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ABSTRACT IncFIIK plasmids are associated with the acquisition and dissemination
of multiple-antimicrobial resistance in Klebsiella pneumoniae and often encountered
in clinical isolates of this species. Since the phylogeny and evolution of IncFIIK plas-
mids remain unclear, here we performed large-scale in silico typing and comparative
analysis of these plasmids in publicly available bacterial/plasmid genomes. IncFIIK
plasmids are prevalent in K. pneumoniae, being found in 69% of sequenced ge-
nomes, covering 66% of sequenced STs (sequence types), but sparse in other Entero-
bacteriaceae. IncFIIK replicons have three lineages. One IncFIIK allele could be found
in distinct K. pneumoniae STs, highlighting the lateral genetic flow of IncFIIK plas-
mids. A set of 77 IncFIIK plasmids with full sequences were further analyzed. A pool
of 327 antibiotic resistance genes or remnants were annotated in 75.3% of these
plasmids. Plasmid genome comparison reiterated that they often contain other repli-
cons belonging to IncFIA, IncFIB, IncFIIYp, IncFIIpCRY, IncR, IncL, and IncN groups and
that they share a conserved backbone featuring an F-like conjugation module that
has divergent components responsible for regulation and mating pair stabilization.
Further epidemiological studies of IncFIIK plasmids are required due to the sample
bias of K. pneumoniae genomes in public databases. This study provides insights
into the evolution and structures of IncFIIK plasmids.
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Multiple-antibiotic resistance in bacteria has emerged as an urgent threat to human
health (1, 2). Plasmids are important factors that promote the adaptive evolution of

bacterial hosts. The IncF plasmid family plays a critical role in the dissemination of antibiotic
resistance in Enterobacteriaceae (3). In particular, the IncFIIK plasmids are usually found to be
associated with the worldwide dissemination of extended-spectrum �-lactamases (ESBLs)
and carbapenemases in Klebsiella pneumoniae clinical isolates. For example, the ESBL gene
blaCTX-M-15 and the carbapenemase gene blaKPC in K. pneumoniae are frequently found on
IncFIIK plasmids (4–11).

IncFII is a major plasmid incompatibility group recognized in Enterobacteriaceae (12).
The IncFII replicon (replication region) is regulated by an antisense-RNA, CopA, that
inhibits the synthesis of the replication protein, as exemplified by plasmid Rl from
Escherichia coli (13). IncFIIK replicons are a group of homogeneous members of the
divergent IncFII replicons (3) that were initially defined according to the phylogenetic
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relatedness of IncFII replicons. All early members (plasmids pKPN3, pKPN4, pKP3-94,
pKP91, and pGSH500) are from K. pneumoniae. To date, IncFIIK plasmids are identified
mostly in K. pneumoniae and are important due to their role as a reservoir for antibiotic
resistance genes in clinical isolates. IncFIIK plasmids commonly possess multiple repli-
cons. IncFIIK replicons are often associated with FIB replicons, with types FIBpKPQIL and
FIBpKPN being found more frequently, which also distinguish two prevalent K. pneu-
moniae plasmid types, pKPQIL and pKPN3, respectively (14). There have been 17 known
alleles of the IncFIIK locus (https://pubmlst.org/plasmid/). IncFIIK plasmids are usually
large (over 100 kb) but heterogeneous in size and possess mosaic structures. Many
antibiotic resistance IncFIIK plasmids are capable of conjugation, which is attributed to
the homologous transfer regions that they carry (4, 5, 15–18).

IncFIIK plasmids can be recognized based on the IncF replicon sequence typing (RST)
scheme (3). Plasmid typing is a powerful tool to study the molecular epidemiology of
transferable plasmids. A PCR-based replicon typing (PBRT) scheme was initially devel-
oped to detect the major incompatibility groups in Enterobacteriaceae (19), but it did
not detect IncFIIK plasmids. The further-developed RST scheme solves the problems
associated with the lack of resolution of the former PBRT scheme for typing IncF
plasmids (3). A commercial PBRT kit has been devised based on the upgraded PBRT
scheme (20). The recent Web tools PlasmidFinder and pMLST (plasmid multilocus
sequence typing) allow plasmid replicon analysis and typing of high-throughput
sequencing data (21). In addition, a degenerate primer MOB typing method targeting
relaxase genes instead of replicons has also been proposed to classify gammaproteo-
bacterial plasmids (22). Although the typing schemes and methods are evolving, the
IncF RST scheme was specifically designed for IncF plasmids. PlasmidFinder, which
contains in silico plasmid replicon probes (sequences specific for plasmid replicons),
and pMLST, which contains IncF RST locus alleles for subtyping, provide resources for
the in silico typing of IncFIIK plasmids.

With the increase in the amount of whole-genome/plasmid sequencing data, there
is a need for large-scale plasmid analysis, which currently is rare (23, 24). Comparative
genomic studies of mobile genetic elements (MGEs) have provided insights into
common structural features, diverse gene pools, biological traits, and their evolution
(25, 26). In particular, studies are needed to understand the impact of IncFIIK plasmids
on the phylogeny and evolution of K. pneumoniae strains and the expansion of
particular multidrug-resistant strains.

In this study, we performed in silico typing and comparative analysis of IncFIIK
plasmids using bacterial genome and plasmid sequences available in the NCBI data-
base, based on the IncF RST scheme. We analyzed the distribution of IncFIIK plasmids
and compared the IncFIIK alleles, the conserved conjugation machineries (backbones),
and the profiles of resistance determinants among IncFIIK plasmids. This study provides
important insights into the phylogeny and evolution of IncFIIK plasmids and further
addresses their role in the acquisition and spread of resistance genes.

RESULTS
In silico typing of IncFIIK plasmids. By using the pMLST and PlasmidFinder tools

(see Fig. S1 and S2 in the supplemental material), the genome sequences of 1,441
unique strains spanning 19 Klebsiella species (Data Set S1) were analyzed. We identified
1,069 IncFIIK replicons in 918 (63.7%) genomes (Data Set S2 and Table S1). Specifically,
out of the 1,258 K. pneumoniae genomes covering 226 known STs (sequence types)
(Data Set S3), 868 (69.0%) that fall into 148 STs (65.5%) had IncFIIK replicons detected.
This ratio was higher than the average for other Klebsiella species. In the 79 complete
Klebsiella genomes, we found that 21.8% (44/202) of the plasmids belonged to the
IncFIIK group. Among the 110 fully sequenced Klebsiella plasmids that were not in the
NCBI genome database (Data Set S1), 27 (24.5%) were typed as IncFIIK plasmids (Data
Set S4), which were all from K. pneumoniae strains. In non-Klebsiella bacteria, only six
IncFIIK plasmids were found (Data Set S4).
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Divergent evolution and distribution of IncFIIK alleles. Besides the 17 IncFIIK
alleles already known, we uncovered 16 new alleles (Fig. 1). Single nucleotide variations
(SNVs) accounted for the majority of the variations of these alleles. Deletion and
insertion events were also found. These alleles fell into three groups, according to the

FIG 1 Variations, phylogenetic tree, and occurrences of IncFIIK alleles. On the left is the phylogenetic tree of all IncFIIK alleles. The tree was constructed by using the
neighbor-joining method with 1,000 bootstrap replicates in MEGA5. The topology was also supported by the maximum likelihood method (see Fig. S3 in the
supplemental material). Colors indicate different allele groups and their mapping to PlasmidFinder probes. Percentages next to the brackets are nucleotide identities
between the alleles and the best-matching probes. In the middle is the variation panel of the corresponding alleles. Allele K1 is the reference allele. Numbers on the
top are positions within the reference allele. Alleles with names in red are the ones already known before this study. On the right are the occurrences of the
corresponding alleles on a logarithmic scale. Colors indicate different data sources. Alleles with incomplete sequences were unclassified. Kp, K. pneumoniae.
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phylogenetic analysis (Fig. 1; see also Fig. S3 in the supplemental material). We also
counted the occurrence of each allele and found that K1, K2, and K5 were the three
most detected ones (Fig. 1). Interestingly, nearly all IncFIIK types with �5 occurrences
in the studied K. pneumoniae genomes were widespread in different STs (Data Set S2
and Fig. S4). For example, IncFIIK1, IncFIIK2, and IncFIIK5 replicons were found in 32, 51,
and 35 K. pneumoniae STs, respectively, out of the 226 sequenced STs. IncFIIK13

replicons were the only exception, as they were all found in one K. pneumoniae ST,
ST101 (Data Set S2), but note that ST101 strains also contained other IncFIIK replicons.

Characteristics of IncFIIK plasmids. Given that the considerable gaps in draft
genomes did not allow recognition of complete plasmids for full-content comparison,
we included the 77 IncFIIK plasmids with full sequences for further analyses (see Data
Set S4 in the supplemental material). These plasmids had various lengths (21 to 339 kb;
median, 142 kb) and GC contents (48.8% to 56.3%; median, 52.7%) (Fig. 2A and B,
respectively) and commonly possessed multiple replicons (89.6%; 69/77) (Fig. 2C and
Table S2), which was consistent with previous findings (14). The additional recognizable
replicon types included IncFIA, IncFIB, IncFIIYp, IncFIIpCRY, IncR, IncL, and IncN. Note that
many of the 77 complete plasmids are linked to clonal complex (CC) 258 strains, and
the frequencies of the replicons observed may be biased by the samples. Nevertheless,
The IncFIIK replicons have often been found to be associated with IncFIB replicons,
especially the IncFIBpKPQIL and IncFIBpKPN types (14). In addition, we did not find that
the plasmid length was correlated with replicon number (r2 � 0.165) (Fig. 2D).

IncFIIK plasmids were known carriers of antibiotic resistance genes. Consistently, we
identified 327 antibiotic resistance genes or remnants from 75.3% of the studied IncFIIK
plasmids (Data Set S5), covering nearly 50 unique genes that encode resistance to a
wide spectrum of antibiotics (Fig. 3). Interestingly, among the diverse resistance gene
combinations observed, five common clusters could be identified (Fig. 3A), each
representing plasmids with specific combinations of different types of genes.

IncFIIK plasmids were also known to be plastic. We aligned the reference plasmid
pKPHS2 (GenBank accession no. CP003224) (Fig. 4), which has a well-characterized
genetic configuration (11), against each of the IncFIIK plasmids and plotted the cover-
age in function of the position to visualize the degree of conservation. Despite the
highly variable nature of IncFIIK plasmids, the 35-kb conjugation module was found to
be the most conserved, being shared by at least 87% of IncFIIK plasmids.

Evolution of the conserved F-like conjugation modules among IncFIIK plas-
mids. Although the transfer regions (see Data Set S6 in the supplemental material) of
these plasmids were overall syntenic, there were unconserved gaps and uneven
coverage within (Fig. 4). We thus compared the components of the conjugation
modules in detail (Fig. 5). The gene organization of the conjugation module was nearly
identical to that of plasmid F, and the counterparts shared 60% to 70% amino acid
identities (Fig. 5A and Fig. S5). Each plasmid contained one F-like conjugation module,
except for pKPC-727, which contained two. Variations ranging from point mutations to
a loss of the entire conjugation module were observed among IncFIIK plasmids (Fig. 5A).
Most of the proteins involved in conjugation displayed �90% amino acid identities to
their counterparts on pKPHS2. Gene truncation and inactivation due to point mutation,
insertion sequence (IS) insertion, and disruption were seen. Some single genes were
occasionally missing, such as trbF and traT. Truncation of the conjugation module
occurred at a low frequency, being seen in only four modules. The ygfA-traMJYA regions
were found to be missing in two pKPN-498 plasmids (identical but from different
strains), while large-fragment deletions with only a few components left were observed
in two other plasmids. The entire conjugation module was absent in six plasmids, two
of which were from Enterobacter cloacae. These variations may affect or abolish the
conjugative function in different ways. Most of the protein components were con-
served, whereas TraM, TraJ, TraY, TraV, TraG, TraS, TrbE, and TrbF exhibited lower and
various degrees of conservation (Fig. 5B). TraM, TraJ, and TraY are responsible for the
regulation of the F-like type IV secretion system (T4SS) (27); TraV is a lipoprotein that
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anchors TraK as part of an envelope-spanning structure (28); and TraG and TraS are
involved in entry exclusion (29), while TrbE and TrbF are nonessential components (28).
The proteins constituting the conjugation module were generally conserved at a high
level, with a few exceptions, which were found mainly in non-K. pneumoniae strains
(Fig. 5C). The conjugation modules were roughly clustered into two groups based on

FIG 2 Characteristics of the IncFIIK plasmids. (A) Box plot of the length distribution. (B) Box plot of the
GC content distribution. (C) Distribution of different multireplicon plasmids. The matrix on the left shows
different multireplicon profiles. Numbers by the left are replicon numbers. The histograms on the right
show the numbers of plasmids with the corresponding profiles. (D) Plot of plasmid length by replicon
numbers. Box plots of the length distributions by replicon numbers are also given. The dotted line
indicates linear fitting. The equation and coefficient of determination (r2) are shown.
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the protein identity profiles (Fig. 5A). The clustering was consistent with and defined
mainly by the homologies of TraM, TraJ, and TraV. No obvious clustering was observed
in the phylogenetic tree of the DNA sequences of the transfer regions (Fig. S6). The
transfer regions were 28 to 33 kb, with little variation in size (Fig. 5D). The IncFIIK
replicons (denoted by the alleles) were located in the downstream vicinity of the tra
gene clusters (Fig. 5D).

We then constructed phylogenetic trees of the polymorphic components. The
phylogenetic trees of TraM, TraJ, and TraY were similar, and each tree exhibited four

FIG 3 Antibiotic resistance gene profiles of the IncFIIK plasmids. (A) Profiles of intact, truncated, and/or inactivated resistance genes. On the top are the classes
of antibiotics denoted by different colors and the corresponding resistance genes. “Δ” indicates truncated genes. blaOXA-9* and ΔcatB3* in gray blocks and gray
lettering are inactivated genes due to point mutations. The dendrogram on the left was generated by the correlation similarity metric and average linkage
clustering. NA, not available. (B) Profiles of truncated resistance gene remnants. Plasmid names, GenBank accession numbers (in parentheses), IncFIIK types, K.
pneumoniae STs, occurrences of each resistance gene (remnant) among these plasmids, and numbers of resistance genes (remnant) for each plasmid are shown.
Plasmids that do not contain annotated resistance genes or remnants are not shown.
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major branching patterns, while within each branch, the components were rarely
divergent (Fig. 6A). Remarkably, the set of conjugation modules under a major branch
of the TraM tree also constituted a major branch of the TraJ or TraY tree. Similar features
were found in the phylogenetic trees of TraG and TraS (Fig. 6B). The TraG and TraS trees
were different from those of TraM/TraJ/TraY, and each tree exhibited five major
branching patterns. TraV, TrbE, and Trb displayed distinct phylogenetic patterns (Fig.
S7), suggesting that they might have evolved independently.

The consensus of oriT (origin of transfer) among these conjugation modules was also
observed (Fig. 6C). The oriT loci were homologous to oriT of plasmid F. There are two

FIG 4 Alignment plot of the IncFIIK plasmids against plasmid pKPHS2. pKPHS2 (GenBank accession no. CP003224) was used as a reference plasmid for
alignment. Its gene organization (drawn to scale) and mobile genome are shown on the top. The conjugation module (transfer region) is denoted by green
lines. The blue line in the chart below indicates the corresponding regions of pKPHS2 that occurred in how many plasmids (occurrence), while the orange line
indicates how many hits of the corresponding region of pKPHS2 were found among the IncFIIK plasmids (coverage, or number of hits). The horizontal axis
indicates the coordinates of pKPHS2. The red line highlights the total number of analyzed plasmids (77 plasmids). A zoom-in view of the conjugation module
is shown at the bottom.
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FIG 5 Comparison of the conjugation modules of the IncFIIK plasmids. (A) Homology matrix of the conjugation proteins. The color gradient indicates
identities at the amino acid level to pKPHS2 proteins. The profile of plasmid F (in red) is shown at the bottom of the matrix. The dendrogram on the left

(Continued on next page)
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sets of inverted repeats flanking the nic site on plasmid F, whereas on IncFIIK plasmids,
one set was degenerated due to SNVs.

DISCUSSION

We have performed large-scale in silico typing and analyses of IncFIIK plasmids to
elucidate IncFIIK replicon phylogeny and plasmid structural features. IncFIIK plasmids
are prevalent in K. pneumoniae but sparse in other Enterobacteriaceae and almost
limited to Klebsiella spp., highlighting that IncFIIK plasmids are strictly narrow-host-
range plasmids.

IncFIIK replicons were relatively heterologous, consistent with the diversity observed
with the IncFII replicons (3, 13, 30). It has been suggested that the evolution of the IncFII
replicons is promoted to broaden compatibility with incoming IncF plasmids (3, 31).
Moreover, the IncFIIK alleles can be divided into three lineages with different variation
signatures. The PlasmidFinder probes were capable of discriminating these lineages, as
one lineage is closely related to probe IncFII(K)_1, while the other two are closely
related to probe IncFII_pKP91. Alleles of the IncFII(K)_1 lineage were detected more
frequently than those of the IncFII_pKP91 lineages, suggesting that plasmids with the
IncFII(K)_1 replicons may have wider dissemination and/or be more adaptive under
selective pressure. However, this result may reflect the IncFIIK plasmid distribution only
under certain circumstances because there is an inevitable bias in isolation origin in the
current genome database (e.g., more clinical isolates than environmental ones or more
resistant isolates than susceptible isolates). Indeed, in silico multilocus sequence typing
(MLST) showed that the public database contained a large number of CC258 (especially
ST258 and blaKPC-associated) genomes (see Data Set S3 in the supplemental material),
which might have resulted in overrepresented IncFIIK1 and IncFIIK2 lineages. Further
molecular epidemiological investigations of IncFIIK plasmids are required due to the
sample bias in the database used, especially by prevalent clinical clones and/or clones
from outbreaks. Nevertheless, we have observed that most IncFIIK types are widespread
in different K. pneumoniae STs, strongly highlighting the lateral genetic exchange of
IncFIIK plasmids in K. pneumoniae.

We further analyzed the structures of IncFIIK plasmids. The IncFIIK plasmids often
carry other IncF replicons. However, using current data, we did not find any replicon
combination that was correlated with particular ST clones, further suggesting that there
might have been genetic exchange between different clones. The multireplicon status
has been believed to be a mechanism to broaden the host range by the acquisition of
broad-host-range replicons (31) and/or to increase the compatibility of the incoming
plasmids with incompatible replicons by using alternative replicons for replication (32).
The reason why multireplicon IncFIIK plasmids are still of a narrow host range is likely
because most of the additional replicons also belong to the narrow-host-range IncF
group. Whether the IncFIIK replicons in the multireplicon plasmids are functional is
unclear, but it has been known that IncFII replicons do not participate in the initiation
of replication when associated with FIA and/or FIB replicons, consistent with their
diversity (3). The diversity of IncFIIK replicons implies that they are usually not respon-
sible for the control of plasmid replication. Indeed, in pKP048, an IncFIIK5 plasmid, the
IncR replicon is believed to control replication (4). The number of coexisting replicons
does not correlate with the plasmid length. Plasmids are highly mosaic, the contents of
which are shaped by various mobile genetic elements (MGEs) with diverse genetic
events, resulting in variable plasmid sizes.

FIG 5 Legend (Continued)
was drawn by the correlation similarity metric and average linkage clustering. Plasmid names, GenBank accession numbers (in parentheses), IncFIIK types,
K. pneumoniae STs, occurrences of each gene among these plasmids, and numbers of component genes of each module are shown. Red lettering indicates
that the two conjugation modules are from the same plasmid, pKPC-727, which are distinguished by the letters “a” and “b.” Plasmids in the gray blocks
are from non-K. pneumoniae strains. NA, not available. (B) Box plot of the identity distribution of each type of protein. The corresponding median and
average values are shown on the top, using the same color gradient scheme. (C) Box plot of the identity distribution of proteins constituting the conjugation
modules. The corresponding median and average values are shown, using the same color gradient scheme. (D) Positions of the conjugation modules (green
or orange, defined by tra cluster orientations) and IncFIIK loci (red, regardless of orientation) on these plasmids (gray).
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A vast pool of diverse antibiotic resistance genes were found among IncFIIK plas-
mids. Multiresistance regions (MRRs) are usually modular and mosaic (33), but we found
that the presence of antibiotic genes may fall into different signature clusters, which
could provide hints about the evolutionary trajectories of the MRRs on IncFIIK plasmids.
These clusters are not necessarily associated with IncFIIK types. For example, the
overrepresented IncFIIK1 and IncFIIK2 replicons spanned different clusters, implying that
IncFIIK plasmids are open to diverse antibiotic resistance genes. Given that most of the

FIG 6 Comparison of selected polymorphic components and oriT of the F-like conjugation modules. (A) Phylogenetic trees of the T4SS regulators TraM, TraJ, and TraY.
(B) Phylogenetic trees of TraG and TraS that are involved in entry exclusion. Major branches representing the same sets of conjugation modules in different trees are
denoted by identical colors. The trees were constructed by using the neighbor-joining method with 1,000 bootstrap replicates in MEGA5. Plasmids with same names
are discriminated by their GenBank accession numbers (in parentheses). The letters “a” and “b” are used to distinguish the two conjugation modules on plasmid
pKPC-727, as described in the legend of Fig. 5. (C) Consensus logo of the oriT sequences of IncFIIK plasmids aligned with oriT of plasmid F (with a double-strand
sequence). Asterisks denote 100% conserved residues. The height of the letters indicates the degree of conservation of each base. Bits indicate base frequencies on
a log2 scale. Vertical lines indicate identical bases between the IncFIIK plasmids and plasmid F. Half-arrows indicate inverted repeats.
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resistant plasmids are from clinical isolates, our results reiterate the prominent role of
IncFIIK plasmids as carriers of diverse antibiotic resistance genes in K. pneumoniae in
clinical settings.

Whole-plasmid genome comparison suggests that IncFIIK plasmids are highly vari-
able but commonly share an F-like conjugation module as their backbone. The highly
variable regions usually experience extensive gene rearrangements and accommodate
diverse resistance-associated ISs, integrons, and/or transposons (33). The conjugation
module consisted of oriT, a gene coding for relaxase (TraI), and a tra gene cluster coding
for a Tra_F type IV secretion system (T4SS). Many IncFIIK plasmids bearing this transfer
region have been reported to be conjugative (4, 5, 15–18). It is very likely that the
conjugation modules of IncFIIK plasmids have diverged from the same ancestor of
plasmid F. The majority of the genes responsible for conjugation are highly conserved,
while variation occurs in the genes responsible for regulation and mating pair stabili-
zation. Although traM, traJ, and traY belong to different transcription units, they were
located in tandem and seemed to have coevolved. As the key regulators of the T4SS
(27), different types of TraM-TraJ-TraY variants may possess different regulatory capac-
ities, resulting in different conjugation dynamics. The coevolution of the two genes traG
and traS, involved in entry exclusion, may have an impact on mating pair stabilization
(28). It is likely that genes participating in the shared function have coevolved. Mean-
while, the lack of similarity in the phylogenetic trees of those genes with different
functions indicates that these conjugation modules may have gone through modular
evolution. Whether plasmid-host interaction and/or coevolution plays a role in this
variation awaits investigation. The results may suggest that there were equal selective
pressures on these conjugation modules, while individual genes were subject to
different evolutionary pressures (25).

The findings of our study will advance our understanding of the evolution and
structures of IncFIIK plasmids and expand the application of plasmid typing. Further
epidemiological studies of IncFIIK plasmids are required due to the current sample bias
of K. pneumoniae genomes, especially overrepresented by clinical isolates of certain STs.

MATERIALS AND METHODS
Genomic data. Data for complete and draft Klebsiella genomes were retrieved from the NCBI

genome database (http://ftp.ncbi.nih.gov/genomes/). Genomes meeting RefSeq exclusion criteria (e.g.,
genomes containing many frameshifted proteins, a low contig N50, or missing rRNA genes or genomes
that were too long) were excluded. For genome assembles of a repeatedly sequenced strain, the one
with a higher or the highest assembly level was taken as applicable or otherwise taken randomly. From
1,524 sequenced genomes representing 20 Klebsiella species, 79 complete genomes and 1,362 draft
genomes of 1,441 unique strains spanning 19 Klebsiella species were included for analysis (see Data Set
S1 in the supplemental material). Among the completely sequenced strains, 62 contained 202 plasmids,
while the others contained none (Data Set S1). Meanwhile, 110 fully sequenced Klebsiella plasmids that
were not in the NCBI genome database (Data Set S1) were retrieved from the plasmid category of the
NCBI RefSeq database (http://ftp.ncbi.nih.gov/refseq/release/plasmid/).

In silico multilocus sequence typing of K. pneumoniae genomes. Allele sequences of the gapA,
infB, mdh, pgi, phoE, rpoB, and tonB loci and multilocus sequence typing (MLST) profile definitions were
downloaded from BIGSdb (http://bigsdb.pasteur.fr/) (34). Alleles from the K. pneumoniae genomes
were identified with BLASTn, with criteria of 100% identity and 100% coverage. Sequence types (STs)
were then defined according to the allele profiles by using an in-house Perl script.

In silico typing of IncFIIK plasmids in Klebsiella genome sequences. Plasmid replicon probes were
downloaded from PlasmidFinder (21), while IncFIIK alleles used for subtyping were obtained from pMLST
(http://pubmlst.org/plasmid/). There were 121 replicon probes in PlasmidFinder and 17 IncFIIK alleles (K1
to K17) in pMLST when we conducted this study. Mega BLAST of the 17 alleles against the PlasmidFinder
database and phylogenetic analysis of the alleles were performed to determine the best-matching
probes and to define the corresponding identity thresholds (see Fig. S1 in the supplemental material).

A two-step in silico IncFIIK replicon typing approach was developed (Fig. S2). The first step was
screening of IncFIIK or IncFIIK-like replicons using the PlasmidFinder probes, and the second step was
cross-verification and subtyping using the collected IncFIIK alleles. Briefly, DNA sequences (plasmids/
scaffolds/contigs) were subjected to Mega BLAST (E value, �0.001) against the PlasmidFinder database.
Sequences probed by “IncFII(K)_1__CP000648” [IncFII(K)_1 for short] with identities of �90% or
“IncFII_1_pKP91_CP000966” (IncFII_pKP91 for short) with identities of �80% as the best hits were
selected. The probed regions with short flanks were then subjected to Mega BLAST (E value, �0.001;
identity, �90%) against the IncFIIK alleles selected based on the probing results (Fig. S2). Plasmids with
hits were defined as IncFIIK plasmids. Other replicons on these plasmids were typed by using other
PlasmidFinder probes. Manual review was finally conducted. Given that IncFIIK replicons are conserved,
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the identity thresholds that we used were strict to ensure specificity. All in-house computer scripts in this
study were written in Perl unless otherwise specified.

In silico typing of IncFIIK plasmids in non-Klebsiella bacteria. IncFIIK plasmids in non-Klebsiella
bacteria were identified from the NCBI nucleotide collection (nr) online with its own BLASTn program
according to the described strategy (http://blast.ncbi.nlm.nih.gov/Blast.cgi). The PlasmidFinder tool was
used to identify other replicons in the analyzed plasmid sequences.

Annotation of antibiotic resistance genes. Antibiotic resistance genes were annotated by using
Mega BLAST (E value, �0.0001; identity, �70%) against the ResFinder database (35, 36), followed by
manual review.

Comparative genomics of IncFIIK plasmids. The IncFIIK2 plasmid pKPHS2 (GenBank accession no.
CP003224) of the well-studied K. pneumoniae strain HS11286 (11, 37) was used as a reference plasmid for
comparison. The genome of HS11286 is the representative genome of K. pneumoniae in the NCBI
database, and pKPHS2 is a well-documented blaKPC-2 carrier (11). All fully sequenced IncFIIK plasmids
were aligned with pKPHS2 by using Mega BLAST (E value, �0.001). The number of hits of different
regions of pKPHS2 were counted to identify conserved regions. The conjugation module of each plasmid
was compared with that of pKPHS2, gene by gene. Type IV secretion systems (T4SSs) were annotated by
using SecReT4 (38) when needed. Putative oriT was predicted by BLASTn (E value, �0.001) against oriT
of plasmid F (GenBank accession no. AP001918) (30).

Multiple-sequence alignment and phylogenetic analysis. Multiple-sequence alignments of short
DNA sequences (IncFIIK alleles and oriT) and protein sequences were performed with MUSCLE v3.7 (39),
while those of long DNA sequences (regions of the conjugation module) were performed with Kalign
v2.04 (40). The MEME suite was used to visualize consensus sequences where applicable (41). Inferred
phylogenetic trees were constructed by using the neighbor-joining method and/or the maximum
likelihood method with 1,000 bootstrap replicates in MEGA5 (42).

Dendrogram. A dendrogram was generated by using the “heatplot” function of the R package
made4 (43), which draws dendrograms using the correlation similarity metric and average linkage
clustering.
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