Skip to main content
. 2018 Sep 18;9:744. doi: 10.3389/fneur.2018.00744

Figure 3.

Figure 3

Effect of visual input and eye movements on posture stability in bilateral vestibular hypofunction patients and healthy participants. Mean results recorded in the population of BVH patients (N = 21: filled squares) and the control group (N = 21: open circles) in the four experimental visual conditions during quiet standing. (A) Mean postural instability index (±SD) derived from the wavelet transform recorded in darkness, during vision of a space-fixed target, eye pursuit of the sinusoidally moving visual target in the strob 1 condition (slow eye movements) and strob 2 condition (saccades). The vertical dashed arrow indicates significant differences in total darkness between the patients and the controls, while the heavy and light horizontal arrows show significant differences between darkness and the three other visual conditions in the patients and the controls, respectively. (B) Mean spectral power density (±SD) in the visual system frequency part (0.05–0.5 Hz), expressed in decimal logarithm and derived from the wavelet analysis. Same conventions as in (A). (C) Mean amplitude (±SD) of the critical point calculated with the stabilogram-diffusion analysis. Same conventions. (D) Mean Hausdorff frequency (±SD) derived from the fractal analysis. The frequency was evaluated by dividing the number of uncorrelated points by the recording time. A higher frequency indicates a better body stabilization. Note that all four parameters point to a better postural stability when BVH patients fixate a visual target, do slow eye movements or saccades by comparison with quiet standing in darkness. In contrast, the different visual conditions do not modify so drastically the postural parameters in the control group compared to the patients. *p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001.