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ABSTRACT We examined the antiviral activity of the integrase inhibitor (INI)
cabotegravir against HIV-2 isolates from INI-naive individuals. HIV-2 was sensitive to
cabotegravir in single-cycle and spreading-infection assays, with 50% effective con-
centrations (EC50s) in the low to subnanomolar range; comparable results were ob-
tained for HIV-1 in both assay formats. Our findings suggest that cabotegravir
should be evaluated in clinical trials as a potential option for antiretroviral therapy
and preexposure prophylaxis in HIV-2-prevalent settings.
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Human immunodeficiency virus type 2 (HIV-2) is endemic in West Africa and has
spread to other locales with socioeconomic ties to the region (1, 2). Relative to

HIV-1, HIV-2 infection involves a slower rate of CD4 cell decline, lower plasma viral
loads, and slower disease progression (3–7). Nevertheless, significant numbers of HIV-2
and HIV-1/2 dually infected individuals eventually progress to AIDS and can benefit
from antiretroviral therapy (ART) (7–11).

There are important differences between HIV-1 and HIV-2 with regard to antiretro-
viral (ARV) drug sensitivity (12, 13). HIV-2 is intrinsically resistant to nonnucleoside
reverse transcriptase inhibitors (NNRTIs) (14, 15) and shows relatively poor sensitivity to
several HIV-1-active protease inhibitors (PIs); saquinavir, darunavir, and lopinavir appear
to be the only PIs with clinically effective potency against HIV-2 (16–20). These
distinctions complicate HIV treatment in West Africa and other regions where HIV-1 and
HIV-2 cocirculate. Difficulties in differentiating HIV-2 or HIV-1/2 dual infection from
HIV-1 infection can lead to the inappropriate use of NNRTI-based regimens in HIV-2-
infected patients and to premature use of PI-based regimens as first-line ART in patients
infected solely with HIV-1 (21–23). Efforts are needed to simplify ART in areas where
HIV-1/HIV-2 discriminatory testing is unreliable and stockouts of HIV-2-active antivirals
are commonplace (24).

ARV regimens containing two nucleoside reverse transcriptase inhibitors (NRTIs)
plus an integrase inhibitor (INI) or an NNRTI are currently recommended by the World
Health Organization for first-line treatment of HIV-1 infection (25). A growing body of
evidence suggests that INI-based regimens might fulfill the need for universally active
first-line ART in settings where HIV-2 is endemic. HIV-2 is susceptible to the INIs
raltegravir, elvitegravir, and dolutegravir, with 50% effective concentrations (EC50s) in
the low-nanomolar to picomolar range (26–31). Data from case studies and small case
series indicate that raltegravir- and elvitegravir-based regimens can suppress HIV-2 viral
loads in ART-naive individuals (32, 33) and in ART-experienced patients whose treat-
ment history does not include an INI (32, 34–39). More recently, two groups conducting
clinical trials in ART-naive HIV-2-infected patients reported favorable immunovirologic
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outcomes in response to INI-based regimens (40, 41). In addition, some evidence
suggests that dolutegravir might be effective in a subset of HIV-2-infected patients who
have developed resistance to raltegravir (42–44).

Cabotegravir (S/GSK1265744; Shionogi/GlaxoSmithKline) is an investigational INI
currently in development for the prevention and treatment of HIV-1 infection (45, 46).
The antiviral potency and pharmacokinetic properties of cabotegravir render the drug
amenable to once-daily oral dosing, and long-acting injectable formulations of the drug
have been evaluated in nonhuman primate models of HIV-1 infection and in clinical
trials (47–58). In contrast, there are no published data regarding the activity of cabote-
gravir against HIV-2, although one group reported a mean EC50 of 0.12 nM for four
HIV-2 isolates at an international meeting (59).

In the current study, we tested the susceptibility of 15 different HIV-2 isolates (8 from
group A, 6 from group B, and 1 A/B intergroup recombinant) to cabotegravir in
single-cycle infections of MAGIC-5A indicator cells. A detailed description of the single-
cycle assay has been published elsewhere (60). We further tested a subset of our HIV-2
library in 6-day spreading infections of an immortalized T-cell line (CEMss) as described
below. In both assay formats, HIV-1 isolates from ART-naive individuals were included
for comparison. The 50% cytotoxic concentrations (CC50) of cabotegravir in MAGIC-5A
and CEMss cells were �1 and �10 �M, respectively, as assessed by CellTiter-Glo
luminescent cell viability assay (Promega) (see Fig. S1 in the supplemental material).

Single-cycle assays: HIV-1NL4-3 and HIV-2ROD9. We initially compared the suscep-
tibility of two prototypic HIV strains to cabotegravir, i.e., HIV-1NL4-3 (group M, subtype
B) and HIV-2ROD9 (group A). These viruses were derived from 293T/17 cultures that were
transfected with corresponding full-length plasmid molecular clones as previously
described (61). Both strains were tested against cabotegravir from two sources, Glaxo-
SmithKline (GSK) and Selleck Chemicals, Inc. All dilutions of the drug were prepared in
10% vol/vol dimethyl sulfoxide (DMSO); the final concentration of DMSO in the assay
wells was 1%.

Cabotegravir from both suppliers was highly active against HIV-1NL4-3 and HIV-
2ROD9, with EC50s ranging from 1.2 to 1.7 nM (see Table S1 in the supplemental
material). These values are consistent with the EC50s reported for HIV-1NL4-3-based
vectors in a single round of replication (EC50s of 0.5 nM [47] and 1.6 nM [62]).
Altogether, HIV-1NL4-3 and HIV-2ROD9 were similar in their susceptibility to cabotegravir;
after 15 and 27 independent determinations, respectively, the mean EC50s for these two
strains differed by �1.1-fold (Fig. 1A and Table 1). For HIV-2ROD9, the antiviral potency
of cabotegravir was comparable to that of dolutegravir but greater than that of
raltegravir and elvitegravir, as determined in the single-cycle assay (Fig. 1B).

Single-cycle assays: other HIV-1 and HIV-2 isolates. Next, we tested other HIV
isolates from ARV-naive individuals in single-cycle infections. Cabotegravir inhibited
group M HIV-1 strains from subtypes A, B, C, and D, as well as the group O isolate
HIV-1MVP5180-91, with EC50s ranging from 1.3 to 2.2 nM (Table 1). A similar range of EC50s
was observed for eight group A HIV-2 strains (0.92 to 2.7 nM) (Table 1). Slight reductions
in cabotegravir sensitivity relative to HIV-2ROD9 were apparent for group B isolates
HIV-2CDC310319 and HIV-2EHO (EC50s, 4.0 � 0.84 and 4.1 � 1.4 nM, respectively; P �

0.0001, analysis of variance with Sidak’s posttest). However, four other HIV-2 group B
isolates yielded EC50s that were similar to those seen for HIV-1 and HIV-2 group A
(range, 1.0 to 2.7 nM) (Table 1). In addition, the A/B intergroup recombinant HIV-27312A

(CRF01_AB), which contains a group B integrase sequence, was fully susceptible to the
drug (EC50, 1.6 nM) (Table 1). Altogether, the average EC50s (�1 standard deviation) for
HIV-1, group A HIV-2, and group B HIV-2 were 1.7 � 0.38, 1.8 � 1.0, and 2.6 � 1.3 nM,
respectively.

As an additional control, we determined the susceptibility of each of the HIV-1 and HIV-2
isolates discussed above to the NNRTI efavirenz. All HIV-2 strains were highly resistant to
efavirenz in single-cycle infections, whereas all HIV-1 group M strains were susceptible to
the drug (Table 1; see also Fig. S1 in the supplemental material). HIV-1MVP5180-91 (group O)
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also showed a reduction in efavirenz susceptibility relative to HIV-1 group M (EC50, 54 � 6.5
nM); this result is consistent with a previous report showing that HIV-1MVP5180-91 is intrin-
sically resistant to the NNRTIs delavirdine and nevirapine in culture (63).

To ensure that our single-cycle assay could detect subtle differences in cabotegravir
susceptibility, we constructed and tested HIV-1 and HIV-2 variants that contained site-
directed mutations in the integrase-encoding region of pol; these mutations encode amino
acid changes that are known to confer low- to intermediate-level resistance to cabotegravir
and/or other INIs in vitro (27–31, 62, 64–67). The combination of replacements E92Q and
N155H in HIV-1NL4-3 integrase conferred a 3.9-fold increase in the EC50 for cabotegravir
relative to the parental wild-type clone. In contrast, the Y143C mutation alone or in
combination with T97A had no impact on cabotegravir susceptibility (Table 2). These results
are concordant with previous findings for Y143C and E92Q�N155H mutants of HIV-1 in
single-cycle assays (47, 62). In addition, the E138K�G140S�Q148R mutant of HIV-1NL4-3

was 10-fold resistant to cabotegravir. For HIV-2ROD9, mutants E92Q�Y143C, E92Q�N155H,
and G140A�Q148R were 1.5-, 7.5-, and 6.9-fold resistant to cabotegravir, respec-
tively, relative to wild-type HIV-2ROD9 (Table 2). Collectively, these data show that
the single-cycle assay can reliably detect low-level cabotegravir resistance in both
HIV-1 and HIV-2.

Spreading-infection assays. To assess the robustness of our findings with the
single-cycle assay, we evaluated the activity of cabotegravir against two HIV-1 and eight
HIV-2 isolates (five from group A, three from group B) in spreading infections of CEMss
cells (also referred to as the multicycle assay). Briefly, 96-well microcultures of CEMss
cells were treated with various concentrations of cabotegravir, followed by infection
with HIV-1 or HIV-2 at a multiplicity of 0.01 to 0.04 focus-forming units per cell. Half of
the culture volume was removed at days 2 and 4 postinfection and replaced with an

FIG 1 Antiviral activity of cabotegravir against HIV-1NL4-3 and HIV-2ROD9. All data in the figure are from single-cycle
infections of MAGIC-5A cells. Error bars indicate �1 SD and, when not visible, are smaller than the symbols. (A) Results from
a single assay in which HIV-1NL4-3 (gray circles) and HIV-2ROD9 (black boxes) were tested head-to-head. Data points
represent the amount of �-galactosidase activity produced in HIV-infected cabotegravir-treated cultures relative to
HIV-infected solvent-only (i.e., no-drug) controls. Each point is the mean of two cultures that were maintained in parallel.
Curves were generated using a sigmoidal regression equation (GraphPad Prism 6.0 software). Mean EC50s from multiple
assay runs with HIV-1NL4-3 and HIV-2ROD9 are shown in the inset. Values below the x axis indicate the total number of assay
runs that were performed for each strain. The P value was calculated using Welch’s t test. (B) EC50s obtained for HIV-2ROD9

tested against cabotegravir (CAB), dolutegravir (DTG), raltegravir (RAL), and elvitegravir (EVG). Data for raltegravir and
dolutegravir are contemporaneous with the cabotegravir data set; data for elvitegravir were previously published (71). P
values are from analysis of variance with Tukey’s posttest.
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equivalent volume of fresh medium and drug. On day 6, the cultures were frozen at
�80°C to ablate CEMss viability. Samples from the assay plates were then diluted in
complete medium and transferred to MAGIC-5A cells to measure the level of infectious
virus; this “scoring” phase utilized our previously described protocol for the MAGIC-5A
single-cycle assay (60).

TABLE 1 Susceptibility of HIV-1 and HIV-2 isolates to cabotegravir in single-cycle
infections of MAGIC-5A cells

Isolate by HIV type Group/subtype

EC50 (nM)a for:

Cabotegravirb Efavirenzc

HIV-1
92UG029 M/A 2.0 � 0.43 2.9 � 0.35
NL4-3 M/B 1.5 � 0.31 2.2 � 0.46
LAI M/B 1.4 � 0.45 1.7 � 0.073
MJ4 M/C 1.3 � 0.061 1.4 � 0.16
92UG001 M/D 2.2 � 1.3 2.0 � 0.21
MVP5180-91 O 2.0 � 0.11 54 � 6.5

HIV-2
ROD9 A 1.6 � 0.45 �1,000
7924A A 1.0 � 0.15 �1,000
MVP15132 A 2.5 � 1.2 �1,000
60415K A 2.7 � 0.70 �1,000
CBL-20 A 0.92 � 0.048 �1,000
CBL-23 A 2.1 � 0.79 �1,000
CDC77618 A 2.3 � 0.81 �1,000
ST A 1.6 � 0.30 �1,000
CDC310072 B 1.0 � 0.23 �1,000
CDC310319 B 4.0 � 0.84 �1,000
EHO B 4.1 � 1.4 �1,000
DIL B 2.5 � 0.33 �1,000
COU B 2.3 � 0.46 �1,000
BER B 2.7 � 0.82 �1,000
7312A CRF01_ABd 1.6 � 0.46 �1,000

aEC50, 50% effective concentration (mean � SD).
bAll EC50s for cabotegravir were calculated from three or more independent assay runs. EC50s for NL4-3 and ROD9
were obtained using cabotegravir from GlaxoSmithKline, Inc., and Selleck Chemicals, Inc. (see also Table S1 in the
supplemental material). The remaining isolates listed above were tested against cabotegravir from Selleck Chemicals.

cThe NNRTI efavirenz serves as a non-INI control. EC50s for efavirenz are the results of 3 determinations for
each HIV-1 isolate and �2 determinations for each HIV-2 isolate.

dIntergroup (A/B) recombinant. The integrase-encoding sequence of HIV-27312A is monophyletic with that of
other isolates belonging to HIV-2 group B (72).

TABLE 2 Antiviral activity of cabotegravir against site-directed mutants of HIV-1 and HIV-2
integrase

Genotypea by HIV type EC50 (nM)b Fold changec

HIV-1
Wild type 1.5 � 0.31
Y143C 1.2 � 0.069 0.80
T97A�Y143C 1.2 � 0.75 0.80
E92Q�N155H 5.9 � 0.81 3.9
E138K�G140S�Q148R 15 � 3.1 10

HIV-2
Wild type 1.6 � 0.45
E92Q�Y143C 2.4 � 0.48 1.5
E92Q�N155H 12 � 5.4 7.5
G140A�Q148R 11 � 5.5 6.9

aAmino acid changes in HIV-1 and HIV-2 integrase were engineered via site-directed mutagenesis of plasmid
molecular clones pNL4-3 and pROD9, respectively. Wild type indicates virus stocks produced from the
parental (nonmutated) copies of pNL4-3 and pROD9. The integrase-encoding region of each plasmid clone
was confirmed by automated Sanger DNA sequencing.

bEC50 determined in the MAGIC-5A single-cycle assay (means � SD from �3 independent assay runs). Values
shown in boldface are significantly different from the corresponding wild-type EC50 (P � 0.0001, analysis of
variance of log10-transformed EC50s with Sidak’s posttest).

cEC50 for the mutant divided by the EC50 for the corresponding wild-type virus.
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Cabotegravir potently inhibited HIV-2 replication in the multicycle assay; EC50s ranged
from 0.14 to 1.0 nM for group A and 0.20 to 1.3 nM for group B HIV-2 isolates, respectively
(Table 3). The control/comparator strains HIV-192UG029 and HIV-1NL4-3 were likewise sensi-
tive to the drug (Table 3). Of note, for HIV-192UG029 and HIV-1NL4-3, the EC50s obtained in
spreading infections were �10-fold lower than those seen in single-cycle infections; a
similar fold increase in cabotegravir sensitivity was observed for HIV-2ROD9, HIV-2ST, and
HIV-2CBL-23 (compare Tables 1 and 3). EC50s for HIV-2CDC77618, HIV-2CDC310319, and HIV-2DIL

were also 2- to 4-fold lower in the spreading assay compared with single-cycle infections,
although run-to-run variation for these three strains was relatively high in the spreading-
infection assay (Table 3). The tendency toward lower EC50s in spreading infections relative
to single-cycle assays is consistent with previous studies of INIs from our group and others
(27, 31, 65) and has also been observed with inhibitors belonging to the NRTI drug class (60,
68). Overall, our findings from the single-cycle and spreading-infection assays indicate that
HIV-2 is sensitive to cabotegravir in vitro, with EC50s in the low to subnanomolar range.

Implications for HIV-2 prevention and treatment. The UNAIDS (Joint United
Nations Programme on HIV and AIDS)/World Health Organization has set ambitious targets
for HIV diagnosis, prevention, and treatment, with the ultimate aim of ending the global
AIDS epidemic by 2030 (69). Efforts to attain these goals in West Africa and other areas will
require a renewed commitment to clinical care for HIV-2-infected individuals (24). In
particular, efforts are needed to improve HIV-2 patient access to fixed-dose, single-tablet
formulations in which all antiretroviral components are active against HIV-2.

Cabotegravir is a novel strand transfer inhibitor that could potentially be cofor-
mulated with two NRTIs for once-daily oral administration (55, 58). Our findings
suggest that such a regimen would be active in HIV-2-infected patients and
therefore might simplify first-line treatment of HIV infection in settings in which
HIV-2 is endemic.

Long-acting, injectable formulations of cabotegravir (CAB-LA) have been proposed
for two modalities: (i) as maintenance therapy (in combination with the NNRTI rilpivirine
[RPV-LA]) for HIV-1-infected patients who are virologically suppressed (55, 58) and (ii) as
preexposure prophylaxis (PrEP) in individuals with a high risk of HIV acquisition (49, 53,
54, 57). With regard to maintenance therapy, CAB-LA/RPV-LA would likely be precluded
in HIV-2-infected patients because of the intrinsic resistance of HIV-2 to rilpivirine and
other NNRTIs (14, 15, 70). For PrEP, CAB-LA is currently being compared with daily oral
tenofovir disoproxil fumarate-emtricitabine in phase 2b and phase 3 clinical trials
(clinicaltrials.gov NCT02720094 and NCT03164564, respectively). Based on the locations
of the study sites, participants will be at risk primarily for acquiring HIV-1; risk of HIV-2
acquisition will be minimal. If CAB-LA proves to be effective for PrEP, we believe that
an evaluation of the drug should be performed in an HIV-2-prevalent setting, preferably
in the context of a controlled clinical trial.

TABLE 3 Susceptibility of HIV-1 and HIV-2 isolates to cabotegravir in spreading infections
of CEMss cells

Isolate by HIV type Group/subtype EC50 (nM)a No. of assaysb

HIV-1
92UG029 M/A 0.21 � 0.072 3
NL4-3 M/B 0.15 � 0.029 4

HIV-2
ROD9 A 0.14 � 0.056 5
ST A 0.25 � 0.014 3
CBL-20 A 1.0 � 0.82 2
CBL-23 A 0.16 � 0.059 3
CDC77618 A 0.85 � 0.57 3
CDC310319 B 0.99 � 0.90 6
EHO B 0.20 � 0.027 2
DIL B 1.3 � 1.1 3

aValues are means � SD. These assays were performed using cabotegravir from GlaxoSmithKline, Inc.
bIndependent dose-response assays performed for each strain.
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Altogether, our findings suggest that cabotegravir may be useful for HIV prevention
and treatment in areas that harbor significant numbers of HIV-2-infected individuals.
Clinical studies should be performed to address these possibilities.
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