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�B-Crystallin (�Bc) is a small heat shock protein that protects
cells against abnormal protein aggregation and disease-related
degeneration. �Bc is also a major structural protein that forms
polydisperse multimers that maintain the liquid-like property of
the eye lens. However, the relationship and regulation of the two
functions have yet to be explored. Here, by combining NMR
spectroscopy and multiple biophysical approaches, we found
that �Bc uses a conserved �4/�8 surface of the central �-
crystallin domain to bind �-synuclein and Tau proteins and pre-
vent them from aggregating into pathological amyloids. We
noted that this amyloid-binding surface can also bind the C-ter-
minal IPI motif of �Bc, which mediates �Bc multimerization
and weakens its chaperone activity. We further show that dis-
ruption of the IPI binding impairs �Bc self-multimerization but
enhances its chaperone activity. Our work discloses the struc-
tural mechanism underlying the regulation of �Bc chaperone
activity and self-multimerization and sheds light on the differ-
ent functions of �Bc in antagonizing neurodegeneration and
maintaining eye lens liquidity.

Molecular chaperones are key players in the protein quality-
control system that governs protein homeostasis in cells (1–4).
Under proteostasis stress, small heat shock proteins (sHsps)3

are considered to be the first cellular defenders that prevent
abnormal protein aggregation in an ATP-independent manner
(5–7). As a ubiquitous and abundant mammalian sHsp,
�B-crystallin (�Bc) prevents different pathological amyloid

aggregations that are closely associated with various human
diseases, including Alzheimer’s disease (AD) (8, 9), Parkinson’s
disease (PD) (10 –13), and multiple sclerosis (14). �Bc was
found to be dramatically up-regulated and to colocalize with
�-synuclein (�Syn) in Lewy bodies and Tau in neurofibrillary
tangles from the brains of PD and AD patients (8, 10, 15),
respectively. Mounting evidence shows that �Bc can inhibit the
pathological aggregation of various amyloid proteins (e.g. �Syn,
Tau, and A�) (9, 11, 13, 16). It has been reported that �Bc
utilizes its central �-crystallin domain (C�Bc) to capture A�40
(17), although it remains unclear how �Bc recognizes different
pathological amyloid clients under disease conditions.

In addition to its function as a chaperone, �Bc is also an
important structural protein in the vertebrate eye lens (18, 19).
Life-long transparency and refraction of eye lens require extra
high concentrations of soluble crystallins (up to 450 mg/ml)
that pack with a short-range order while resisting crystalliza-
tion and phase separation (20 –22). During aging or under
pathological conditions, crystallins may misfold and aggregate,
which is causative to cataract, a common cause of blindness
(23–25).

�Bc consists of 175 amino acids, which are divided into three
regions (see Fig. 1A). C�Bc is flanked by a hydrophobic N-ter-
minal region (NR) and a flexible C terminus (CT) containing a
conserved IPI motif (26, 27). C�Bc, a hallmark of the sHsp fam-
ily, features an Ig-like topology and induces the formation of
�Bc dimers as the building units of higher-order multimers
(28 –31). �Bc forms polydisperse and heterogeneous multimers
(10 – 40 subunits) with rapid subunit exchange, which suggests
a highly dynamic nature of �Bc (32–35). In addition to C�Bc-
mediated dimerization, NR–NR and CT–C�Bc interactions
also contribute to the formation of higher-order �Bc multimers
(31, 34, 36). Interestingly, it was reported that dissociation of
�Bc multimers can stimulate the chaperone activity of �Bc
against amyloid aggregation (37, 38). Therefore, it appears that
the two functions of �Bc (a structural multimer versus an amy-
loid chaperone) are negatively correlated, and the mechanism
and regulation underlying the switch of the two functions have
yet to be investigated.

In this study, we found that �Bc interacts with �Syn and Tau
and prevents their amyloid aggregation by the conserved �4/�8
surface of C�Bc. Interestingly, it is known that the C-terminal
IPI motif of �Bc also binds with the �4/�8 surface to mediate
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�Bc multimerization. Thus, we further revealed that the inter-
action of IPI with �Bc diminishes the chaperone activity of �Bc;
however, disruption of the interaction between IPI and �Bc,
which impairs �Bc multimerization, in turn enhances its bind-
ing with amyloid clients and inhibits amyloid aggregation. Our
work demonstrates that �4/�8 strands of �Bc provide an inter-
acting surface for the binding of different proteins/motifs that
regulates �Bc’s activities between chaperoning amyloid clients
and constructing eye lens via self-multimerization.

Results

C�Bc is more potent than full-length �Bc in preventing
amyloid fibril formation

We first characterized the chaperone activity of �Bc in pre-
venting the aggregation of different amyloid clients, including
�Syn of Parkinson’s disease and K19 (the repeat region of
3R-Tau) of Alzheimer’s disease. �Bc exhibits potent chaperone
activity in inhibiting fibril formation of both �Syn and K19 in a
dose-dependent manner as monitored by a thioflavin T (ThT)
fluorescence kinetic assay and negative-stain electron micros-
copy (EM) (Fig. 1, B–D). Consistent with previous reports (33,
34), we observed that �Bc assembled into higher-order multi-
mers in solution as measured by multiangle laser light scatter-
ing (Fig. S1A, left). Negative-stain EM further showed that �Bc
multimers are highly heterogeneous and feature spherical
architectures with a diameter ranging from 15 to 30 nm (Fig.
S1B). In sharp contrast to �Bc, C�Bc mainly populates as a
dimer in solution with a molecular mass of �24.9 kDa (Fig. S1A,
right). The ion mobility mass spectrum further showed an
ensemble of C�Bc monomer and dimer (Fig. S1C), indicating
the dynamic nature of C�Bc dimer. Intriguingly, compared
with full-length �Bc, C�Bc exhibited a significantly enhanced
chaperone activity in preventing both �Syn and K19 aggrega-
tion (Fig. 1, B–D). These results suggest that C�Bc serves as a
key region of �Bc in preventing aggregation of different amy-
loid clients, but the chaperone activity is somehow weakened
once C�Bc is in the context of full-length �Bc.

Structural characterization of the interaction between �Bc
and amyloid clients

To understand the molecular mechanism underlying the
chaperone activity of �Bc, we conducted nuclear magnetic
resonance (NMR) spectroscopy to investigate the interaction
between C�Bc/�Bc and �Syn. By titration of C�Bc into 15N-
labeled acetylated �Syn, we found that the N terminus of �Syn,
especially residues Asp2, Val3, Phe4, Met5, and Lys6, exhibited
subtle chemical shift perturbations (Figs. 2, A and B, and S2A).
Titration of full-length �Bc to �Syn induced chemical shift
changes of the same N-terminal region of �Syn but with smaller
perturbations (Figs. 2B and S2B), which is consistent with the
stronger inhibitory effect of C�Bc on �Syn aggregation than
that of full-length �Bc (Fig. 1D). These NMR results indicate a
weak binding of C�Bc and �Bc to the N terminus of �Syn.
Indeed, as we deleted the N-terminal 20 residues of �Syn
(�Syn(21–140)), the inhibitory effects of both C�Bc and �Bc on
�Syn(21–140) aggregation was completely abolished (Figs. 2C
and (S2C). Notice that the N terminus of �Syn is involved

in membrane binding (39). Thus, in addition to inhibiting
�Syn aggregation, �Bc may also regulate binding of �Syn to
membranes.

To identify the interacting surface of �Bc, we inversely
titrated [15N]C�Bc with �Syn. The result showed significant
chemical shift perturbations of residues including Lys90, Lys92,
Val93, Ile124, Thr134, Ser135, Ser136, and Leu137 (Figs. 3, A and B,
and S3A). Most perturbed residues cluster on the �4/�8 strands
of C�Bc (Fig. 3C), implying that the interface of C�Bc interacts
with �Syn. The apparent Kd value for C�Bc–�Syn complex was
275 � 105 �M as determined by NMR titrations (Fig. S3C),
confirming a weak binding between C�Bc and its client �Syn.
Intriguingly, the binding affinity was enhanced when the tem-
perature was increased (Fig. S3D), indicating that environmen-
tal factors (e.g. temperature, pH, and salt) may be involved in
regulating the interaction between C�Bc and its client. To val-
idate the NMR result, we mutated Lys90 and Lys92 in �4 to
alanine (the double mutation is named “KA”). The KA muta-
tion in both C�Bc and �Bc severely disrupted the chaperone
activity of inhibiting �Syn aggregation (Fig. 3D). A previous
study showed that the �4/�8 strands of �Bc are also involved in
A�40 binding (17). Thus, we asked whether �Bc utilizes a com-
mon surface for the binding of different amyloid clients. To
address this question, we titrated Tau K19 to [15N]C�Bc. The
result showed that residues involved in K19 binding are also
located within the �4/�8 strands of C�Bc, including Lys92,
Val93, Leu94, Thr134, Ser136, and Leu137 (Fig. S3E). Taken
together, these results demonstrate that �Bc utilizes a common
surface consisting of the �4/�8 strands to bind different amy-
loid clients, including �Syn, A�, and Tau.

Intriguingly, the �4/�8 surface has been previously identified
to interact with the C-terminal IPI motif of �Bc (residues 156 –
164) to mediate �Bc self-multimerization (36, 40, 41). There-
fore, the �4/�8 surface is essential for both �Bc multimeriza-
tion and chaperone activity, and �Bc multimers may represent
a self-inhibitory conformation that hinders �Bc from binding
to amyloid clients. However, in C�Bc, which does not contain
the IPI motif, the �4/�8 surface is fully exposed to interact with
amyloid clients, explaining its enhanced chaperone activity.

The competitive binding of �Syn and the IPI motif to C�Bc

We next investigated the competition between �Syn and the
IPI motif in binding the �4/�8 surface of C�Bc and its influence
in modulating chaperone activity. First, we titrated synthetic
peptide 156ERTIPITRE164 (named “IPI” peptide) to [15N]C�Bc.
The 2D 1H-15N HSQC spectra showed significant chemical
shift perturbations and intensity changes of residues, including
Lys90, Val91, Lys92, Val93, Leu94, Ile124, Thr134, Ser135, and Ser136

(Fig. 4, A and B), which is consistent with a previous report (40),
indicating that the IPI peptide binds to the �4/�8 strands of
C�Bc in solution. Intriguingly, 40 �M IPI peptide induced sig-
nificant HSQC spectral changes of C�Bc (Fig. 4, A and B); such
changes were only achieved by �Syn at 400 �M (Fig. 3, A and B).
The result indicates that C�Bc binds to the IPI peptide much
tighter than to �Syn, which is consistent with previous studies
by mass spectrometry showing that the Kd value for the IPI
peptide binding to C�Bc was 70 �M (36). We further mutated
the central residues 159IPI161 of the IPI peptide to AAA (named
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“AAA” mutation) and observed that the changes on NMR spec-
tra of C�Bc were diminished, which indicates the vital role of
the 159IPI161 segment in the binding of the IPI peptide to C�Bc
(Figs. 4A and S4, A and B).

Notably, although similar residues of the �4/�8 surface are
involved in the binding to the IPI peptide and �Syn, their bind-
ing patterns are significantly different as probed by NMR spec-
troscopy. �Syn binding induced a global intensity decrease of
the entire C�Bc (Fig. S3B). In contrast, binding of the IPI pep-

tide resulted in a significant intensity drop (I/I0 � 0.4) of the
interacting residues of the �4/�8 surface (Fig. 4B) in addition to
a global decrease, implying that the interaction between IPI and
C�Bc is in the fast to intermediate exchange on the NMR time
scale. Moreover, three residues, namely Lys90, Leu131, and
Ser136, exhibit distinct chemical shift perturbation patterns for
the two partners (Fig. 4C, left and right).

These differences enabled us to directly monitor the compe-
tition between �Syn and the IPI peptide for binding C�Bc at the

Figure 1. �Bc and C�Bc inhibit aggregation of �Syn and K19. A, domain architecture of �Bc. The C�Bc is flanked by a flexible NR and a flexible CT containing
a conserved IPI motif. B, ThT kinetics of �Syn aggregation inhibited by �Bc (top) and C�Bc (bottom), respectively. C, negative-stain EM images of �Syn (top) and
K19 (bottom) fibrils with and without �Bc/C�Bc at different concentrations. D, comparison of chaperone activity of �Bc and C�Bc for preventing aggregation
of �Syn (left) and K19 (right). The ThT value was taken at the 55-h time point from the ThT kinetics curves. Error bars correspond to mean � S.E. with n � 3. *
indicates p � 0.05, and *** indicates p � 0.005. a.u., absorbance units.
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residue level. We premixed [15N]C�Bc (200 �M) and �Syn (400
�M) in solution, and then by the addition of IPI peptide we
observed sequential chemical shift changes of residues Lys90,
Leu131, and Ser136 as shown in Fig. 4C (middle), which indicates
the replacement of �Syn by the IPI peptide from the binding of
C�Bc �4/�8. Only 40 �M IPI peptide, 10% of �Syn, was
required to replace �Syn for C�Bc binding, further validating
that the binding affinity of the IPI peptide to C�Bc is much
higher than that of �Syn. Consistently, the IPI peptide sig-
nificantly weakened the chaperone activity of C�Bc against
�Syn aggregation in a dose-dependent manner (Fig. 4D).
These data suggest that �Syn and the free IPI peptide com-
petitively bind to the same �4/�8 surface of C�Bc, which
indicates that this competition may regulate the two differ-
ent functions of C�Bc.

IPI motif regulates �Bc self-multimerization and client binding

To investigate the regulation of the dual functions of �Bc as
structural multimers and an amyloid chaperone, we first con-
structed �Bc(69 –175), which contains C�Bc followed by the
C terminus with the IPI motif. Similar to full-length �Bc,
�Bc(69 –175) formed higher-order multimers as characterized
by analytical size exclusion chromatography (Fig. S5). However,
the multimerization of �Bc(69 –175) was severely impaired by
both the AAA and KA mutations that disrupt the interaction

between the IPI motif and the �4/�8 surface as monitored by
analytical ultracentrifugation (Fig. 5A). These results demon-
strate the importance of the IPI–�4/�8 surface interaction in
mediating �Bc(69 –175) multimerization.

Notably, �Bc(69 –175) multimers exhibited decreased chap-
erone activity against �Syn aggregation compared with C�Bc
(Fig. 5B). However, the AAA mutation, which prevents the IPI
motif from binding to �4/�8, restored the chaperone activity
(Fig. 5B). In contrast, the KA mutation on the �4/�8 surface
that disrupts the interaction of �Bc with both �Syn and the IPI
motif abolished the chaperone activity as well as �Bc self-
assembly (Fig. 5, A and B). Furthermore, similar to that of
�Bc(69 –175), the AAA mutation of full-length �Bc signifi-
cantly disrupted the self-multimerization of �Bc but
increased the chaperone activity against �Syn aggregation
(Fig. 5, C and D). CD spectral analysis confirmed that both
KA and AAA mutations retain native structures similar to
that of WT �Bc (Fig. S6). Taken together, these results dem-
onstrate that as the C-terminal IPI motif binds to the �4/�8
surface, �Bc undergoes higher-order self-multimerization
that may serve as structural protein ensembles in maintain-
ing eye lens. As the IPI motif releases the �4/�8 surface, �Bc
may depolymerize, and its function may switch to chaperon-
ing amyloid clients.

Figure 2. N terminus of �Syn binds to both C�Bc and �Bc. A, an overlay of the 2D 1H-15N HSQC spectra of 25 �M �Syn in the absence (black) and presence
of C�Bc at molar ratios (�Syn:C�Bc) of 1:10 (blue) and 1:20 (red), respectively. Resonances with relatively large chemical shift perturbations are highlighted on
the right. B, CSDs of 25 �M �Syn titrated by C�Bc (top) and �Bc (bottom), respectively. The CSD values were calculated using the empirical equation CSD �
[�HN2 � 0.0289(�N)2]1/2 where �HN and �N represent the chemical shift differences of 1H and 15N, respectively. The domain organization of �Syn is shown on
the top of the graph. NAC stands for non amyloid-� component. C, the inhibitory effects of �Bc and C�Bc on the aggregation of �Syn and �Syn(21–140),
respectively. The ThT value was taken at the 60-h time point from the ThT kinetics curves. Error bars correspond to mean � S.E. with n � 3. *** indicates p �
0.005, and N.S. indicates not significant.
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Discussion

To maintain proteostasis, the activities of different chaper-
ones, especially the stress-activated chaperones, are under elab-
orate control by distinct regulatory mechanisms in response to
different stimuli and numerous clients (3). For instance, chap-
erone activities can be controlled by large conformational
changes trigged by pH (HdeA/HdeB) or cysteine oxidation
(Hsp33) or entire quaternary structural rearrangement (Bri2
BRICHOS) (42–45). Previous studies have shown that �Bc
multimerization is negatively correlated with its chaperone
activity (37, 38, 46). However, the structural basis underlying
this switch and the regulation of the two functions remain
unclear. In this study, we found that �Bc utilizes the same con-
served �4/�8 surface for both self-assembly and chaperoning
different amyloid clients, which enables a competitive regula-
tion between the two functions. Based on our finding in this
study and previous results (17, 19), we propose a working model
of how �Bc functions under distinct biological conditions (Fig.
6). Under normal conditions, �Bc mainly forms large, polydis-
perse multimers to maintain the liquid-like property of lens at
extra high local concentrations and to retain its autoinhibited
state with minimal chaperone activity in brain and other tis-
sues. However, under stress or disease conditions (e.g. AD and
PD) where the amyloid clients (e.g. Tau and �Syn) accumulate,
�Bc may dissociate from higher-order multimers to release
accessible �4/�8 surface with enhanced chaperone activity for

capturing amyloid clients and preventing amyloid aggregation
in brain.

However, the regulation of �Bc disassembly is not fully
understood. Previously, the NR–NR interaction was found to
contribute to �Bc multimerization (31), whereas phosphoryla-
tion of residues from the NR can depolymerize �Bc multimers
and increase its chaperone activity (38, 47). We also found that,
without NR, �Bc(69 –175) forms multimers of smaller average
size compared with that of full-length �Bc (�5S compared with
�20S), confirming the importance of NR in �Bc multimer for-
mation. Thus, it is important to study how different interac-
tions (e.g. NR–NR, IPI–�4/�8, amyloid client–�4/�8) interplay
for controlling (dis)assembly of �Bc and its chaperone activity
under different conditions and external stimuli (e.g. stress,
aging, and diseases).

In addition to forming homomultimers, �Bc also forms het-
eromultimers with different sHsps in vivo (e.g. with �A-crystal-
lin in lens and with Hsp27 outside lens) to fulfill different func-
tions (48, 49). Sequence alignment revealed that the �4/�8
interface and the IPI motif, but not the NR, are highly conserved
in �Bc, �A-crystallin, and Hsp27 (Fig. S7), suggesting that the
hetero-�4/�8 –IPI interaction may also play an important role
in regulation of the formation of heteromultimers and their
chaperone activities under different conditions. As Hsp27 was
also found to prevent aggregation of different amyloid proteins
(50, 51), it will be of great interest to explore the potential com-

Figure 3. Identification of the binding surface of C�Bc and �Bc to �Syn. A, an overlay of the 2D 1H-15N HSQC spectra of 200 �M C�Bc in the absence (black)
and presence of 400 �M �Syn (red). Residues with significant resonances changing are labeled. Resonances of the four key interacting residues, Lys90, Lys92,
Thr134, and Ser135, are highlighted on the right. B, CSD profile of C�Bc upon addition of �Syn. Deviations higher than 0.015 ppm are highlighted in red.
Secondary structure assignment of C�Bc is on the top of the graph. C, residues with large CSD (�0.015 ppm) upon �Syn titration are highlighted in red on the
structure of C�Bc (Protein Data Bank (PDB) code 2klr) with ribbon (top) and surface representation (bottom). Two key interacting residues, Lys90 and Lys92, are
shown in a zoomed-in view on the right. D, inhibitory effects of �Bc and its variants on the amyloid aggregation of �Syn (100 �M). The ThT value was taken at
the 58-h time point from the ThT kinetics curves. Error bars correspond to mean � S.E. with n � 3. *** indicates p � 0.005, and ** indicates p � 0.01.
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petition between the hetero-�4/�8 –IPI interaction and amy-
loid client binding by �Bc and Hsp27 heteromultimers and its
role in maintaining protein homeostasis under stress and dis-
ease conditions.

Experimental procedures

Plasmid construction

Genes encoding �Bc and C�Bc were amplified and inserted
into pET-28a vector with an N-terminal His6 tag following a
tobacco etch virus protease cleavage site. The gene encoding
C�Bc(69 –175) was cloned into pET-32a vector with an N-ter-
minal thioredoxin tag and His6 tag following a PreScission pro-
tease recognition site. Mutations KA (K90A/K92A) and AAA
(I159A/P160A/I161A) were constructed by site-directed
mutagenesis using Q5� site-directed mutagenesis kit (New
England Biolabs). All resulting constructs were verified by DNA
sequencing (GENEWIZ, Inc., Suzhou, China).

Protein purification

All proteins were expressed in Escherichia coli BL21(DE3)
cells. �Bc and its variants all contained a His6 tag and were
purified on a 5-ml HisTrapTM FF column (GE Healthcare) with
buffer containing 50 mM Tris-HCl, 100 mM NaCl, and a gradi-
ent of 0 –300 mM imidazole, pH 8.0. The N-terminal His6 tag of
�Bc was removed by tobacco etch virus protease in a cleavage
buffer containing 100 mM Tris-HCl and 100 mM NaCl, pH 8.0,
and the cleaved proteins were further purified by a Superdex 75
26/60 column (GE Healthcare) equilibrated with buffer containing
50 mM PBS and 50 mM NaCl, pH 7.0. PreScission protease in a
cleavage buffer containing 50 mM Tris-HCl and 100 mM NaCl, pH
8.0, was used to remove the N-terminal thioredoxin tag of
C�Bc(69–175) and its variants. Expression and purification of
amyloid proteins �Syn and K19 were the same as described previ-
ously (52, 53). 15N-Labeled proteins for solution NMR studies

Figure 4. Competitive binding of the C�Bc �4/�8 surface by IPI peptide and �Syn. A, an overlay of the 2D 1H-15N HSQC spectra of 200 �M C�Bc alone
(black) and after incubation with 40 �M IPI peptide (blue). Resonances of four residues, Val91, Lys92, Leu131, and Thr134, that underwent significant changes are
displayed in a zoomed-in view. The resonances of the same residues of C�Bc (200 �M) in the presence of 100 �M IPI-AAA peptide (dark yellow) are shown on the
right. B, residue-specific CSD (top) and intensity changes (I/I0; bottom) of C�Bc in the presence of the IPI peptide. Residues with CSD �0.015 ppm and I/I0 �0.4
are highlighted in blue, respectively. C, resonance changes of Leu131, Ser136, and Lys90 of C�Bc (black) in the presence of �Syn alone (left column; red), �Syn
(middle column; red) followed by titration of the IPI peptide (middle column; blue), and the IPI peptide alone (right column; blue), respectively. The inset shows the
direction of chemical shift changes upon titration. A cartoon of the sequential titrations of �Syn and the IPI peptide to C�Bc is shown on top. D, addition of the
IPI peptide weakens the chaperone activity of C�Bc for inhibiting �Syn aggregation. The ThT value was taken at the 80-h time point from the ThT kinetics
curves. Error bars correspond to mean � S.E. with n � 3. *** indicates p � 0.005.
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were grown in M9 minimal medium with [15N]NH4Cl (1 g/liter)
and/or [13C]glucose as the sole nitrogen and carbon source. Puri-
fication was the same as that for the unlabeled proteins.

ThT fluorescence assay

ThT fluorescence of �Syn/K19 fibril formation was moni-
tored by a Varioskan Flash spectral scanning multimode reader
(Thermo Fisher Scientific) with excitation at 440 nm and emis-
sion at 485 nm. Purified �Syn/K19 monomer was filtered
through 0.2-�m membranes (Millipore) and then was mixed
with or without �Bc and its variants at the indicated concentra-
tion in aggregation buffer (50 mM PBS, 50 mM NaCl, and 0.05%
NaN3, pH 7.0). A final concentration of 50 �M ThT was added
to each sample. Fibril growth was initiated by 0.5% freshly pre-
pared fibril seeds (the seeds were prepared by sonicating fibrils
for 15 s) and monitored over 300 runs (5 min for each run) at
37 °C with a shaking speed of 600 rpm. Three to five repeats
were performed for each experiment for statistical analysis.

Transmission electron microscopy

Images were collected on Tecnai G2 Spirit transmission elec-
tron microscope operated at an accelerating voltage of 120 kV.
Samples (8 �l) were deposited on carbon-coated grids for 45 s.
The grids were then washed twice with double distilled H2O (8
�l) and incubated with 8 �l of uranyl acetate (2%, v/v) for stain-

ing. Images were recorded using a 4000 	 4000 charge-coupled
device camera (BM-Eagle, FEI Tecnai). For visualization of �Bc
oligomers, 50 �M �Bc was prepared in phosphate buffer (50 mM

PBS and 50 mM NaCl, pH 7.0).

Size exclusion chromatography and multiangle laser light
scattering

�Bc and its variants were analyzed using an in-line Agilent
1260 HPLC coupled with a Superdex 75 10/300 GL column (GE
Healthcare) and a miniDAWN TREOS instrument (Wyatt
Technology). Three angles (45°, 90°, and 135°) were used for
monitoring light scattering at 690 nm. 100 �l of �Bc (1 mg/ml)
and C�Bc (5 mg/ml) in phosphate buffer were loaded to the
column with a flow rate of 0.4 ml/min at room temperature.

Ion mobility mass spectrometry

C�Bc was buffer-exchanged into 10 mM ammonium acetate
using a desalting column and analyzed by positive ion nano-
electrospray ionization with a flow rate of 3 nl/min. An Agilent
6560 ion mobility quadrupole TOF mass spectrometer (Agilent
Technologies) equipped with a drift tube before the quadrupole
and the TOF analyzers (54) was used for ion mobility MS anal-
yses. The instrumental parameters were as follows: gas temper-
ature, 60 °C; drying gas, 5 liters/min; nebulizer, 15 p.s.i.; capil-
lary voltage, 3500 V; TOF mass range, 300 –3200 Da; high

Figure 5. Influence of the IPI-�4/�8 interaction in �Bc multimerization and chaperone activity. A, sedimentation velocity analysis of �Bc(69 –175),
�Bc(69 –175)-KA, and �Bc(69 –175)-AAA at 20 °C at a concentration of 5 mg/ml. B, comparison of the chaperone activity of C�Bc, �Bc(69 –175), �Bc(69 –175)-
KA, and �Bc(69 –175)-AAA for preventing �Syn aggregation. The ThT value was taken at the 58-h time point from the ThT kinetics curves. Error bars correspond
to mean � S.E. with n � 3. *** indicates p � 0.005, and ** indicates p � 0.01. C, sedimentation (Sed) velocity analysis of �Bc (0.7 mg/ml) and �Bc-AAA (0.7 mg/ml)
at 20 °C. D, comparison of the chaperone activities of �Bc and �Bc-AAA for inhibiting �Syn aggregation. Error bars correspond to mean � S.E. with n � 3. ***
indicates p � 0.005.
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pressure funnel RF, 200 V; trap funnel RF, 200 V; drift tube
entrance voltage, 1300 V; drift tube exit voltage, 250 V; rear funnel
RF, 150 V; ion mobility spectrometry cell pressure, 4.00 torr.

NMR spectroscopy

All NMR samples were prepared in a buffer containing 50
mM sodium phosphate and 50 mM NaCl, pH 7.0, with 10% D2O.
All NMR spectra were acquired on a Bruker Avance 900- or
600-MHz spectrometer equipped with cryogenically cooled
probes at 25 °C. Backbone assignments of C�Bc, �Syn, and K19
were accomplished based on the collected 3D HNCACB and
CBCACONH spectra and assignments from previous studies
(55–57). 3D experiments were performed using �1 mM 15N/
13C-labeled NMR samples, respectively. For titration experi-
ments, each 2D 1H-15N HSQC spectrum was collected with 16

scans per transient and complex points of 2048 	 160. Each
NMR sample was freshly prepared from high-concentration
protein stocks with a total volume of 500 �l. 25 �M 15N-labeled
acetylated �Syn was used to conduct the titration experiments
with C�Bc concentrations of 250 and 500 �M and �Bc concen-
trations of 500 �M. 200 �M 15N-labeled C�Bc was mixed in the
absence or presence of �Syn (200 and 400 �M), the IPI peptide
(40 and 100 �M), and the IPI-AAA peptide (40 and 100 �M),
respectively. Chemical shift deviations (CSDs; ��) were calcu-
lated using the following equation,

�� � �
��1H�2 � 0.0289
��15N�2 (Eq. 1)

where ��1H and ��15N are the chemical shift differences of
amide proton and amide nitrogen between free and bound

Figure 6. Schematic diagram of the regulation of �Bc for chaperone activity and multimerization. Under normal conditions, �Bc forms polydisperse
multimers (left) with limited chaperone activity in which the �4/�8 surface is occupied by the neighboring IPI peptide. In lens, multimerization enables �Bc to
act as a structural protein that packs into higher-order structures to maintain the scattering and transparency of lens. Under stress or disease conditions, �Bc
disassembles to small multimers (e.g. dimers and hexamers) in response to different stimuli, e.g. stress or phosphorylation (PTM), and exhibits much enhanced
chaperone activity. The activated �Bc (right) may capture different pathological amyloid clients (e.g. �Syn, A�, and Tau) with a more exposed �4/�8 surface and
prevent them from forming irreversible amyloid aggregations, which are closely associated with a variety of neurodegenerative diseases (ND). The regulation
of �Bc between these two functions is accomplished by the competitive binding of the IPI motif and amyloid clients to the key �4/�8 surface of �Bc.
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states of the protein, respectively. The Kd for �Syn binding to
C�Bc was determined by NMRViewJ at 25 and 35 °C, respec-
tively. Six peaks corresponding to residues Lys90, Val91, Lys92,
Leu131, Thr134, and Ser135 from titrations were fit to a quadratic
binding curve using a base 10 quadratic fit and 250 simulations,
and then an average Kd for all peaks fitted was calculated. For
the competition experiments between �Syn and IPI peptide
binding to C�Bc, 200 �M C�Bc was first incubated with 400 �M

�Syn, and then 40 �M IPI peptide was added. All NMR spectra
were processed using NMRPipe (58) and analyzed by SPARKY
(59) and NMRView (60).

Analytical ultracentrifugation

The sizes of �Bc and its variants were determined by analyt-
ical ultracentrifugation using sedimentation velocity analysis.
All samples were prepared in a buffer containing 50 mM sodium
phosphate and 50 mM NaCl, pH 7.0. The concentration of �Bc
and �Bc-AAA used in this study was 0.7 mg/ml. The concen-
tration of �Bc(69 –175), �Bc(69 –175)-KA, and �Bc(69 –175)-
AAA was 5 mg/ml. Sedimentation velocity experiments were
performed at 50,000 rpm using a Beckman Coulter XL-I ultra-
centrifuge (Beckman Instruments) with an An60Ti eight-hole
rotor at 25 °C. The absorbance data were collected at 280 nm in
continuous mode for at least 12 h. Data were analyzed with the
program SEDFIT (61) with a continuous size-distribution (c(s))
model.

Circular dichroism

The secondary structure of �Bc and variants was measured
by a Chirascan CD spectrometer (Applied Photophysics, UK).
The samples (20 �M) were prepared in a buffer containing 50
mM PBS and 50 mM NaCl, pH 7.0. Spectra were recorded at
200 –260 nm with a step size of 1 nm and a cell path length of 1
mm. Each sample was scanned three times. All data were ana-
lyzed by Pro-Data Viewer. Secondary structural content of each
protein was determined by analysis of the CD spectrum using
CDNN and BeStSel (62), respectively.
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Kardos, J. (2015) Accurate secondary structure prediction and fold recog-
nition for circular dichroism spectroscopy. Proc. Natl. Acad. Sci. U.S.A.
112, E3095–E3103 CrossRef Medline

�B-Crystallin chaperone activity and self-multimerization

14890 J. Biol. Chem. (2018) 293(38) 14880 –14890

http://dx.doi.org/10.1016/j.jmb.2008.10.097
http://www.ncbi.nlm.nih.gov/pubmed/19041879
http://www.ncbi.nlm.nih.gov/pubmed/8520220
http://dx.doi.org/10.1093/bioinformatics/btu830
http://www.ncbi.nlm.nih.gov/pubmed/25505092
http://dx.doi.org/10.1385/1-59259-809-9:313
http://www.ncbi.nlm.nih.gov/pubmed/15318002
http://dx.doi.org/10.1016/j.ab.2006.11.012
http://www.ncbi.nlm.nih.gov/pubmed/17181992
http://dx.doi.org/10.1073/pnas.1500851112
http://www.ncbi.nlm.nih.gov/pubmed/26038575

	Mechanistic insights into the switch of B-crystallin chaperone activity and self-multimerization
	Results
	CBc is more potent than full-length Bc in preventing amyloid fibril formation
	Structural characterization of the interaction between Bc and amyloid clients
	The competitive binding of Syn and the IPI motif to CBc
	IPI motif regulates Bc self-multimerization and client binding

	Discussion
	Experimental procedures
	Plasmid construction
	Protein purification
	ThT fluorescence assay
	Transmission electron microscopy
	Size exclusion chromatography and multiangle laser light scattering
	Ion mobility mass spectrometry
	NMR spectroscopy
	Analytical ultracentrifugation
	Circular dichroism

	References


