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•  Background and Aims  Currently, functional–structural plant models (FSPMs) mostly resort to static descrip-
tions of leaf spectral characteristics, which disregard the influence of leaf physiological changes over time. In 
many crop species, including soybean, these time-dependent physiological changes are of particular importance 
as leaf chlorophyll content changes with leaf age and vegetative nitrogen is remobilized to the developing fruit 
during pod filling.
•  Methods  PROSPECT, a model developed to estimate leaf biochemical composition from remote sensing data, 
is well suited to allow a dynamic approximation of leaf spectral characteristics in terms of leaf composition. In this 
study, measurements of the chlorophyll content index (CCI) were linked to leaf spectral characteristics within the 400–
800 nm range by integrating the PROSPECT model into a soybean FSPM alongside a wavelength-specific light model.
•  Key Results  Straightforward links between the CCI and the parameters of the PROSPECT model allowed us to 
estimate leaf spectral characteristics with high accuracy using only the CCI as an input. After integration with an 
FSPM, this allowed digital reconstruction of leaf spectral characteristics on the scale of both individual leaves and 
the whole canopy. As a result, accurate simulations of light conditions within the canopy were obtained.
•  Conclusions  The proposed approach resulted in a very accurate representation of leaf spectral properties, based 
on fast and simple measurements of the CCI. Integration of accurate leaf spectral characteristics into a soybean 
FSPM leads to a better, dynamic understanding of the actual perceived light within the canopy in terms of both 
light quantity and quality.

Key words: PROSPECT, GroIMP, light modelling, phylloclimate, canopy, Glycine max (L.) Merill, leaf 
senescence.

INTRODUCTION

In crops, light is a major determinant of plant growth, architec-
ture, phenology and, ultimately, yield and quality of the primary 
product. For instance, the quantity of intercepted light has a dir-
ect effect on photosynthesis and consequently on the amount 
of available assimilates. Moreover, at low light intensities and 
a low red:far-red ratio (R:FR), a shade avoidance response is 
triggered in many plant species, leading to an increase in inter-
node and petiole elongation often at the cost of reduced leaf area 
and storage organ development (Franklin and Whitelam, 2005). 
Additionally, it can lead to reduced branching in dicots and 
inhibit tillering in grasses (Casal et al., 1986), and can accelerate 
the induction of flowering (Halliday et al., 1994). These are all 
important determinants of both productivity and product quality.

Light conditions within a crop canopy are affected by the 
external light conditions together with the canopy architecture 
and composition. The crop architecture is largely determined 

by the spatial arrangement, size, shape and orientation of the 
leaves, which define the amount of incident light on the crop 
canopy. However, the interaction of the canopy with the inci-
dent light is largely dependent on the spectral characteristics 
of the plant leaves, as these affect the light perceived by the 
leaf (through absorption) as well as the light conditions within 
the canopy (through reflection and transmission). Therefore, 
knowledge of leaf spectral characteristics is critical in studying 
plant–light interactions. However, leaf spectral characteristics 
are not homogeneous in a crop canopy and change through-
out the growing season due to leaf senescence (Wu et  al., 
2012). In soybean [Glycine max (L.) Merill] specifically, leaf 
chlorophyll content changes with leaf age (Fritschi and Ray, 
2007). Additionally, during the generative phase of devel-
opment, nitrogen, an important component of chlorophyll, is 
remobilized from vegetative plant parts for pod filling (Lugg 
and Sinclair, 1981). These biochemical changes heavily impact 
the leaf spectral characteristics, resulting in a dynamic and 
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heterogeneous crop canopy and finally affecting crop growth 
and development.

Functional–structural plant models (FSPMs), which com-
bine the architecture of individual plants with ecophysiological 
aspects of plant growth, are ideal tools to study the interactions 
between plant structure, plant physiology and the environment 
(Vos et al., 2010). Given the relevance of light for plant growth 
and development, some FSPMs already incorporate an archi-
tectural plant response to the light phylloclimate [i.e. the light 
actually perceived by the plant organs (Chelle, 2005)], e.g. tiller-
ing of spring wheat (Triticum aestivum) in response to the local 
R:FR ratio (Evers et  al. 2007), tillering and internode elong-
ation of barley (Hordeum vulgare L.) as a mechanical response 
to R:FR (Buck-Sorlin et  al., 2008), and internode elongation 
in cucumber (Cucumis sativus) considering variations in both 
photosynthetically active radiation (PAR) and R:FR (Kahlen 
and Stützel, 2011). However, in FSP modelling, a focus on the 
quantitative plant response to light (i.e. photosynthesis) is still 
prevalent. Therefore, a functional approach for capturing and 
incorporating the dynamics of leaf spectral characteristics would 
aid in evaluating light interception and light phylloclimate. This 
requires knowledge of leaf biochemistry over time and a model 
to translate this knowledge into leaf spectral characteristics.

Translation of leaf biochemistry to leaf spectral characteris-
tics can be done using the PROSPECT radiative transfer model 
(Jacquemoud and Baret, 1990; Féret et al., 2008), which simu-
lates absorbance, reflectance and transmittance as a function of 
leaf composition on the individual leaf level. It has been success-
fully applied to various monocot and dicot species, including 
senescent leaves (Jacquemoud et al., 2009). Therefore, combin-
ing knowledge of leaf biochemistry with the PROSPECT model 
allows a dynamic calculation of leaf spectral characteristics, 
essential for studying light conditions within a dynamic, het-
erogeneous canopy. A necessary step for this is the acquisition 
of accurate, high-resolution measurements of leaf biochemistry 
for model parameterization. These data have been traditionally 
captured using destructive analysis of relevant leaf components 
(Jacquemoud and Baret, 1990). As an alternative, several optical 
methods have been developed for estimating these components 
non-destructively [e.g. chlorophyll (Parry et al., 2014), caroten-
oid (Fassnacht et al., 2015) and leaf water content (Baret and 
Fourty, 1997; Ceccato et  al., 2001)]. However, when spatio-
temporal patterns within a crop canopy must be monitored, such 
measurements can be costly and time consuming. Furthermore, 
if the underlying dynamics of all the biochemical components 
required for a full parameterization of the PROSPECT model 
are not known, it becomes difficult to integrate their behaviour 
in a dynamically developing FSPM. A reduction in complexity 
of the PROSPECT model may therefore aid in both the monitor-
ing and modelling aspects of leaf spectral characteristics without 
heavily impacting the spectral range of interest within FSPMs.

The present study aimed to (1) integrate the PROSPECT 
radiative transfer model into an FSPM; (2) evaluate the accur-
acy of estimations of leaf spectral characteristics through the 
PROSPECT model using only non-destructive, optical meas-
urements of the chlorophyll content index (CCI); and (3) deter-
mine the applicability of this approach on the whole-canopy 
scale by evaluating light conditions within a soybean FSPM. 
We demonstrate that this approach results in an elegant descrip-
tion of leaf transmission, absorption and reflection in FSPMs, 

allowing improvement of simulation of light interception and 
light phylloclimate within a complex canopy, while requiring 
only simple and fast measurements for model parameterization.

MATERIALS AND METHODS

PROSPECT model description

The PROSPECT radiative transfer model simulates directional–
hemispherical reflectance and transmittance (Schaepman-Strub 
et  al., 2006) over the spectral range of 400–2500  nm on the 
individual leaf level. Currently, the model is primarily used in 
its inverse form, as a means to estimate leaf biochemistry from 
reflectance data in the field of remote sensing (Jacquemoud et al., 
1995, 1996, 2009; Le Maire et al., 2004). The model calculates 
the combined effect of several photosynthetic pigments and other 
leaf constituents in a number of elemental layers within the leaf. 
The latest adaptation of PROSPECT, namely PROSPECT-D 
(Féret et al., 2017), is built on a limited number of input param-
eters (seven) to describe both the leaf structure and its compos-
ition: a parameter representing the amount of photosynthetically 
active ‘layers’ within the leaf [N, 1 < N < 3 (dimensionless)], 
the leaf chlorophyll content [Cab (μg cm–2)], the leaf carotenoid 
content [Cxc (μg cm–2)], the anthocyanin content [Cant (μg cm–2), 
the relative amount of brown pigment content [Cb, 0 < Cb < 1 
(dimensionless)], the equivalent water thickness [EWT (cm)] and 
the dry leaf mass per area [LMA (g cm–2)].

In a first step, the PROSPECT model was implemented by 
adapting the freely available MATLAB code for PROSPECT-D 
(Féret et al., 2017) to RStudio (R Core Team, 2016) (for model 
calibration and validation on individual leaves) and Java (for 
model validation on the canopy scale in GroIMP). A  Java 
implementation of the exponential integral, required for the 
PROSPECT calculations, was used (taken from Lau, 2003), 
which is integrated in MATLAB with no readily available alter-
natives for R or Java. It was chosen to focus on the spectral 
range of 400–800 nm as this includes the PAR and far-red, both 
of which are relevant towards evaluating light quality and quan-
tity within a canopy. This allowed us to set the PROSPECT 
parameters for EWT and LMA as constants (EWT set to 
0.015 cm; LMA set to 0.007 g cm–2), as these do not signifi-
cantly influence the wavelength range of interest in comparison 
with the other parameters (Féret et al., 2008).

Model calibration

For model calibration, a soybean [Glycine max (L.) Merill of 
cultivar ‘Adsoy’] field experiment was conducted at the ILVO 
site (50°58ʹ26.7ʺN, 3°46ʹ45.1ʺE). A field of 5 m2 was sown on 
13 May 2017 with a row distance of 0.25 m and planting density 
of 67 plants m–2. On 29 August, nearing the end of the growing 
season, 15 leaves were selected, ensuring coverage of a wide 
range of leaf chlorophyll content (Fig. 1), as measured with a 
CCI meter (CCM-200, Opti-Sciences, Hudson, NH, USA). The 
transmission spectrum of these leaves was then measured using 
a spectrometer (Jaz Spectrometer, Ocean Optics, Dunedin, FL, 
USA, responsive between 200 and 800  nm) under clear sky 
conditions. The transmission spectrum was obtained by com-
paring measurements of the sky conditions with the spectrum 
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acquired by the same set-up while stretching each individual 
leaf over the spectrometer sensor. Special care was taken to take 
the CCI measurements on the same position as the spectrometer 
measurements, and three measurements were taken on different 
positions of each leaf. Finally, a total of 45 CCI point meas-
urements were obtained within a CCI range of 1.1–97.7, along 
with their respective transmission spectra.

The RStudio implementation of the PROSPECT-D model 
was combined with a genetic algorithm (package ‘genalg’, 
Willighagen, 2014) to compare PROSPECT-D simulations 
with random parameter sets of N, Cab, Cxc, Cant and Cb with 
the measured transmission spectra for a wavelength range of 
400–800  nm. The goal function was set as the residual sum 
of squares (RSS) at a resolution of 1 nm. As a result, for each 
measurement, the corresponding PROSPECT biochemical leaf 
parameters were obtained. The resulting data set allowed us to 
relate the measured CCI to the obtained PROSPECT param-
eters N, Cab, Cxc, Cant and Cb.

Model validation

The modelling approach was evaluated at two scales: the indi-
vidual leaf and the whole canopy. For model validation at the leaf 
level, two smaller data sets of the same soybean cultivar were 
obtained using the method described above. Validation data set 
1 included measurements at the same site with plants sown on 
13 June 2017, exactly 1 month later than the calibration set. The 
inter-row distance was also 0.25 cm, but in this case the average 
plant density was 32 plants m–2. Data were recorded on 20 leaves 
on 16 October, resulting in 60 measurements over a CCI range of 
1.2–98.8. The second validation data set concerns plants sown on 
1 July 2016 in 4 L containers filled with potting soil and grown for 
2 months in a growth chamber (day-length of 12 h, night tempera-
ture of 15 °C, day temperature of 25 °C, daytime light intensity 
of 800 μmol PAR m–2 s–1 and relative humidity ranging between 
35 and 80 %). This set comprises measurements of nine leaves 
carried out on 1 September 2016 for a total of 27 measurements 
over a CCI range of 1.1–113.5. Measurements of the transmis-
sion spectrum of these leaves were conducted under a constant 
white light source (emission between 350 and 715 nm) which did 
not cover the whole range of 400–800 nm. Nonetheless, this data 
set allowed us to verify whether the model calibration holds under 
growth chamber conditions as well, at least for the PAR range.

Checking if the model performs well for estimating leaf spectral 
characteristics in complex canopy architectures requires a metric 

that can be measured objectively in the field as well as recreated 
in a virtual canopy, preferably with low variability. Therefore, it 
was chosen to measure and compare whole-canopy light trans-
mission on a soybean canopy that had achieved both a high degree 
of heterogeneity in terms of leaf spectral characteristics as well 
as a high degree of canopy closure. The former is important for 
inclusiveness of a large range of different leaves contributing to 
whole-canopy light interception. The latter is important to reduce 
horizontal variability of whole-canopy light transmission due to 
the absence of sun flecks. Model validation was then performed 
by directly comparing below canopy light measurements from 
a field trial with a virtual recreation of the same trial, generated 
using a soybean FSPM integrated with the PROSPECT model.

The field experiment was conducted at the ILVO site 
(50°59’33.3’’N, 3°47’04.9’’E), and consisted of one square plot 
of 4 m2 comprising rows separated by 0.25 m and sown on 11 
May 2016 using seeds of cultivar ‘Adsoy’. On 1 June 2016, the 
rows were thinned to eight plants m–1, resulting in final plant dens-
ity of 32 plants m–2. On 23 August, a date on which the canopy 
was substantially heterogeneous in terms of leaf colour, five light 
measurements were conducted above the canopy and six below 
the canopy using a spectrometer (Jaz Spectrometer, responsive 
between 200 and 800 nm) between 12.45 and 12.48 h under clear 
sky conditions. Because of the dense canopy, in situ capturing of 
plant architecture was impossible. Therefore, the four plants clos-
est to the positions where spectrometer measurements were taken 
were harvested to determine plant architecture and dimensions. 
From these four plants, the dimensions of each internode, peti-
ole and leaf were captured. The average shape of the leaves was 
determined from a large set of leaves from the same soybean cul-
tivar (>100) through image analysis (Coussement et al., 2018), 
which allowed direct estimation of the leaf area index which was 
calculated to be 3.8. The CCI was measured on three different 
positions on each leaf of each measured plant, and averaged to 
deal with horizontal variability of CCI within the same leaf. At 
the time of measurement, the canopy was relatively planophile 
and, as in situ measurements of leaf angles was difficult due to 
the dense canopy, a visual estimation of the mean branching and 
leaf angles was conducted. Actual in situ rotation of the stem, and 
thus phyllotaxis, could not be taken into account.

A static soybean canopy of 4 m2 was simulated by integrat-
ing the measured plant dimensions and leaf CCI in a soybean 
FSPM in the GroIMP modelling platform (Hemmerling et al., 
2008; Kniemeyer et al., 2008). The virtual field (Fig. 2) con-
tained eight rows of 16 plants with the same planting alignment 
as in the field (four rows m–1, eight plants per row m–1). The 
four plants at the centre were set to correspond to their real-
life counterparts, meaning their organ dimensions and leaf CCI 
were directly taken from the measured data. The other plants in 
the canopy were randomly chosen from the set of four meas-
ured plants. Internodes and petioles were modelled as green 
cylinders. Leaves were modelled as meshes with a fixed shape, 
which was obtained from calculating the average shape. Leaf 
spectral characteristics were implemented using the relation-
ships between the measured CCI and the PROSPECT param-
eters, obtained as described above. GroIMP implementation of 
the PROSPECT model allowed direct translation of measured 
CCI to leaf absorption, transmission and reflection. These values 
were calculated for each 5 nm interval between 400 and 800 nm 
and integrated in a spectral leaf shader in the FSPM.

Fig.  1.  Visual difference in leaf spectral characteristics in soybean [Glycine 
max (L.) Merill ‘Adsoy’]. These leaves were harvested on plants of the same 

age, illustrating the heterogeneity of leaves within a soybean canopy.
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The modelling of light within the canopy was done by 
using a GPU-based Monte Carlo ray tracing implementation 
within GroIMP (Henke and Buck-Sorlin, 2017), which allows 
the simulation of light over the full spectrum down to a reso-
lution of 1 nm. Combining this algorithm with the information 
integrated in the spectral leaf shaders (Phong shader, includ-
ing reflection, transmission, absorption of the whole spectrum) 
allowed detailed evaluation of the light conditions within the 
canopy. For simplification, a 5 nm resolution within the 400–
800 nm range was chosen. The light sources were positioned to 
enable combination of direct and diffuse radiation. The diffuse 
light sources were approximated using a dome of directional 
light sources (Evers et  al., 2007; Buck-Sorlin et  al., 2011), 
while the direct light source was set as a fixed point correspond-
ing to the time and location of the field measurement (adapted 
from Evers et al., 2010). The same models use a theoretical cal-
culation to account for the relative contribution of diffuse and 
direct radiation, respectively, depending on the time and loca-
tion (Spitters et al., 1986). To minimize the variation caused by 
the stochastic approach of Monte Carlo ray tracing, the light 
within each of the 50 random canopy set-ups was calculated 
five times with different random seeds for the light model. Each 
light calculation was done with 2 × 109 rays spread across the 
wavelength spectrum and a recursion depth (i.e. the maximum 
amount of reflections) of 20, which is enough to ensure light 
absorption by either soil or canopy, or reflection back to the 
atmosphere, as the chance of a ray reflecting >20 times within 
the canopy before being absorbed is very slim.

The model was validated by adding a virtual light sensor 
above and below the centre of the virtual canopy. Light sensors 
in GroIMP are virtual spheres designed to measure passing rays 
without interacting (i.e. reflecting or absorbing) with them. To 
recreate the shape of the real spectrometer sensor, the virtual 
sensors were contained in a surrounding, black cylinder with 
an open top, only allowing light from above to pass through the 
sensor. The measured spectrum at the moment of measurement 
in the field was compared with the virtual light measurement in 
the top sensor and used to calibrate the light model in GroIMP. 
As a result, the virtual light measurement of the sensor below 
the virtual canopy is directly comparable with the real spectral 
measurement in the field. This approach depends strongly on 
the occurrence of gaps within the canopy, as the quantity of 

transmitted light is substantially higher in potential sunflecks. 
In the experimental field, a complete absence of canopy gaps 
was observed visually and confirmed by the low spatial vari-
ation in the below-canopy sensor data. Complete absence of 
canopy gaps was not always true for the recreated virtual scene, 
due to the absence of data on the in situ phyllotaxis. To cope 
with uncertainty on the in situ phyllotaxis in the virtual canopy, 
the canopy simulations were repeated 25 times by randomly 
rotating the plants. To evaluate the degree of canopy closure in 
each random field set-up, a second light simulation was con-
ducted on each set-up in which the recursion depth of the light 
model had been reduced to one. As a result, only light which 
travelled directly from the light source to the sensor is sensed, 
as each ray in the model is only simulated until the first object 
(i.e. the ground, the plants in the canopy or the sensor) is hit. 
A virtual plant set-up was then selected as ‘sufficiently closed’ 
if the sum of transmitted light through canopy gaps was below 
an arbitrary selection boundary, which was chosen as 0.5 %.

RESULTS

Model calibration

The measured CCI of a leaf is strongly related to the transmission 
spectrum of that leaf, where leaves with lower CCI values trans-
mit more light (Fig. 3). The optimized transmission spectra from 
the PROSPECT model accurately capture the measured spectra, 
allowing comparisons between the optimized PROSPECT param-
eters and the measured CCI values. A first calibration round was 
conducted allowing free variations of the five retained PROSPECT 
parameters (N, Cb, Cant, Cab and Cxc). The PROSPECT model 
managed to fit to the measured transmission spectra with high 
accuracy, though with slightly lower accuracy at very low CCI 
values [Fig. 3, dashed line, mean normalized root-mean-square 
error (NRMSE) 0.026]. Inspection of the parameter trends as a 
function of the measured CCI revealed that parameter N (mean 
1.08; s.d. 0.12; data not shown) was nearly constant. Additionally, 
Cant (mean 2.16; s.d. 1.26; data not shown) and Cb (mean 0.04; s.d. 
0.06; data not shown) displayed no significant trend as a function 
of the CCI and were found to be consistently close to their relative 
lower parameter boundaries. This indicated that the presence of 
brown pigments and anthocyanin in the sampled leaves was very 
low. Therefore, a second optimization round was done where N, 
Cb and Cant were fixed to their mean values, effectively reducing 
the PROSPECT model complexity to two parameters, Cab and Cxc. 
This still allowed a very good estimation of the measured spectra 
(mean NMRSE 0.039).

As expected, PROSPECT parameter Cab was highly cor-
related to the measured CCI. The lowest measured value for 
CCI was 1.1, which corresponded to a transmission spectrum 
completely devoid of the diagnostic absorption peak (and con-
sequently a dip in the transmission spectrum) of chlorophyll 
at 675  nm (Fig.  3). At slightly higher CCI values (e.g. 1.6), 
this dip in the transmission spectrum is already clearly visible 
(Fig.  3). The relationship between chlorophyll concentration 
and CCI is often expressed as a logarithmic relationship (Parry 
et al., 2014). To ensure a chlorophyll content of 0 at CCI 1.1, 
the following relationship was fitted to express Cab in terms of 
the CCI (Fig. 4A, R2 = 0.924):

Fig. 2.  Rendered image of the virtual 4 m2 soybean canopy on 23 August 2016. 
The virtual canopy contains 128 soybean plants consisting of approx. 25 000 

plant organs, including almost 7000 individual leaves.
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	 Cab = -( ) 4 38 CCC 1 1
74

. .
.0 	 (1)

Furthermore, Cxc showed a linear relationship to Cab (Fig. 4B, 
R2 = 0.888):

	 C Cxc ab= + 5 39  21. .0 	 (2)

This leads to a reduction of the PROSPECT model to a single 
parameter for estimating the transmission spectrum of each leaf 
with only a slight reduction in accuracy (Fig. 3, dot-dashed line, 
mean NMRSE 0.047).

Model validation

At the individual leaf level, the relationships described in 
eqns (1) and (2) were used to convert measured CCI values 
into PROSPECT parameters Cab and Cxc, with N, Cb and Cant 
set as constants (as well as EWT and LMA which were set as 
constants earlier). The predicted transmission spectra were very 
close to the measured spectra in the field (validation data set 1, 
mean NMRSE 0.046) and in the growth chamber (validation 
data set 2, mean NMRSE 0.11).

At the full canopy scale, the light model in the virtual scene was 
calibrated using spectral measurements obtained above the canopy 
in the field. As a result, the average simulated spectrum closely 
matched the measured spectrum and intensity, albeit with slightly 
more variation due to the stochastic nature of the Monte Carlo ray 
tracing (Fig. 5A). The spectrum of the bottom sensor in the vir-
tual scene exhibited a strong dependence upon the occurrence of 

canopy gaps with strong variations between different set-ups. Out 
of the original 25 random virtual field set-ups, only seven were 
evaluated as sufficiently closed based on the criterion that <0.5 % 
of the light underneath the canopy originated from gaps. These 
canopy set-ups allowed a direct comparison between the simu-
lated light in the virtual canopy and the measured light below the 
canopy.

Total simulated PAR, calculated by integrating the measured 
values over the range of 400–700  nm, above the virtual can-
opy averaged 1259.20  μmol photons m–2 s–1, which is a near 
perfect recreation of the corresponding field measurements 
(1259.85 μmol photons m–2 s–1; Fig. 5A). The measured PAR 
below the canopy averaged 6.69 μmol photons m–2 s–1 (ranging 
from a minimum of 4.78 to a maximum of 11.34 μmol photons 
m–2 s–1), which represents a total PAR transmission of 0.53 % 
within the canopy. Simulated PAR within the closed architec-
tural field simulations (Fig. 5B) averaged 6.63 μmol photons m–2 
s–1 (ranging from 5.34 to 8.97 μmol photons m–2 s–1). The R:FR 
ratio was calculated by dividing the total intensity of the wave-
length range 655–665 (i.e. R) by that of the wavelength range 
725–735 (i.e. FR). The measured R:FR ratio averaged 0.051 
(with a minimum of 0.032 and a maximum of 0.101), while the 
simulated R:FR ratio of the best two canopy set-ups averaged 
0.052 (with a minimum of 0.038 and maximum of 0.069).

DISCUSSION

The original version of the PROSPECT-D model takes seven 
parameters (as described in the Materials and Methods) to 
describe the relationship between leaf spectral characteristics 
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and leaf biochemistry in detail. As our main goal was to per-
form an accurate evaluation of light conditions within a canopy 
for FSPM research, such a high degree of complexity regard-
ing leaf biochemistry was not necessary. Therefore, one of the 
goals was to find a way to estimate the leaf spectral characteris-
tics by quantifying an easy to measure variable such as the leaf 
CCI. While this reduction in model complexity comes at a small 
cost in accuracy, it allows straightforward mapping of variabil-
ity of leaf spectral characteristics within the canopy with an 
easily comparable variable. Light modelling within FSPMs is 
typically done in the spectral range of 400–700 nm, sometimes 
extended to 800 nm when FR light is also considered. Within 
this range the effect of the two PROSPECT parameters equiva-
lent water thickness (EWT) and leaf mass per area (LMA) is 
negligible when compared with the influence of Cab and Cxc, and 
these were therefore assigned a fixed value (Jacquemoud et al., 
2009). Additionally, no clear trend was found in the parameters 
N, anthocyanin content (Cant) and brown pigment content (Cb), 
which were therefore also set as constants. This led to a signifi-
cant reduction of the PROSPECT model complexity, with only 
two parameters left to be estimated from the CCI: the chloro-
phyll content (Cab) and the carotene content (Cxc).

A very high, non-linear correlation was found between 
measured CCI and corresponding Cab from the transmission 
spectra (Fig.  3A). CCI values were expected to be related to 
the chlorophyll content as a logarithmic function, as CCI is an 
index based on a difference in transmission between near infra-
red (NIR) and red light, and transmission of radiation is loga-
rithmically related to the amount of absorbing compound in the 
tissue (Parry et  al., 2014). Therefore, a logarithmic function 
was fitted to calculate Cab from the CCI (Fig. 3A). The good fit 
of this function confirmed the physiological interpretation of 

Cab as a direct expression of chlorophyll content. As Cxc related 
very well to Cab, eqns (1) and (2) allowed estimation of the 
leaf spectral characteristics based solely on CCI measurements. 
Since this is a non-destructive and very fast measurement (typ-
ically 2–3 s per data point), this approach has great potential for 
model parameterization.

Combining the PROSPECT model with a soybean FSPM 
leads to accurate approximations of the light distribution and 
intensity below the canopy (Fig. 5B). However, the occurrence 
of canopy gaps within the virtual canopy makes it difficult to 
compare simulations and measurements directly in the field. As 
the influence of canopy gaps on light transmission is significant, 
the measurements were specifically conducted in a field set-up 
with a high degree of heterogeneity concerning leaf spectral 
characteristics and a high homogeneity with respect to canopy 
closure. This resulted in measurements below the canopy with 
low variability and good comparability. Dealing with canopy 
gaps within a virtual canopy proved more difficult as, to the best 
of our knowledge, a modelling approach for incorporating can-
opy closure in FSPMs has not yet been developed. Therefore, it 
was opted to conduct a large number of random canopy simu-
lations and to use a boundary to select only those simulations 
that had achieved a high degree of canopy closure, as a means 
to evaluate our approach of incorporating PROSPECT into an 
FSPM. While this selection seems arbitrary, it is worth noting 
that canopy gaps are the result of an imperfect virtual recreation 
of the crop canopy in terms of actual phyllotaxis, rather than 
the modelling of the spectral characteristics themselves. On the 
other hand, our experiment indicated that soybean plasticity in 
phyllotaxis can be quite effective in terms of optimizing light 
harvesting. The importance of this plasticity should therefore 
be further investigated using FSP modelling.
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While the approach presented herein was applied to a static 
canopy architecture for model validation, the methodology is 
also applicable to a dynamic model in which the chlorophyll 
content depends on leaf age and senescence. Leaf senescence 
plays an important role in determining the photosynthetic 
potential of a canopy. Incorporation of leaf senescence into 
crop models is therefore not new (e.g. Lizaso et  al., 2003; 
Müller et al., 2007; Evers et al., 2010; Casadebaig et al., 2011; 
Kang et al., 2014). However, a mechanistic approach to model 
leaf senescence is, to date, not available, as key issues regard-
ing the onset of senescence due to environmental or internal 
factors have not been elucidated (Thomas and Stoddart, 2007). 
For that reason, modelling leaf senescence is mostly done as a 
function of developmental age, as leaf development progresses 
(e.g. Lizaso et al., 2003; Casadebaig et al., 2011; Kang et al., 
2014) or the timing of leaf senescence can be taken straight 
from empirical data (e.g. Evers et al., 2010). However, for the 
establishment of a mechanistic link between leaf senescence 

and light interception in FSPMs, modelling of leaf spectral 
properties is required. Therefore, spatiotemporal mapping of 
CCI is a quick and easy way to capture the dynamics of both 
leaf senescence and photosynthetic potential.

Overall, the PROSPECT model is a good tool to estimate 
leaf spectral characteristics from the CCI, and integration into 
an FSPM can lead to multiple advantages. First, as leaf chloro-
phyll content is strongly linked to leaf photosynthetic capacity, 
it is often already considered in FSPMs (e.g. Müller et  al., 
2007; Wernecke et al., 2007; Evers et al., 2010). Therefore, our 
approach allows extraction of further information, namely the 
leaf spectral characteristics, from an already important variable, 
i.e. the CCI, while also expressing them in a functional way (i.e. 
in terms of leaf biochemistry). Secondly, our approach allows 
good estimation of leaf spectral characteristics with quick, 
non-destructive measurements of the CCI, using basic measure-
ment tools (e.g. a hand-held leaf photospectrometer). Thirdly, the 
model is not computationally heavy, especially when compared 
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Fig. 5.  Illustration of the measured and simulated spectra of a soybean canopy at the ILVO site (12.45–12.48 h local time, 23 August 2016, 50°59’33.3’’N, 
3°47’04.9’’E). (A) The measured and simulated spectrum above the canopy, with the solid blue line representing the mean of five measurements and the surround-
ing area the minimal and maximal measured values. The mean measured spectrum was used to calibrate the light model in the GroIMP simulation and resulted 
in a very good recreation of the light distribution in the simulation, albeit with slightly larger variation due to the stochastic nature of the Monte Carlo approach 
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with other steps in an FSPM calculation (e.g. calculation of the 
light model). Lastly, it can lead to a better approximation of 
light quality and quantity within the canopy, which, in turn, can 
lead to better evaluations of photosynthetically absorbed light 
or photomorphogenic responses to light quality. Both of these 
are crucial in accurately describing growth, architecture devel-
opment and competition effects in FSPMs.
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