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The transcription factor NKX2-3 mediates p21 expression and
ectodysplasin-A signaling in the enamel knot for cusp
formation in tooth development
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Tooth morphogenesis is initiated by reciprocal interactions
between the ectoderm and neural crest—derived mesenchyme.
During tooth development, tooth cusps are regulated by precise
control of proliferation of cell clusters, termed enamel knots,
that are present among dental epithelial cells. The interaction of
ectodysplasin-A (EDA) with its receptor, EDAR, plays a critical
role in cusp formation by these enamel knots, and mutations of
these genes is a cause of ectodermal dysplasia. It has also been
reported that deficiency in Nkx2-3, encoding a member of the
NK2 homeobox family of transcription factors, leads to cusp
absence in affected teeth. However, the molecular role of
NKX2-3 in tooth morphogenesis is not clearly understood.
Using gene microarray analysis in mouse embryos, we found
that Nkx2-3 is highly expressed during tooth development and
increased during the tooth morphogenesis, especially during
cusp formation. We also demonstrate that NKX2-3 is a target
molecule of EDA and critical for expression of the cell cycle
regulator p21 in the enamel knot. Moreover, NKX2-3 activated
the bone morphogenetic protein (BMP) signaling pathway by
up-regulating expression levels of Bmp2 and Bmpr2 in dental
epithelium and decreased the expression of the dental epithelial
stem cell marker SRY box 2 (SOX2). Together, our results indi-
cate that EDA/NKX2-3 signaling is essential for enamel knot
formation during tooth morphogenesis in mice.

Tooth morphogenesis is initiated by reciprocal interactions
between the ectoderm and neural crest—derived mesenchyme
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(1, 2). A good model for understanding the mechanism of ecto-
dermal organ development is tooth development, which fea-
tures well-defined developmental stages and distinctive cell
types. In mice, tooth morphogenesis is initiated by thickening
of dental epithelium to form a dental placode, followed by
invagination into the surrounding mesenchyme. Thereafter,
tooth buds progress into the cap stage, and primary enamel
knots are formed in dental epithelium, leading to tooth cusps.
In the bell stage, a secondary enamel knot forms at the tip of the
cusp-forming area to pattern the cusp and shape the tooth
crown (3, 4). In mice, only a single enamel knot is formed in
incisors, whereas both primary and secondary enamel knots are
formed in molars. An enamel knot is formed by a cluster of cells
in dental epithelium and serves as a key signaling center that
secretes sonic hedgehog (SHH),* bone morphogenetic protein
(BMP), fibroblast growth factor (FGF), and members of the
MMTYV integration site (WNT) family, which are essential for
forming the tooth crown shape and related cusps (4—6). These
signals are also essential for formation of the apical ectodermal
ridge involved in limb development (7, 8), indicating that organ
formation is regulated by a common signaling pathway. During
tooth growth, the mechanisms of differentiation during the
later stages of dental epithelial cell development have been well
defined (9-12), whereas regulation and cell fate determination
in the early stage of tooth morphogenesis are largely unknown.

Tabby and downless mutant mice have tooth, hair, and sweat
gland defects (13). The tabby gene encodes ectodysplasin-A
(EDA), a type Il membrane protein of the tumor necrosis factor
ligand family, whereas the downless gene encodes EDAR, a
novel member of the tumor necrosis factor receptor family (14).
Edar is expressed in the enamel knot, and mutations of Edar
and its ligand the Eda gene lead to ectodermal dysplasia, which
includes missing teeth and smaller teeth with reduced cusps, as
shown in mutant mice (13, 15). During this process, interac-
tions between EDA and EDAR play a critical role in cusp for-

“The abbreviations used are: SHH, sonic hedgehog; qRT-PCR, quantitative
real-time PCR; BMP, bone morphogenetic protein; FGF, fibroblast growth
factor; E, embryonic day; TSS, transcription start site; DMEM, Dulbecco’s
modified Eagle’s medium; BrdU, bromodeoxyuridine; DAPI, 4',6-di-
amidino-2-phenylindole; p-, phosphorylated; MMTV, mouse mammary
tumor virus; EDA, ectodysplasin-A; EDAR, ectodysplasin-A receptor.
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Nkx2-3 regulates tooth cusp formation and p21 expression

mation. However, activity downstream of EDA signaling
remains unclear.

NK2 homeobox families are tissue-specific transcription fac-
tors that feature a common DNA-binding structure and func-
tion as homeodomain genes, which critically regulate organ
development of evolutionarily distant organisms ranging from
the Drosophila genus to humans (16, 17). NKX2-3 is expressed
in the pharyngeal floor, as well as oral and branchial arch ecto-
derm tissues, whereas findings of Nkx2-3 knockout mice have
revealed defects in maturation and cellular organization of the
salivary glands, as well as largely absent molar cusps (18). Nev-
ertheless, the role of NKX2-3 in tooth development remains
largely unknown.

In the present study, we found a high level of Nkx2-3 expres-
sion in teeth obtained from embryonic day 14 (E14) mouse
embryos using microarray analysis. Subsequently, the expres-
sion pattern of NKX2-3 was examined and found localized in
the area of the enamel knot, which is closely related to cusp
formation. Our findings also showed that Nkx2-3 is induced by
EDA and regulates p21 transcription and expression by binding
with its promoter region, thus altering cell proliferation.
Finally, NKX2-3 induced enhancement of BMP signaling
and inhibition of SOX2 expression. These results indicate
important roles for NKX2-3 in cusp formation and tooth
morphogenesis.

Results
Nkx2-3 highly expressed during tooth morphogenesis

Microarray analysis was performed to identify expression of
tooth-specific genes in the tooth morphogenesis stage. Gene
expressions in teeth were compared with those in the whole
body of mice on E14. Scatter plot data revealed that a large
number of genes were either up- or down-regulated in E14
teeth (Fig. 1A4). Furthermore, the expression of Nkx2-3 was at a
high level in teeth relative to the whole body, which may indi-
cate its important roles during tooth development. To confirm
the expression pattern of Nkx2-3 during tooth development,
qRT-PCR was performed using total RNA obtained from tooth,
heart, submandibular gland, skin, lung, eye, kidney, hair, brain,
and stomach samples, as well as during each stage of tooth
development (i.e. E1I1-E18, as well as postnatal day 0 (P0) to
P7). Nkx2-3 expression was found to be elevated in teeth as
compared with the other examined organs (Fig. 1B) and
increased in accordance with tooth morphogenesis stage (E13—
E16) (Fig. 1C), indicating that this gene has critical roles in tooth
morphogenesis. To confirm whether Nkx2-3 is expressed in
dental epithelium or mesenchyme, E14 dental epithelium was
separated from mesenchyme under a microscope after treat-
ment with dispase, and expression levels were determined by
qRT-PCR. The dental epithelium-specific gene Krt14 was
shown to be highly expressed in epithelium, whereas Vim,
which encodes the mesenchyme-specific protein vimentin, was
highly expressed in mesenchyme, and Nkx2-3 was mainly
expressed in dental epithelium (Fig. 1D). Other members of the
NK2 family showed different expression patterns as compared
with the tooth specificity of Nkx2-3 (Fig. 1B and Fig. S1), indi-
cating that the NK2 family is composed of tissue-specific tran-
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scription factors, of which NKX2-3 may play an important role
in tooth development. To examine the localization of NKX2-3
during tooth development, we performed immunohistochem-
istry using first molars obtained from embryo heads on E13,
E14, and E16. NKX2-3 expression was shown to begin from the
bud stage (E13) and continue in the cap stage (E14), mainly in
the primary enamel knot area (Fig. 1E, enlarged right panel). In
the bell stage (E16), its expression appeared in the second
enamel knot, which is consistent with the enamel knot marker
p21 (Fig. 1E, bottom panel). Furthermore, the basement mem-
brane molecule perlecan was stained with NKX2-3 to reveal the
border of epithelial and mesenchymal tissues (Fig. 1E). These
results indicate that NKX2-3 is highly expressed in dental epi-
thelial cells and localized in enamel knot areas.

Reduction of Nkx2-3 interrupts cusp formation of molars in an
organ culture system

To examine the role of NKX2-3 in enamel knots of develop-
ing teeth, E13 mandibular tooth germs were dissected and then
transfected with control or Nkx2-3 siRNA (Fig. 2A4). Nkx2-3 was
specifically down-regulated by 50% by Nkx2-3 siRNA in an ex
vivo organ culture system (Fig. 2B). After 1 week of culture,
tooth cusp sizes in both groups were measured (Fig. 2D), with
no significant differences regarding width or total height
between the groups (Fig. 2E). However, cusp height in the pres-
ence of Nkx2-3 siRNA was significantly reduced as compared
with the control (Fig. 2, A and E). These results suggest that
NKX2-3 is critical for molar cusp formation.

Cusp formation is believed to be regulated by an enamel knot
expressing the cyclin-dependent kinase inhibitor p21. To clar-
ify dental epithelial cell proliferation in cultured molars, we
examined Ki67, a marker for cell proliferation, as well as
p21 using immunohistochemistry. The number of NKX2-3—
positive cells was reduced in molars transfected with Nkx2-3
siRNA compared with the control, whereas Ki67-positive cells
were increased in the presence of Nkx2-3 siRNA (Fig. 2, F and
G). In contrast, p21 was down-regulated in the enamel knot
area in Nkx2-3 siRNA—-transfected molars (Fig. 2, F and G). In
addition, qRT-PCR data revealed that the mRNA level of p21
(Cdknla) was also reduced (Fig. 2C), suggesting that NKX2-3
regulates p21 expression in dental epithelial cells. We consid-
ered that p21 disappearance in the enamel knot region may be a
reason for the inhibition of cusp formation seen in Nkx2-3
siRNA-transfected molars.

Nkx2-3 inhibits cell proliferation in dental epithelial cells

We evaluated cell proliferation using the M3H1 dental
epithelial cell line previously established by our group (19).
Proliferation was decreased in the Nkx2-3 transfected group
as compared with the control (Fig. 34). Cell count and bro-
modeoxyuridine (BrdU) incorporation results also showed
decreased cell proliferation in the Nkx2-3 transfectant group
(Fig. 3B). Furthermore, the ratio of Ki67-positive cells was also
reduced (Fig. 3C), which was consistent with our results shown
by organ culture immunostaining (Fig. 2, F and G). Together,
these findings suggest that NKX2-3 is necessary for regulation
of epithelial cell proliferation. We also examined expressions of
the cell cycle molecule cyclin D1 and cell proliferation—related

J. Biol. Chem. (2018) 293(38) 14572-14584 14573


http://www.jbc.org/cgi/content/full/RA118.003373/DC1

)
% %,
% %,
% %,
&J N«\\v %@
% Yo, ©
\% L} T T T T T 1 Q&\
N - ® © ¥ o o “%
-~ o o o o

N = @ < < ]
- o [S] (=] [S)

11y 10 uoissaidxe ARy

)
& &
&
<
o
@
E14 enlargement

TEriii:e %
- ~— o o o o
- —
K — T £-2XIN 0 uoissaidxe anne|oy
! N - ® © % o o
-~ o o o o

0 (@) ©
W. £-2XyN 10 uoissaidxe aAieoy hY
= m
(\}) N~
- [
o~
a B T -
© ; L o
S I 7 2

f o
[ ” O
S L g
S % (== & © =
S . Ee W -
m AR HE ©
) e ma =
o« i
& @ [ s b3 5
S g g &3 =
< = B iy
o l . &
8 5 o b
g - :
S g -
S AN o
Ww m m i _,J H T 1 Jejow is| Jaddn Jejow is} Jemoj Jejow is| Jaddn Jejow 1S | 1amoj

= [ A1 g © o - o

o T I
7: Apoq ajoym yum paseduwioo £-2XN 0 uoissaidxa anne|eyY 1dvQd / uedsjied /S-gxX)IN 1dvQ / uedsued / Lzd
X (oo 1.3) reubis pessa0.d
X < @) L
=

SBMB

A

p=y

=

—,
&

14574 J Biol. Chem. (2018) 293(38) 14572-14584



Nkx2-3 regulates tooth cusp formation and p21 expression

markers Ki67, p21, c-Myc, and c-Jun following transfection
with Nkx2-3 by Western blot analysis. Ki67, c-Myc, and c-Jun
were decreased by Nkx2-3 overexpression, whereas cyclin D1
showed no difference (Fig. 3D). Additionally, p21 was up-regu-
lated in Nkx2-3—overexpressed cells, consistent with findings
of the organ cultures. These results suggest that dental epithe-
lial cell proliferation in vitro can be adjusted by NKX2-3.

Nkx2-3 regulates cell cycle regulator p21 and binds to its
promoter region in dental epithelial cells

To confirm regulation of p21 expression by NKX2-3, we
transfected an Nkx2-3-expressing vector into M3H1 cells and
then evaluated the expression level of p21. Our results showed
that p21-positive cells were increased at 48 h after transfection
with Nkx2-3 (Fig. 3, E and F). qRT-PCR findings also showed
that Cdknla mRNA expression was increased in the Nkx2-3-
transfected group (Fig. 3F), whereas Western blotting revealed
that NKX2-3 induced p21 at the protein level (Fig. 3G). These
results suggest that NKX2-3 induces p21 expression in mRNA
and at the protein level in vitro. The expression level of p21 was
also evaluated by qRT-PCR in Nkx2-3 siRNA-transfected
M3HL1 cells, which showed that Nkx2-3 expression was signifi-
cantly inhibited and that of Cdknla (p21) was also decreased
(Fig. 4A). Next, we examined whether NKX2-3 can potentially
bind to the promoter region of Cdknla using the JASPAR data-
base and found a motif sequence (Fig. 4B). This screening
revealed a GTACTC motif at 328 bp upstream of the transcrip-
tion start site (TSS) of the Cdknal gene (Fig. 4C). To identify
binding of NKX2-3 in the Cdknla promoter region, Nkx2-3—
overexpressing M3H1 cells were fixed, and a ChIP assay was
performed using antibodies against the V5 tag. DNA segments
binding to NKX2-3 protein were detected by qRT-PCR using
primer sequences at the proximal promoter region (site 1,
bp —310 to —179) containing the consensus DNA-binding
sequences as well as the distal region of the promoter (site 2,
bp —2263 to —2130), used as a control (Fig. 4C). Expression of
NKX2-3 associated with the site 1 region of the Cdknla pro-
moter was ~4.2-fold higher as compared with the mock,
whereas it was not significantly different in the control site (Fig.
4E). To further confirm the target sequence of NKX2-3 in the
Cdknla promoter, we constructed luciferase reporter vectors
with insertion of the Cdknla promoter or a Cdknla promoter
mutant by changing the nucleotide sequence GTACTC into
GGGGTC (Fig. 4D). A Nkx2-3—expressing vector was trans-
fected into M3H1 cells, and then promoter activities were eval-
uated using a luciferase reporter assay. Compared with the
mock group, the Nkx2-3—overexpressed group had a 2-fold
increase in transcriptional activity of the WT sequence Cdknla
promoter, whereas the use of a triple-base mutation of the
Cdknla promoter region resulted in a decrease of transcrip-
tional activity as compared with the WT (Fig. 4F). These find-

ings indicated that NKX2-3 directly binds to the promoter
region of Cdknla and regulates its gene expression in dental
epithelial cells.

EDA/EDAR signaling regulates Nkx2-3 expression in dental
epithelial cells

EDA/EDAR signaling is important for enamel knot forma-
tion and tooth morphogenesis. In mice, only a single enamel
knot is formed in incisors, whereas both primary and secondary
enamel knots are formed in molars. qRT-PCR results revealed
that Nkx2-3 as well as Eda and Edar were expressed at higher
levels in molars as compared with incisors (Fig. 54), thus sug-
gesting that NKX2-3 is a key regulator for enamel knot for-
mation. To examine whether EDA/EDAR regulates Nkx2-3
expression, M3H1 cells were stimulated with Eda-al as well as
BMPs, FGF9, Wnt3a, and SHH. Nkx2-3 was shown to be signif-
icantly induced by Eda-al (Fig. 5B). Furthermore, we added
Eda-al to organ culture medium used for culturing teeth trans-
fected with Nkx2-3 siRNA, which apparently abrogated the
decrease in cusp height (Fig. 5C), suggesting that NKX2-3 is a
target transcription factor regulated by the EDA/EDAR signal-
ing pathway in the enamel knot (Fig. 5I). Other molecules,
including BMPs, did not have effects on cusp formation in
Nkx2-3 siRNA-treated organ cultures (data not shown).

BMP signaling is also an inducer of p21 and associated with
epithelial-mesenchymal interaction in the enamel knot region
(20). In an examination of the ability of BMPs to induce Nkx2-3,
we found no change in expression level of Nkx2-3 in M3H1 cells
after adding BMP2 or BMP4 (Fig. 5B). However, it was also
noted that transfected Nkx2-3 induced Bmp2 and Bmpr2
mRNA expressions (Fig. 5D) as well as phosphorylation of
Smad1/5/8 and Smadl (Fig. 5E) in M3H1 cells. Thus, NKX2-3
may directly or indirectly regulate BMP signaling in the enamel
knot (Fig. 51).

Nkx2-3 decreases Sox2+ cells in the buccal side of dental
epithelial cells

Recently, a cell lineage tracing method was used to show that
mouse molar anterior buccal secondary enamel knots are
derived from primary enamel knots, which were originally
Sox2+ cells (21). To elucidate whether NKX2-3 can drive stem
cells into differentiation, we examined expression of the dental
epithelial stem cell marker SOX2 in vitro. We cultured M3H1
cells transfected with Nkx2-3 or a mock vector for 48 h and
noted that the number of Sox2+ cells among the Nkx2-3—
transfected cells was decreased (Fig. 5F). Western blot analysis
also showed that SOX2 expression was decreased in Nkx2-3—
overexpressed M3H1 cells (Fig. 5G). We also used an ex vivo
organ culture system with or without Nkx2-3 siRNA, and found
that Sox2+ cells were increased on the buccal side of the tooth
germ and in the enamel knot in the Nkx2-3 siRNA—transfected

Figure 1. Expression of NKX2-3 and p21 during tooth morphogenesis. A, in samples obtained on E14, differentially expressed genes were identified by
microarray analysis of teeth, and the results were compared with whole embryos. Highlighted plot, Nkx2-3. Red and blue plots, up- and down-regulated genes,
respectively. B, qRT-PCR analysis of Nkx2-3 expression in tooth, heart, submandibular gland, skin, lung, eye, kidney, hair, brain, and stomach samples from E14
embryos after normalization to Gapdh mRNA expression. C, qRT-PCR analysis of Nkx2-3 expression in teeth obtained from E11 to P7 after normalization to
Gapdh mRNA expression. D, qRT-PCR analysis of Nkx2-3, Krt14, and Vim expressions in tooth epithelium and mesenchyme. £, NKX2-3 (green) expression in E13,
E14,and E16 mice, detected by immunocytochemistry. p21 (green) expressionin E13, E14, and E16 mice, detected by immunocytochemistry. Perlecan (red) was
used to detect the basement membrane. Nuclei were stained using DAPI (blue). Error bars, S.D. Scale bars, 50 um.
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Nkx2-3 regulates tooth cusp formation and p21 expression

group (Fig. 5H). Together, these results suggest that NKX2-3
contributes to cell fate determination of the enamel knot for
cusp formation (Fig. 51).

Discussion

Hypodontia, congenital absence of teeth, can occur without
or with association with certain genetic syndromes. Several
genes are known to be involved with isolated or nonsyndromic
hypodontia, such as PAX9 (22), MSXI (23), AXIN2 (24), and
EDA (25), whereas other reports have described isolated tooth
agenesis or microdontia in families with mutations of EDA
(26 -28) and EDAR (29-31), suggesting that EDA/EDAR sig-
naling is a critical component of tooth development. Further-
more, these molecules associated with tooth anomalies also
regulate enamel knot formation and function. In the present
study, we demonstrated that NKX2-3 is a potential target gene
of EDA/EDAR signaling, as it regulates cell proliferation
through p21 transcription in the molar enamel knot.

The NK2 homeobox family members are known to function
as tissue-specific homeobox transcription factors that regulate
various fundamental cellular processes, including head pat-
terning, cardiac and lung development, and neural cell specifi-
cation (32, 33). Nkx2-1 encodes thyroid transcription factor-1
(TTE-1), which is a protein that regulates transcription of genes
specific for the thyroid, lungs, and diencephalon. Nkx2-1 muta-
tions lead to surfactant protein dysregulation, which causes
interstitial lung disease in patients with brain-lung-thyroid syn-
drome (34, 35). Our results showed that Nkx2-1 was highly
expressed in lung and brain tissues obtained from E14 mouse
embryos (see Fig. S1), suggesting that the specific expression
pattern of the NK2 homeobox family is critical for tissue-spe-
cific growth and development. NKX2-3 controls development
of small intestine splenic morphology as well as shaping of lym-
phocyte dynamics and vasculature (36-41) and also salivary
gland and tooth development (18). Absence of Nkx2-3 in mouse
molars was reported to result in no cusp formation, whereas
there were no phenotypical changes in the incisors (18), sug-
gesting that NKX2-3 is a critical regulator for molar cusp for-
mation. However, the molecular mechanism of NKX2-3 in
regard to tooth development remains unclear.

An important event during tooth development is formation
of the enamel knot and its expression of several signaling mol-
ecules. During knot formation, a group of proliferating cells exit
the cell cycle and are regulated by the cyclin-dependent kinase
inhibitor p21 (20). In the present study, we found NKX2-3 to be
highly expressed in the enamel knot region of molars and
involved in regulation of p21 expression in both primary and
secondary enamel knots as a homeobox transcription factor.
BMP2 and BMP4, as well as BMP7 are expressed in early dental
epithelium and regulate tooth morphogenesis (42-46). The
expression of Bmp4 shifts to the mesenchyme at the bud stage
(47), indicating that BMPs are critical regulators for epithelial—

mesenchymal interaction during early tooth development.
BMP signaling is an inducer of p21 and associated with apopto-
sis in the enamel knot (20). Together, these findings suggest
that BMP2 in the enamel knot may induce BMP4 in mesen-
chyme through an epithelial-mesenchymal interaction at the
bud stage, and then BMP signaling is accelerated by stimulation
of BMP2 and BMP4 in the enamel knot area in an autocrine or
paracrine manner (Fig. 5I). BMP signaling may also be critically
involved in cusp formation and tooth germ development by
regulating cell proliferation and differentiation in the enamel
knot. The present findings revealed that NKX2-3 regulates
Bmp?2 and Bmpr2 expression, indicating NKX2-3 as a regulator
of the BMP signaling pathway in the enamel knot. Furthermore,
we found that BMP2 had no effects on cusp formation in an
Nkx2-3 siRNA-treated organ culture (data not shown), which
may be related to down-regulation of Bmp2 and Bmpr2 expres-
sion in Nkx2-3-silencing cells.

SOX2 is a member of the family of SRY-related HMG tran-
scription factors that are important for cell fate and differenti-
ation in developmental processes and are also essential for
embryonic development (48 —50). During tooth development,
Sox2+ cells contribute to all epithelial cell lineages and func-
tion as dental epithelial stem cells in incisor and molar devel-
opment (51, 52). Using a lineage tracing method, a recent study
revealed the cell lineage of enamel knots (21), which demon-
strated that the mouse incisor enamel knot is derived from
Sox2+ cells, some of which differentiate into ameloblasts but
not into stem cells in the cervical loop. On the other hand, in
molars, primary enamel knot cells give rise to a buccal second-
ary enamel knot. Thus, cusp formation is controlled by con-
struction of signaling centers that were originally SOX2-ex-
pressing stem cells. The present findings showed that NKX2-3
regulates SOX2 expression in M3H1 cells and ex vivo in the
tooth germ, suggesting a crucial role for NKX2-3 in enamel
knot formation and cell fate determination. Furthermore, dif-
ferences in tooth shape between incisors and molars are due to
the level of expression of NKX2-3 during odontogenesis.

We also identified NKX2-3 bound to the promoter region of
Cdknla (p21)in ChIP assay findings. An NKX2-3 binding motif
exists near the TSS of Cdknla, indicating that NKX2-3 directly
regulates Cdknla expression by binding at the promoter
region. NKX2-3 has been shown to bind with a variety of dif-
ferent genes, suggesting that other genes may be targeted for
control of cell proliferation during tooth development.

In summary, we found that NKX2-3 is highly expressed in
teeth, especially during the early developmental stage. Nkx2-3
isinduced by EDA as a target molecule of the EDA/EDAR path-
way in dental epithelial cells. NKX2-3 regulates cell prolifera-
tion by controlling p21 gene expression by binding directly to
its promoter or through the BMP signaling pathway. We con-

Figure 2. Nkx2-3 siRNA interrupts molar cusp formation and increases dental epithelial cell proliferation. A, 7-day organ cultures of E13 tooth germs
transfected with control or Nkx2-3 siRNA. B and C, expression levels of Nkx2-3 mRNA (B) and Cdkn1a mRNA (C) expression levels in 1-day organ cultures of
representative E13 tooth germs. D, schematic representation of the method used for measuring cultured tooth germs. E, relative tooth size plot (n = 12), with
the average tooth germ size in the control siRNA group set at 1.0. F, 2-day organ cultures of representative E13 tooth germs transfected with control or Nkx2-3
siRNA. NKX2-3, Ki67, and p21 expressions were detected by immunohistochemistry. G, method used for positive cell ratio calculation. Nuclei were stained with
DAPI (blue). Broken lines, basement membrane of teeth. *, p < 0.05. Error bars, S.D. Scale bars, 50 um.
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cluded that NKX2-3 is a critical regulator of cusp formationand  tocol A26-208-0). Total RNA samples from lower first molars
has an important role in regulating the fate of enamel knot cells. and whole embryos from E14 mice were isolated using TRIzol
reagent (Life Technologies, Inc.) and purified with an RNeasy
Mini kit (Qiagen, Valencia, CA) according to the manufac-
Microarray analysis turer’s protocol. RNA quality was verified using an Experion

All animal experiments were approved by the ethics commit- automated electrophoresis system (Bio-Rad), with the results
tee of the Kyushu University Animal Experiment Center (pro- showing RQI (RNA quality indicator) values of 10.0 for tooth
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RNA and 9.9 for whole-embryo RNA. Labeling and array
hybridization were performed using standard protocols at the
Research Support Center of the Research Center for Human
Disease Modeling of Kyushu University. Gene expression pro-
files were analyzed using a chip-based gene array (Mouse WG-6
version 2, Illumina, Santa Clara, CA). Data were normalized
using Genome Studio (Illumina). Gene expression analysis was
performed using Subio Platform version 1.18 (Subio, Amami,
Japan).

Tissue preparation

Pregnant mice were euthanized by anesthesia, and mouse
embryos were immediately dissected. Embryo heads were fixed
with 4% paraformaldehyde in PBS for 5 h at 4 °C, and samples
were embedded in O.C.T. compound (Sakura Finetek, Tokyo,
Japan). Frozen sections of mandibular molars and incisors were
obtained from mouse heads at each stage (E13, E14, and E16)
and cut into 10-um-thick sections.

RNA isolation and qRT-PCR analysis

Total RNA was isolated from E14 mouse tissues (tooth, skin,
lung, liver, kidney, heart, eye, and brain) and from molar tooth
buds at each developmental stage (E11, E13, E14, E15, and E18)
using TRIzol reagent (Life Technologies) and then puri-
fied using an RNeasy Mini kit (Qiagen). cDNA was synthesized
using SuperScript III reverse transcriptase reagent (Life Tech-
nologies). The specific forward and reverse primers used
for qRT-PCR were as follows: Nkx2-3, 5'-tggccctgatgatgtta-
cca-3’ and 5’'-ggaaaactgcgtcccttcag-3'; Cdknla, 5'-tcccgactct-
tgacattgct-3' and 5'-tccaaaatagaggggcaget-3'; Krtl14, 5'-gtacg-
agaagatggcggaga-3' and 5'-ctttcatgctgagetgggac-3'; Vim, 5'-
cagcagtatgaaagcgtgg-3' and 5'-ggaagaaaaggttggcagag-3'; and
glyceraldehyde 3-phosphate dehydrogenase (Gapdh), 5'-ggag-
cgagaccccactaacate-3’ and 5'-ctegtggttcacacccatcac-3'. Expres-
sion of each gene was normalized to that of Gapdh. qRT-PCR
was performed using iQ SYBR Green Supermix (Bio-Rad) with
a CFX Connect Real-Time PCR detection system (Bio-Rad).

Organ cultures

Tooth germs from mandibular molars dissected from E13
mice embryos were seeded into cell culture inserts (BD Falcon,
BD Biosciences) and grown using an air-liquid interface
culture technique in Dulbecco’s modified Eagle’s medium
(DMEM)/F-12, supplemented with 20% fetal bovine serum
(Gibco/Life Technologies), 180 ug/ml ascorbic acid, 2 mm
L-glutamine, and 50 units/ml penicillin/streptomycin at 37 °C
in a humidified atmosphere of 5% CO,, for 7 days, as described
previously (19, 53). For siRNA-mediated knockdown, tooth
germs were transfected with siRNA for Nkx2-3 (ON-TARGET

Plus L-057189-01— 0002, Dharmacon) or control siRNA (ON-
TARGET Plus Nontargeting Control Pool D-001810-05, Dhar-
macon) at a concentration of 500 nm using Lipofectamine 3000
reagent, according to the manufacturer’s protocol. EDA-A1
(200 ng/ml; R&D Systems) was added to organ culture medium.
Organs were cultured for 2 days and embedded into frozen
blocks, and then the sections were immunostained. For evalu-
ation of tooth size, E13 tooth germs were cultured for 7 days,
and tooth size was determined using Image] software (Wayne
Rasband, National Institutes of Health).

Construction of expression vectors

Nkx2-3 expression vectors were constructed using a Gateway
cloning system (Life Technologies), according to the manufa-
cturer’s protocol. Briefly, the coding sequence of mouse Nkx2-3
c¢DNA without a stop codon was cloned into a pENTR/D-
TOPO vector, and then the following forward and reverse
primers were used: 5'-cacccaattaagtggccctgatgatgttaccaage-
ccggtcacc-3' and 5'-caaaggatccaccgeeggt-3'. Expression vec-
tors were constructed using an LR recombination reaction
(pcDNA-DEST40; Life Technologies) tagged with V5-His.

Cell cultures and transfection

Dental epithelial stem cells (M3H1 cell line) were previously
isolated from the cervical loop of the mandible incisor of
4-month-old mice (19). Cells were cultured in low-Ca**
DMEM, which included DMEM (21068028, no calcium, Gibco/
Life Technologies) supplemented with 3.0 mm CaCl,, 1% L-glu-
tamine, 1% sodium pyruvate, 1% penicillin/streptomycin, and
10% Ca>* -free fetal bovine serum (10270, Gibco/Life Technol-
ogies) at 37 °C in a humidified incubator in an atmosphere con-
taining 5% CO,. Cells were cultured for 48 h in low-Ca®"
DMEM with additional recombinant protein growth factors,
such as BMP2 (100 ng/ml; Wako), BMP4 (100 ng/ml; Wako),
EDA-A1 (200 ng/ml; R&D Systems), SHH (100 ng/ml; R&D
Systems), FGF9 (2.5 ng/ml; R&D Systems), and Wnt3a (5
ng/ml; R&D Systems).

For transfection, cells were cultured in 12-well plates at a
density of 2 X 10° cells/well in low-Ca>* DMEM and then
transfected with an expression vector using Lipofectamine
3000 with Plus reagent (Life Technologies), according to the
manufacturer’s protocol.

Cell proliferation and BrdU incorporation

M3H1 cells were seeded into 96-well plates and then trans-
fected with an Nkx2-3 expression vector. Proliferation was
determined after culturing for 1, 2, 3, 5, and 7 days using a Cell
Counting Kit (CCK)-8 (Dojindo Laboratories), according to the
manufacturer’s protocol. BrdU incorporation was assayed

Figure 5. EDA/EDAR signaling regulates Nkx2-3 expression in dental epithelial cells. A, expressions of Nkx2-3, Eda, and Edar in mandibular incisors and
molars of E14 embryos. B, qRT-PCR analysis of Nkx2-3 expression in M3H1 cells cultured with the addition of different growth factors. C, relative tooth cusp
height plot (n = 12), with the average tooth germ size in the control siRNA group set at 1.0. D, qRT-PCR analysis of Bmp2 and Bmpr2 expressions in M3H1 cells
cultured with mock or Nkx2-3 transfection. £, Western blotting results of p-Smad1/5/8, p-Smad1, Smad5, Smad1, NKX2-3,and GAPDH in M3H1 cells transfected
with mock vector or Nkx2-3 expression vector. GAPDH was used as the internal control. F, SOX2 (red) expression in M3H1 cells cultured in dishes with or without
Nkx2-3 transfection. Nuclei were stained with DAPI (blue). The ratio of SOX2-positive cells among M3H1 cells cultured with or without Nkx2-3 transfection was
calculated as SOX2-positive cells/DAPI-stained nuclei. G, Western blotting results of SOX2, NKX2-3, and GAPDH in M3H1 cells transfected with mock vector or
NKX2-3 expression vector. GAPDH was used as the internal control. H, 2-day organ cultures of representative E13 tooth germs transfected with control or
Nkx2-3 siRNA.SOX2 (green) expression was detected by immunohistochemistry. /, schematic diagram showing roles of Nkx2-3 during tooth development. *, p <

0.05. Error bars, S.D. Scale bars, 50 um.
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using a BrdU labeling kit (Roche Diagnostics). Cells trans-
fected with Nkx2-3 were cultured for 48 h, and then BrdU
was applied to the plates for 30 min, and incorporated BrdU
was detected after washing with PBS, according to the man-
ufacturer’s protocol. BrdU-positive cells were counted under
a fluorescent microscope.

Immunohistochemistry

Immunostaining of frozen sections and M3HI1 cells was
performed using primary antibodies against NKX2-3 (1:500;
Abcam), p21 (1:500, Abcam), perlecan (1:500, Chemicon Inter-
national), Ki67 (1:500, Cell Signaling Technology), and SOX2
(1:500, Abcam) for 16 h at 4 °C. Cells and tissue sections were
then incubated with species-specific secondary antibodies con-
jugated with Alexa 488 or Alexa 594 fluorescent dye (Life Tech-
nologies) for 1 h at room temperature. Nuclei were visualized
by DAPI Sections were mounted with Vectashield mounting
medium (Mountant, PermaFluor, TA-030-FM, Thermo Scien-
tific). Images were captured using a C2 confocal microscope
(Nikon, Tokyo, Japan) and analyzed with NIS-Elements AR
software, version 4.00 (Nikon). Sox2+ cells were counted under
a fluorescent microscope.

Western blotting

Cells were washed twice with 1 mwm ice-cold sodium
orthovanadate (Sigma-Aldrich) in PBS and lysed with CelLytic
M (Sigma-Aldrich) supplemented with a 1% protease inhibitor
mixture (Sigma-Aldrich) and 1 mm phenylmethylsulfonyl fluo-
ride (Sigma-Aldrich), and then 10 ug of protein from each sam-
ple was separated using a 4-12% SDS-polyacrylamide gel
(NuPAGE, Invitrogen) and analyzed by Western blotting. The
blotted membranes were incubated with antibodies to NKX2-3
(1:500; Abcam), p21 (1:500; Abcam), c-Myc (1:500; Cell Signal-
ing Technology), c-Jun (1:500; Cell Signaling Technology),
cyclin D1 (1:500; Cell Signaling Technology), SOX2 (1:500;
Abcam), Ki67 (1:500; Cell Signaling Technology), p-Smad1/5/8
(1:500; Cell Signaling Technology), p-Smad1 (1:500; Cell Sig-
naling Technology), Smad1 (1:500; Cell Signaling Technology),
Smad5 (1:500; Cell Signaling Technology), and GAPDH (1:500;
Cell Signaling Technology), and then signals were detected
using an ECL kit (Amersham Biosciences) and visualized with
an ImageQuant LAS 4000 system (GE Healthcare).

ChlIP assay

ChIP assays were performed using M3H1 cells transfected
with an Nkx2-3 vector or mock vector with a ChIP-IT express
kit (Active Motif), according to the manufacturer’s protocol.
Cross-linked chromatin lysates were sonicated and incubated
with protein G—magnet beads with a V5 antibody (M215-11,
MBL) for 6 h at 4 °C. Cross-linking was reversed using a reverse
cross-linking buffer, and then DNA fragments were analyzed by
qRT-PCR using the following primer pairs: Cdknla site 1, 5'-tcc-
ttttctgggaagtggtg-3' and 5'-tcctctggggetgatagaaa-3'; Cdknla
site 2, 5'-cctagaaagcaagcctgtgg-3' and 5’-agcagcccataaacatc-
cat-3'.

Luciferase assay

A Cdknla reporter plasmid was constructed by inserting a
—435 to +81 promoter sequence into a pGL4.15 vector
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(Promega). The following forward and reverse primers were
used: 5'-tctatcctgaccctegtget-3' and 5'-tggggtctctgtctecatte-3'.
A Cdknla mutant reporter plasmid was constructed using a
QuikChange II XL site-directed mutagenesis kit (Agilent Tech-
nologies), and the following forward and reverse primers were
used: 5'-ctgacagtccctctttgggggteccctgtecttttctgg-3’ and 5'-gac-
tgtcagggagaaacccccaggggacaggaaaagacc-3'. These two reporter
vectors were transfected into M3H1 cells either with a mock
vector or the Nkx2-3 expression vector. A pRL-TK vector that
encodes Renilla luciferase was used as an internal control to
co-transfect M3H1 cells. Activity was determined 48 h later
using a Dual-Luciferase reporter assay system (Promega) with a
luminometer (LB942, Berthold). Firefly luciferase activity was
normalized for Renilla luciferase activity as an internal control.

Statistical analysis

All experiments were repeated at least three times to confirm
reproducibility. Statistical significance was determined using a
two-tailed unpaired Student’s ¢ test with Prism version 6
(GraphPad Software, La Jolla, CA). One-way analysis of vari-
ance and Tukey’s multiple-comparison test were utilized for
quantification between multiple groups. Differences with a p
value < 0.05 were considered to be statistically significant.
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