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Abstract

Objective—Intraoperative Doppler-determined renal resistive index (RRI) is a promising early 

acute kidney injury (AKI) biomarker. As RRI continues to be studied, its clinical usefulness and 

robustness in research settings will be linked to the ease, efficiency, and precision with which it 

can be interpreted. Therefore, we assessed the usefulness of computer vision technology as an 

approach to developing an automated RRI-estimating algorithm with equivalent reliability and 

reproducibility to human experts.

Design—Retrospective.

Setting—Single-center, university hospital.

Participants—Adult cardiac surgery patients from 7/1/2013–7/10/2014 with intraoperative 

transesophageal echocardiography-determined renal blood flow measurements.

Interventions—None.
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Measurements and Main Results—Renal Doppler waveforms were retrospectively obtained 

and assessed by blinded human expert raters. Images (430) were evenly divided into development 

and validation cohorts. An algorithm for automated RRI analysis was built using computer vision 

techniques and tuned for alignment with experts using bootstrap resampling in the development 

cohort. This algorithm was then applied to the validation cohort for an unbiased assessment of 

agreement with human experts. Waveform analysis time per image averaged 0.144 seconds. 

Agreement was excellent by intraclass correlation coefficient (0.939; 95% CI [0.921, 0.953]) and 

in Bland-Altman analysis (mean difference [human–algorithm] −0.0015; 95% CI [−0.0054, 

0.0024]), without evidence of systematic bias.

Conclusions—We confirmed the value of computer vision technology to develop an algorithm 

for RRI estimation from automatically processed intraoperative renal Doppler waveforms. This 

simple-to-use and efficient tool further adds to the clinical and research value of RRI, already the 

“earliest” among several early AKI biomarkers being assessed.
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Introduction

Doppler-determined renal resistive index (RRI), an index of renal arterial pulsatility, is an 

emerging novel biomarker for acute kidney injury (AKI) that adds value to a routine 

cardiovascular ultrasound examination (e.g., intraoperative transesophageal 

echocardiography [TEE] or transabdominal ultrasound [TUS])1–3. RRI is calculated using 

Doppler velocity measurements of intrarenal arterial blood flow (figure 1). Emerging 

evidence highlights the applications of RRI as a significant in both clinical and research 

settings; these require that waveform interpretation be precise, reproducible, and consistent 

among raters. This is particularly important given high acuity situations in which RRI may 

play an important role (e.g., intraoperative and critical care settings). Furthermore, as the 

value of RRI becomes more validated, its use in clinical practice will be directly linked to 

the ease and efficiency with which it can be obtained and interpreted.

Importantly, traditional AKI diagnosis and therapy is often delayed due to reliance on serum 

creatinine accumulation (i.e., up to 48 hours). This has prompted a highly publicized search 

for early AKI biomarkers, among which an abnormally high RRI appears to be, by several 

hours, the earliest indication of AKI. This early predictive advantage may be explained 

mechanistically: it has been proposed that RRI elevation may reflect increased intracapsular 

pressure (i.e., injury-related renal “compartment syndrome”)4–6. In cardiac surgery patients 

the apparent intraoperative timing of primary renal insult has facilitated research into the 

promptness of RRI as an early AKI biomarker2, 7. An elevated intraoperative (post-CPB) 

RRI by TEE in cardiac surgery patients is associated with subsequent AKI diagnosis1, 2. 

Similarly, elevated RRI predicts AKI in critically ill patients soon after various surgical 

procedures3, 8–10. The hope is that this earliest knowledge of AKI risk based on RRI 

elevation (before other biomarkers become positive) will translate into future development 

of reno-protective interventions in both surgical and nonsurgical patients.
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Furthermore, the utility of RRI as a biomarker is not limited to AKI episodes, nor is it 

limited to renal pathology alone. For example, elevated RRI in patients with congestive heart 

failure has prognostic value for mortality risk and the future decline of both cardiac and 

renal function11–13. Moreover, in the setting of chronic kidney disease, RRI elevation 

correlates with mortality risk14. As this intriguing biomarker continues to be tested for its 

potential mainstream clinical utility, using a development-validation approach we sought to 

assess the value of computer vision technology (i.e., the computerized processing and 

analysis of digital images) to develop an automated algorithm for processing renal Doppler 

waveforms to more easily and reproducibly estimate RRI.

Methods

Study Population

After Institutional Review Board approval, a retrospective review of our institutional TEE 

Database was performed. Subjects included patients ≥18 years old who underwent cardiac 

surgery between 7/1/2013 and 7/10/2014 at our institution for whom renal blood flow 

measurements obtained via TEE were documented. Renal Doppler images were excluded a 
priori if they were deemed to be of insufficient quality for automated analysis (i.e., 

significant artifact, distortion due to masking, partial waveforms).

Intraoperative Ultrasound Imaging

A comprehensive examination using a multiplane TEE probe (Philips X7-2t; Philips iE33, 

Andover, MA) is routine both prior to, and after, CPB at our institution. Acquisition of renal 

blood flow measurements is encouraged during examination and images from each 

examination are saved in an institutional database for future reference. The examination is 

performed by an adult cardiothoracic anesthesiology fellow along with an attending 

anesthesiologist certified in advanced peri-operative TEE by the National Board of 

Echocardiography (Advanced PTEeXAM). Left renal artery Doppler velocity images were 

obtained using a transgastric approach. Briefly, a midpapillary transgastric short-axis view is 

first obtained. The probe is then rotated approximately 180 degrees to the left to obtain a 

short-axis view of the descending aorta and then advanced to the origin of the left renal 

artery. This artery is followed by rotating the probe to the right until visualization of the left 

kidney occurs.15

Human Assessment of RRI

Seven cardiothoracic anesthesiologists certified in TEE reviewed de-identified renal Doppler 

images to determine RRI values. Inter-rater reliability for RRI determination among our 

investigators was assessed previously through evaluation of 78 images (intraclass correlation 

coefficient 0.77).2 Renal arterial peak systolic and trough diastolic velocities were measured 

for up to 3 cardiac cycles. RRI was then calculated for each cycle (figure 1) and averaged for 

each image. These human expert values served as the gold standard for comparison with 

values generated by the automated algorithm.
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Automated Assessment of RRI

We used computer vision techniques (OpenCV; Python v3.6.4) to develop an algorithm to 

estimate RRI from automatically processed renal Doppler waveform images. Details of the 

standard image processing procedures utilized are well described elsewhere16–18. The 

algorithm passes each original renal Doppler waveform through several processing steps as 

shown in figure 2. Briefly, coordinates of the zero velocity baseline are obtained using a 

Hough line transform16. All non-waveform components are then removed using text 

recognition, color masking, and shape-matching algorithms (i.e., text and marker 

annotations, zero velocity baseline, electrocardiogram [ECG] tracing, velocity axis, non-

dominant waves); the remaining image represents the isolated dominant waveform structure 

(figure 2A/B-ii). Dynamic brightening and iterative blurring (via a median filter) are then 

applied to achieve pre-specified pixel intensity and waveform uniformity targets; these serve 

as key image tuning parameters (figure 2A/B-iii). A strictly black and white outline of the 

dominant waveform is then generated using Otsu’s method (figure 2A/B-iv)17, and contours 

are identified (figure 2A/B-v)18. Artifact structures highlighted by the contour analysis are 

then removed through filtering of contour coordinates, leaving only the top surface contour 

of each viable waveform (figure 2A/B-vi). Finally, individual waveform characteristics, 

including frequency and amplitude, are used to guide identification of valid peaks and 

troughs (figure 2A/B-vi). These values are then used to estimate RRI for each wave, which 

are averaged for each image.

Algorithm Tuning and Validation

Key to the usefulness of the above-mentioned algorithm is the validity of the estimated RRI 

values compared to human experts. Therefore, to assess the validity of this methodology, all 

eligible renal Doppler images were randomly (via random number generator) and evenly 

divided into development and validation cohorts. The images in the development cohort 

were used to calibrate the algorithm against human expert determinations, and the images in 

the validation cohort were then used to confirm, in an unbiased manner, agreement with the 

gold standard. The algorithm was tuned in the development cohort by systematically 

adjusting image tuning parameters (i.e., pixel intensity and waveform uniformity targets). To 

allow for the most robust and unbiased assessment of agreement in the tuning process, a 

collection of 45 unique parameter combinations (i.e., image tuning parameter sets) were 

assessed for agreement via bootstrap resampling. For each unique image tuning parameter 

set, 1000 bootstrap samples were generated and agreement between human experts and the 

algorithm was evaluated. Agreement was assessed by: (1) mean difference (the signed 

difference in RRI between human experts and the algorithm) and (2) intraclass correlation 

coefficient (ICC). ICC was calculated using a two-way random effects model for absolute 

agreement19. The optimal image tuning parameter set was selected in a two-step process. 

First, to guard against systematic bias compared to humans, we only selected parameter sets 

for which the bootstrapped 95% confidence interval of the mean difference contained zero. 

The image tuning parameter set with the highest bootstrapped ICC was then chosen for use 

in the validation cohort. Finally, testing of the selected parameter set was conducted through 

a single evaluation of images in the validation cohort using both the ICC and a Bland-

Altman analysis of differences. Mean absolute algorithm error was determined as a percent 
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of human expert values (absolute value of [human value – algorithm value] / human value * 

100).

Results

After exclusion of images of insufficient quality for automated analysis (n = 66), 430 renal 

Doppler velocity waveform images from 318 unique patient procedures were identified and 

divided for analysis in the two cohorts. Patient and procedural characteristics were similar to 

those observed in other populations (table 1)20. In the development cohort (n = 215 images), 

38 of the 45 image tuning parameter sets produced a bootstrapped mean difference with a 

95% confidence interval that overlapped zero (figure 3A). Among the identified parameter 

sets, ICC values ranged from 0.950 to 0.956, and the optimal algorithm with the highest ICC 

was selected for further assessment in the validation cohort (figure 3B).

In testing the optimal algorithm in the validation cohort (n = 215 images), there was 

excellent agreement with blinded human experts (ICC 0.939; 95% CI [0.921, 0.953]; figure 

4). Similarly, agreement was strong in Bland-Altman analysis of differences (mean 

difference [human – algorithm] −0.0015; 95% CI [−0.0054, 0.0024]; figure 5), suggesting 

no evidence of systematic bias. Furthermore, consistency in agreement across the range of 

RRI values was supported by the lack of association between mean RRI values and 

differences between human experts and the selected algorithm (p = 0.30). The 95% limits of 

agreement (an indication of spread of the differences between human experts and the 

algorithm) were acceptably narrow, ranging from −0.058 to 0.055 (figure 5). The mean 

absolute error for algorithm values compared to human experts was 3.39%. Analysis time 

averaged 0.144 seconds per image (95% CI [0.139, 0.149]).

Discussion

Using computer vision techniques, we successfully developed and validated a novel 

algorithm that automatically processes intraoperative renal Doppler waveform images and 

estimates RRI. In validation testing, automated RRI assessment showed excellent agreement 

with human raters without evidence of systematic bias. Moreover, previously-reported 

strong inter-rater reliability for RRI determination among human experts was even exceeded 
by that of the algorithm (ICC 0.939 vs. 0.770)2, suggesting the algorithm may even improve 

upon the current human expert gold standard. Furthermore, automated analysis substantially 

improved efficiency when compared to our prior standard approach to post-hoc image 

assessment (mean analysis time per image 0.144 seconds vs. 76 seconds)21. This gain in 

efficiency (more than a minute per image if the technology were to be available on an 

equivalent analysis platform) easily reaches the level of clinical relevance and substantially 

reduces provider interpretation time. Together, these findings suggest that automated 

intraoperative analysis of renal Doppler waveforms for RRI assessment is a feasible, 

reproducible, and accurate approach which aligns with the need to make this data promptly 

available and has potential to add clinical and research value to RRI as the earliest currently 

available AKI biomarker among those being evaluated.
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Although no previous reports have specifically explored the automation of RRI assessment 

from Doppler waveforms, automated analysis of medical imaging is a burgeoning field. A 

number of previously published reports have documented efforts to develop semi- and fully-

automated methods for assessment of a variety of both two-dimensional and three-

dimensional metrics22–26. Most similar to the present analysis is the work of Zolgharni and 

colleagues in which an automated assessment method was developed for aortic Doppler 

velocity-time-integral and peak-velocity metrics23. In their analysis, similar processing steps 

were carried out to define Doppler wave contours, with comparably strong agreement 

between human and algorithmic results. While not directly integrated into the ultrasound 

machine software, the algorithm developed by Zolgharni et al. was implemented using a 

laptop with real-time data acquisition using a frame grabber. Approaches to further develop 

the study algorithm include integration as a built-in component of the TEE machine to allow 

real-time RRI analysis. Furthermore, the approach we describe to develop automated RRI 

determination in the current study could be generalized to assess other Doppler-determined 

metrics.

We observed some limitations of our automated algorithm, including the indiscriminate 

acceptance of waveforms for assessment compared to human experts. For example, humans 

exclude waveforms due to poor quality or high variability while the algorithm registers all 

complete waveforms as valid. Interestingly, this approach to characterizing RRI variability 

and its relationship to AKI have not been assessed. Additionally, when waveforms fall at the 

far-right end of an image (with no discernable systolic upstroke after a level diastolic 

plateau) the peak/trough-finding function in our algorithm would not accept the trough 

without evidence of a subsequent upstroke. In many cases such waves were acceptable to 

human experts and contributed to their estimation of the mean RRI from the image. Such 

concerns highlight the importance of human oversight of any RRI automated estimation 

tool, as previously recognized with similar technologies in other clinical settings (e.g., ST 

segment analysis)27. Inclusion of additional data (e.g., ECG analysis to identify QRS 

complex timing) in future iterations may be a useful approach to continue to improve our 

algorithm. Other steps we envision to further optimize this approach involve improvement of 

algorithm heuristics to more closely resemble the problem-solving strategies of human 

experts. Initial implementation of this technology would allow for automated ‘suggestions’ 

by the algorithm for human expert users to accept or modify in the same way that current 3D 

software has evolved to semi-automate initial tracings for editing by users. Over time, 

analysis of expert modification of algorithm suggestions would additionally allow for 

implementation of machine learning processes. These will lead to both: (1) improved image 

processing and (2) assessment of algorithm confidence (e.g., to identify poor quality 

waveforms). The latter will help facilitate a transition to full automation with human expert 

intervention only in instances of reduced algorithmic confidence. Future development of our 

system will include work with larger datasets to incorporate algorithmic-learning methods 

that will allow for both identification of poor quality waves likely to be excluded by human 

experts, and a more dynamic assessment of confidence in trough identification at the end of 

an image frame (through ECG identification of QRS complexes and predicted length of R-R 

intervals, for example). Additionally, while our method for image processing utilized several 

dynamic parameters based on individual image properties (i.e. was not a “one-size-fits-all” 
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approach), future study with larger datasets of Doppler images with expert-labeled contours 

will allow for implementation of a machine-learning based approach to image processing, 

further improving agreement with these experts. To further mitigate error, comparison of 

adjacent waveforms may reduce concerns over respiratory cycle artifact. Automatic 

assessment of Doppler waveforms in real time (i.e., using video input directly from 

ultrasound machines) would allow for immediate calculation of averaged Doppler metrics 

and inclusion of several-fold more waveforms than is typical, yielding more stable and 

robust estimates. Notably, the use of this algorithm in the real time setting represents the 

arena in which time savings is most likely due to efficiency of measurement. While RRI 

formula can already be incorporated into ultrasound machines for improved ease of 

assessment, the ability to measure multiple beats simultaneously and to provide real time 

data on these beats remains out of reach using the current caliper measurement technology. 

In this sense, the automated algorithm may serve as a platform for a more expanded 

assessment of renal perfusion through analysis not only of single beat values but also of 

beat-to-beat variability (i.e., due to respiration or cardiac arrhythmia) and, RRI range over 

time (i.e., minimum and maximum peak velocities) and overall central tendency (i.e., 

moving average). Finally, the results of this analysis must be interpreted with consideration 

of the sample of images utilized for its construction. While a large proportion of all 

identified images were of high enough quality for automated assessment, a non-insignificant 

number of images were excluded from analysis due to prohibitively poor quality. Thus, the 

excellent reproducibility shown in the present analysis does not fully address reproducibility 

issues that may arise during acquisition of Doppler velocity tracings (i.e., prohibitively poor-

quality images with distortion or excessive artifact). Accurate interpretation of RRI relies, in 

part, on the clinician’s ability to obtain high quality visualizations of renal blood flow.

Nonetheless, the current algorithm performs well compared to human experts and represents 

the only report of automated RRI assessment from renal Doppler images, an important 

initiative given the growing interest in this earliest of early AKI biomarkers. Availability of 

such tools in clinical practice should allow inexperienced users to more accurately and 

rapidly determine RRI values from static renal Doppler images, potentially removing 

barriers to its use in everyday practice. Furthermore, standardizing RRI estimation to align 

and even become more consistent than determinations among human experts, will reduce 

inter-rater variability and facilitate more robust research from smaller datasets. The potential 

value of computer vision and other similar technologies to develop tools for quantifying 

waveforms extends beyond RRI and includes other Doppler waveform metrics such as 

volume time integrals, pressure gradients, mitral inflow patterns, etc.

In summary, we confirmed the value of computer vision technology in developing a valid 

automated algorithm for RRI determination from static renal Doppler images. Our algorithm 

shows excellent agreement with blinded human experts trained in TEE interpretation and 

provides an exponential improvement in processing efficiency. This algorithm represents an 

important step in automating renal Doppler image analysis; future work will focus on 

additional algorithm improvements to hasten access to high quality early AKI biomarker 

data.
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Figure 1. 
Calculation of the renal resistive index (RRI) using transesophageal echocardiography. Vsys 

= peak systolic velocity; Vdia = trough diastolic velocity.
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Figure 2. 
Processing steps of the automated algorithm shown for: (A) a higher-quality image and (B) a 

lower-quality image. (i) Original image; (ii) isolated dominant waveform; (iii) image 

following brightening and iterative blurring; (iv) image following Otsu’s method; (v) all 

identified contours (blue points); (vi) filtered contours (blue points) and identified peaks 

(orange crosses) and troughs (orange X’s). Notably, both positive and negative waveforms 

are shown to reinforce the automated nature of the algorithm in identifying the location of 

the dominant waveform structure in relation to the zero velocity baseline.
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Figure 3. 
Results from the algorithm parameter tuning process on the development cohort. (A) Step 1: 

bootstrapped mean difference and empirical 95% confidence intervals (CI) for all tested 

image tuning parameter sets (n = 45 parameter sets). Parameter sets with a 95% CI 

containing 0 (blue solid lines) were considered eligible for further testing while those with 

95% CI excluding 0 (orange dashed lines) were eliminated from consideration. (B) Step 2: 

bootstrapped intraclass correlation coefficient (ICC) and empirical 95% confidence intervals 

for image tuning parameter sets eligible after step 1 (n = 38 parameter sets). The parameter 

set with the highest ICC (green line; indicated with arrow) was selected for testing on the 

validation cohort.
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Figure 4. 
Scatter plot displaying renal resistive index (RRI) values rated by human experts compared 

to those rated by the automated algorithm in the validation cohort using the parameters 

selected through parameter tuning on the development cohort. The black line represents the 

identity line (complete agreement). Intraclass correlation coefficient (ICC) is displayed with 

a 95% confidence interval.
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Figure 5. 
Bland-Altman plot displaying agreement between renal resistive index (RRI) values rated by 

blinded human experts and the automated algorithm in the validation cohort using 

parameters selected in the parameter tuning process on the development cohort. For each 

image, mean RRI (average of human and algorithm values) is plotted against the difference 

in RRI (human value – algorithm value). The mean difference between human experts and 

the algorithm is represented by the solid blue line, with 95% confidence intervals (CI) for 

the mean difference shown as dashed blue lines. The upper and lower limits of agreement 

(mean difference ± 1.96 standard deviation (SD) units) are shown as dotted red lines. 

Notably, the 95% CI for the mean difference contains 0, indicating a lack of systematic bias 

in the algorithm when compared to human experts.
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Table 1

Patient and Procedural Characteristics

Patients (n = 318)

Age (years) 64 (56 – 72)

Female 116 (36%)

Body Mass Index (kg/m2) 28 (25 – 33)

Diabetes (n = 312) 227 (73%)

Hypertension (n = 312) 147 (47%)

History of stroke (n = 312) 293 (94%)

Peripheral Vascular Disease (n = 312) 300 (96%)

Left Ventricular Ejection Fraction (n = 281)

 <45% 68 (24%)

 >55% 139 (49%)

 45–55% 74 (26%)

Procedure

 Aortic 11 (3%)

 CABG 106 (33%)

 Combined 51 (16%)

 Valve 100 (32%)

 Other 50 (16%)

Abbreviations: CABG = coronary artery bypass grafting, CPB = cardiopulmonary bypass. Combined procedure indicates a combination of two or 
more of the listed categories. Values are presented as median (Q1 – Q3) or frequency (%). Effective sample size (due to missing data) is indicated 
beside each parameter name when applicable.
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