a relevant trigger for BBB opening during CSD.

DISCUSSION

Our data demonstrate that CSD disrupts the BBB exclusively via endothelial transcytosis, 

without affecting endothelial TJs, basement membrane or pericytes. We also show that CSD-

induced transcytosis is caveolin-1- dependent, and that both transcytosis and leakage after 

CSD require ROCK2 activity as a gatekeeper, likely through phosphorylation of caveolin-1 

(Li et al., 2014). Altogether, our data establish the endothelial mechanism of BBB disruption 

by CSD.
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The identity of the factor(s) linking the parenchymal (i.e., neuroglial) depolarization during 

CSD to the endothelium to stimulate transcytosis is unknown. CSD is associated with major 

shifts in extracellular ion concentrations (e.g. decreased pH, increased extracellular K+) and 

massive increases in numerous neurotransmitters (e.g. glutamate) that can overwhelm the 

usual reuptake and clearance mechanisms (Ayata and Lauritzen, 2015). As a result, elevated 

extracellular levels of ions and neurotransmitters are likely to traverse the perivascular 

diffusional barriers (e.g. astrocyte end feet) and reach the microvascular endothelial cells. 

Astrocytic end feet may in fact facilitate perivascular K+ rise by siphoning (Leis et al., 2005; 

Newman, 1986). Moreover, the secondary depolarization of perivascular nerves during CSD 

might release their vasoactive transmitters (e.g. substance P) (Ayata and Lauritzen, 2015). 

Prior studies suggest that some of the CSD-induced ultrastructural changes can be 

pharmacologically modulated (e.g. paracetamol, serotonergic transmission) (Maneesri et al., 

2004; Saengjaroentham et al., 2015; Yisarakun et al., 2014). Given the multitude of potential 

signaling molecules simultaneously released during CSD in vivo, identifying the signal that 

triggers the endothelial phenotype change may require in vitro models.

An alternative explanation might be CSD-induced tissue hypoxia. However, CSD causes 

only a brief (<30 seconds) oxygen supply-demand mismatch within otherwise normal brain 

parenchyma, (Yuzawa et al., 2012), and normobaric hyperoxia, which effectively prevents 

the oxygen supply-demand mismatch during CSD (Takano et al., 2007), did not block the 

BBB opening in our study, arguing against this possibility. In addition, non-invasive 

optogenetic induction of CSD also effectively disrupted the BBB, suggesting that tissue 

injury is not required.

Our findings have implications for migraine. CSD is the electrophysiological event 

underlying aura (Ayata, 2010). Clinically, severe migraine auras, where multiple, long 

lasting or reverberating CSDs may occur (e.g. hemiplegic migraine) (Eikermann-Haerter et 

al., 2009; Eikermann-Haerter et al., 2011; Ferrari et al., 2015), have been reported to show 

neuroimaging signs of BBB opening (Cha et al., 2007; Dreier et al., 2005; Kors et al., 2001). 

Increased endothelial pinocytosis during classical migraine attacks has been suggested more 

than 40 years ago, in part based on CSF/plasma protein ratios (Harper et al., 1977; 

Kangasniemi et al., 1974) However, clinical studies have thus far failed to detect BBB 

opening after migraine attacks, likely due to technical limitations and study design (Amin et 

al., 2017; Hougaard et al., 2017; Schankin et al., 2016). Because a single CSD was also 

capable of triggering BBB leakage in our study, newer MRI techniques to image “free 

water”, such as diffusion based-models (i.e. neurite orientation dispersion and density 

imaging, NODDI) or T2 mapping, may be sensitive enough to detect BBB opening as a 

footprint even in classical migraine with aura, especially when properly timed. Since BBB 

opening was delayed by several hours after CSD, plasma protein and water leakage are 

unlikely to be relevant for the headache phase. However, chronic episodic leakage of plasma 

constituents during frequent migraine aura attacks may be a potential mechanism for 

progressive neurovascular conditions linked to migraine with aura (e.g. periventricular white 

matter disease) (Mawet et al., 2015). Lastly, opening of the BBB after CSD (i.e. aura) might 

provide an entry route for novel migraine therapeutics that do not normally cross the BBB, 

such as antibodies targeting the CGRP system (Tso and Goadsby, 2017).
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An abundance of experimental and clinical data indicates that CSD plays a critical role in 

the pathophysiology of ischemic, hemorrhagic and traumatic brain injury as well (Lauritzen 

et al., 2011). Recurrent CSDs in injured brain promote secondary tissue loss and 

neurological deficits, making CSD a clinically relevant therapeutic target. Our data suggest 

that CSD alone (i.e. without attendant tissue injury) recapitulates the morphological features 

and mechanisms of BBB opening after injury (Cipolla et al., 2004; Dietrich et al., 1987; 

Haley and Lawrence, 2017; Ito et al., 1980; Knowland et al., 2014; Krueger et al., 2013; 

Lossinsky and Shivers, 2004; Nahirney et al., 2016). The overlap is substantial. For example, 

both caveolin-1 expression and phosphorylation are increased after an ischemic insult, and 

caveolin-1 knockout mice do not develop increased transcytosis or early BBB leakage after 

ischemia (Knowland et al., 2014; Nag et al., 2007). Cerebral ischemia upregulates the RhoA/

ROCK pathway as well (Brabeck et al., 2003; Erdo et al., 2004; Trapp et al., 2001), and 

RhoA/ROCK inhibitors attenuate edema in experimental models of brain injury (Fu et al., 

2014; Fujii et al., 2012; Gibson et al., 2014; Huang et al., 2012; Niego et al., 2017). Also 

consistent with our findings after CSD, cerebral ischemia did not alter basement membrane 

thickness, pericyte coverage, capillary diameter or endothelial cell area (Haley and 

Lawrence, 2017). Indeed, opening of the paracellular pathway occurs only during late stages 

of severe ischemic injury, and is not triggered by CSD alone. As such, CSD is an example 

where transcellular and paracellular BBB opening dissociates (Kang et al., 2013). 

Importantly, in our experiments where only a small number of CSDs were induced over one 

hour, BBB opening was transient, with spontaneous recovery within 48 hours. In the injured 

brain, recurrent CSDs continue to develop for many hours and even days after the initial 

insult (Hartings et al., 2003; Kudo et al., 2016), which might explain the longer-lasting BBB 

opening after brain injury. Since CSDs originating in injured brain often propagate into the 

normal tissue, they may explain the BBB opening in surrounding non-injured brain as well 

(Lapilover et al., 2012; Stoll et al., 2009). Altogether, these data implicate CSDs in brain 

injury as a contributor to early BBB opening to large molecules and vasogenic edema that 

often becomes a clinically significant mechanism of secondary injury and sometimes 

herniation (Ayata and Ropper, 2002). Therefore, therapeutic targeting of CSDs may diminish 

edema in injured brain.

Lastly, we propose that the increase in endothelial transcytosis is only one sign of a dramatic 

endothelial change after CSD, i.e. the tip of the iceberg. The transformation emerges after a 

delay of a few hours, presumably regulated at the transcriptional, translational and/or post-

translational levels. Therefore, CSD may not be as innocuous as it is often believed to be, 

and the cerebrovascular endothelial phenotype shift may have implications for the increased 

cerebrovascular event risk in migraineurs with aura.
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Figure 1. BBB transiently opens after CSD.
A) Left panel shows the experimental setup to induce CSDs by either topical KCl (300 mM) 

application onto occipital cortex via a burr hole, or optogenetic (Opto) stimulation of frontal 

cortex through intact skull. KCl-induced CSDs were recorded by two glass micropipettes 

placed serially along the CSD propagation path. Optogenetic CSDs were detected non-

invasively by optical intrinsic signal imaging through intact skull. Dashed outline shows 

cortical tissue harvested for water content and Evans blue extravasation and ROCK mRNA 

measurements, and the rectangle shows the approximate position at which tissue sections 

were obtained for fluorescent confocal and electron microscopy studies, also shown in the 

middle panel on coronal sections in CSD and control (non-CSD, nCSD) cortices. All 

assessments were carried out in tissue remote from CSD induction and electrophysiological 

recording sites to avoid direct non-specific effects of trauma and high concentration KCl. 

Sadeghian et al. Page 15

Ann Neurol. Author manuscript; available in PMC 2019 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Right panel shows representative intracortical microelectrode recordings of 6 CSDs induced 

approximately every 10 minutes by topical KCl application.

B) Parenchymal water content at 6 and 24 hours after 6 CSDs compared with nCSD side. 

**p<0.01, ***p<0.001, two-way ANOVA (time x hemisphere as factors) followed by 

Sidak’s post-hoc multiple comparisons test.

C) Left panel shows cortical Evans blue extravasation in CSD and nCSD hemispheres 3 to 

24 hours after 6 CSDs. Tissue Evans blue levels in sham controls at 6 hours are also shown. 

***p<0.001, two-way ANOVA (time x hemisphere as factors) followed by Sidak’s post-hoc 
multiple comparisons test. Middle panel shows the effect of a single CSD at 24 hours. 

*p<0.05, paired t-test. Right panel shows cortical Evans blue extravasation in CSD and 

nCSD hemispheres 24 hours after 6 optogenetic CSDs induced and recorded non-invasively. 

**p<0.01, paired t-test.

D) Histological analysis of 70 kDa FITC-Dextran (green) leakage from isolectin-B4 (IB4)-

stained blood vessels (red) at 6 and 48 hours after 6 CSDs induced by KCl. Top and bottom 

histological panels display low and high magnifications, respectively, of different fields. 

Arrows point to extravascular 70 kDa FITC-Dextran. Lower right panel shows the ratio of 

total pixel area of 70 kDa FITC-Dextran to IB4 pixel area indicating vasculature. 

***p<0.001, two-way ANOVA (time x hemisphere as factors) followed by Sidak’s post-hoc 
multiple comparisons.

Whisker-box plots show full (whiskers) and interquartile (box) ranges, as well as the median 

(horizontal line) and mean (+).
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Figure 2. CSD does not affect tight junction integrity.
Endothelial tight junctions remain sealed throughout the period of CSD-induced BBB 

breakdown, as assessed by their normal ultrastructure (A and B) and by their ability to retain 

intra-arterially injected horseradish peroxidase (C; dark precipitate revealed with DAB). 

Double arrows show the measurement of endothelial thickness at junctions, arrowheads 

show the measurement of junctional width, dashed line shows the measurement of 

endothelial length at junctions, curved arrow shows the measurement of tight junctional 

angle, arrows indicate kissing points where endothelial membranes are tightly opposed with 

no evidence of HRP leakage. p>0.05, one-way ANOVA. Data are mean ± S.E.M. N=3 

animals with 20 replicates in each animal.
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Figure 3. CSD transiently activates endothelial transcytosis
A) Transmission electron microscopic analysis revealed a significant increase in endothelial 

vesicle number 6 and 12 hours after KCl-induced CSDs. Left panel shows individual 

vesicles (arrows) on CSD hemisphere. Right panel shows the time course of total endothelial 

vesicle density. *p<0.05, **p<0.01, ***p<0.001, two-way ANOVA (time x hemisphere as 

factors) followed by Sidak’s post-hoc multiple comparison test.

B) Cytoplasmic, membrane-bound (all), luminal and abluminal endothelial pinocytic vesicle 

density shown separately following KCl-induced repetitive CSD. *p<0.05, **p<0.01, 

***p<0.001, two-way ANOVA (time x hemisphere as factors) followed by Sidak’s post-hoc 
multiple comparison test.

C) Endothelial cell area (i.e. cytoplasm) and capillary diameter (i.e. lumen) following KCl-

induced repetitive CSD. p>0.05, two-way ANOVA (time x hemisphere as factors) followed 

by Sidak’s post-hoc multiple comparisons test.
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Figure 4. Directional transport of transcytosis from vessel lumen to brain parenchyma
A) Left panel shows transmission electron micrographs from control (nCSD) versus CSD 

hemispheres illustrating leakage of intraluminal horseradish peroxidase (HRP) into the 

extravascular space (arrow heads). Right panel shows the density of HRP-filled vesicles 

within the endothelial cytoplasm 6 hours after repetitive KCl-induced CSDs. *p<0.05, paired 

t-test.

B) High-magnification transmission electron micrographs illustrating increased HRP 

transcytosis. Arrows indicate single HRP-filled vesicles either budding from the luminal 

membrane or traveling through the endothelial cytoplasm.

All data represent mean ± S.E.M. N=3 animals with 20 replicates in each animal. a, 

astrocytic endfoot; E, endothelium; L, lumen; nCSD, non-CSD hemisphere.
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Figure 5. Caveolin-1 is required for CSD-induced BBB disruption.
A) Left panel shows low magnification images of cortical 70 kDa FITC-Dextran (green) 

leakage around blood vessels (red) in WT (upper panels) and absence of it in Cav-1-/- (lower 
panels) mice 6 hours after KCl-induced CSDs. Right, Quantification of 70 kDa FITC-

Dextran extravasation in the cerebral cortex. Whisker-box plots show full (whiskers) and 

interquartile (box) ranges, as well as the median (horizontal line) and mean (+). ***p<0.001 

by one-way ANOVA followed by Turkey’s post-hoc test.

B) Higher magnification images to better illustrate the absence of leakage in Cav-1-/- mice 

(lower panels) compared to WT mice (upper panels) 6 hours after KCl-induced CSDs.

DAPI, 4,6-Diamidino-2-phenylindole; IB4, isolectin-B4; nCSD, non-CSD hemisphere.
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Figure 6. CSD does not affect pericyte integrity.
A) Left panel shows low magnification images of double immunofluorescence for pericyte 

marker NG2 and endothelial marker CD31 in the contra-lateral (nCSD, upper panels) versus 

CSD (lower panels) hemispheres. Right panel shows quantification of endothelial coverage 

by pericytes, expressed as surface area ratio. p>0.05, paired t-test.

B) Fluorescent microscopic images of pericytes (NG2, yellow) and endothelial cells (CD31, 

red) in relation to 70 kDa FITC-Dextran fluorescence (grey). Nuclei are stained with DAPI 

(blue). White arrows indicate FITC-Dextran leakage at places where pericyte coverage of 

the endothelium appears intact.

C) Transmission electron micrographs illustrating normal pericyte attachment in both the 

affected (CSD+6h) and non-affected (nCSD) hemispheres. Pericytes are pseudo-colored in 

yellow. Arrows indicate HRP-filled endothelial vesicles.
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D) Left panel shows electron micrographs of normal pericyte attachment to the vessel wall 

and the basement membrane thickness (arrowheads) in both CSD and nCSD hemispheres. 

Right panel shows stable basement membrane thickness after CSD. p>0.05, one-way 

ANOVA. N=3 animals with 20 replicates in each animal.

Data represent mean ± S.E.M. a, astrocytic endfoot; CD31, cluster of differentiation-31; 

DAPI, 4,6-Diamidino-2-phenylindole; E, endothelium; L, lumen; nCSD, non-CSD 

hemisphere; NG2, neural/glial antigen 2; P, pericyte.
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Figure 7. Rho-kinase inhibition blocks CSD-induced transcytosis.
A) Left panel shows the total, cytoplasmic, membrane-bound (all), luminal and abluminal 

endothelial vesicles 6h after KCl-induced repetitive CSD. Mice were pre-treated with either 

vehicle or non-selective rho-kinase (ROCK) inhibitor Fasudil (10 mg/Kg, i.p.). Right panel 
shows representative transmission electron micrographic examples. Arrows indicate 

endothelial vesicles. *,#p<0.05, **p<0.01, two-way ANOVA (hemisphere x treatment as 

factors) and Sidak’s post-hoc multiple comparisons test.

B) Left panel shows transmission electron micrographs of HRP-filled blood vessels 

demonstrating the effect of ROCK inhibition on endothelial transcytosis. Arrows indicate 

HRP-filled vesicles, conspicuously absent in fasudil-treated mice. Right panel shows the 

effect of ROCK inhibition on HRP transcytosis. #p<0.05, t-test.

C) Endothelial cell area (i.e. cytoplasm) and capillary diameter (i.e. lumen) 6 hours after 

KCl-induced CSDs in mice treated with vehicle or fasudil. p>0.05, two-way ANOVA 

(treatment x hemisphere as factors) followed by Sidak’s post-hoc multiple comparisons test.
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Data represent mean ± S.E.M. N=3 animals with 10 replicates per hemisphere in each 

animal.

a, astrocytic endfoot; L, lumen; nCSD, non-CSD hemisphere; P, pericyte.
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Figure 8. Rho-kinase inhibition prevents CSD-induced BBB disruption
A) Brain water content measured 6 hours after repetitive CSD in mice treated with either 

vehicle or ROCK inhibitor Fasudil (10mg/Kg, i.p.). #p<0.01, ###p<0.001, unpaired t-test.

B) Evans blue leakage measured 6 hours after repetitive CSD in mice treated with either 

vehicle or Fasudil. ###p<0.001, two-way ANOVA (time x hemisphere as factors) followed by 

Sidak’s post-hoc multiple comparison test.

C) Left panel shows extravasation of 70 KDa FITC-dextran 6 hours after repetitive CSD in 

animals treated with either vehicle or Fasudil. Right panel shows 70 kDa FITC-dextran 

extravasation as area ratio. ##p<0.01, unpaired t-test.

Whisker-box plots show full (whiskers) and interquartile (box) ranges, as well as the median 

(horizontal line) and mean (+). Control groups are replotted from Figure 1 for comparison. 

DAPI, 4,6-Diamidino-2-phenylindole; IB4, isolectin-B4.
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Figure 9. CSD upregulates rho-kinase expression, and selective rho-kinase 2 inhibition prevents 
CSD-induced Evans blue leakage.
A) Expression (mRNA) of ROCK isoforms 1 & 2 6 hours after CSD, as measured by RT-

qPCR in cerebral cortex extracts. Data represent mean ± S.E.M. *p<0.05, **p<0.01, paired 

t-test.

B) Evans blue leakage measured 6 hours after CSD in mice treated with either vehicle or 

ROCK2-selective inhibitor KD025. Whisker-box plots show full (whiskers) and interquartile 

(box) ranges, as well as the median (horizontal line) and mean (+). ##p<0.01, unpaired t-test.
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Table 1.

Arterial blood pressure and electrophysiological measures of CSD

Mean arterial
pressure (mmHg) CSD amplitude (mV) CSD duration (sec)

Control 87±4 25±1 34±4

Fasudil 85±4 25±2 33±7

KD025 82±4 24±2 31±2

Caveolin-1 knockout NA 25±2 30±4
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