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Abstract
Synthetic cathinones are psychoactive substances, derivatives of a natural psychostimulant cathinone. Although many synthetic
cathinones have lost their legal status in many countries, their abuse still continues worldwide. Recently, they have been reported
to exert neurotoxic effects in vitro and in vivo. The molecular mechanisms of their action have not been fully elucidated.
Recently, they have been linked to the induction of oxidative stress, autophagy, and apoptosis. The aim of this study was to
investigate whether 3-fluoromethcathinone (3-FMC), a synthetic cathinone, is able to induce oxidative stress, autophagy, and
apoptosis in HT22 immortalizedmouse hippocampal cells.We found that treatment of HT22 cells with this compound results in a
concentration-dependent increase in the intracellular production of reactive oxygen species. Moreover, 3-FMC induced
concentration-dependent conversion of cytosolic LC3-I to membrane-bound LC3-II and formation of autophagic vacuoles.
Additionally, the level of p62/SQSTM1 protein decreased after 3-FMC treatment, suggesting that accumulation of autophagic
vacuoles resulted from activation rather than inhibition of autophagy. Our results also showed that 3-FMC at millimolar con-
centration is able to induce caspase-dependent apoptotic cell death in HT22 cells. Our findings suggest that abuse of 3-FMCmay
disturb neuronal homeostasis and impair functioning of the central nervous system.
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Introduction

Synthetic cathinones are psychoactive substances, derivatives
of a naturally occurring alkaloid cathinone (Balint et al. 2009;
Zawilska and Wojcieszak 2013). Recently, they have gained
popularity as recreational drugs or Blegal highs^ (ACMD
2010a; EMCDDA 2017). The new psychoactive substances,
also known as Bdesigner drugs,^ have emerged as legal alter-
natives to classic illegal drugs of abuse such as cocaine or 3,4-
methylenedioxy-N-methyl-amphetamine (MDMA).
Although many cathinones, e.g., 4-methylmethcathinone
(mephedrone), 3,4-methylenedioxypyrovalerone (MDPV),

3,4-methylenedioxy-N-methylcathinone (methylone), 3-
fluoromethcathinone (3-FMC), and 4-fluoromethcathinone
(4-FMC), have lost their legal status in many countries, their
abuse still continues worldwide (EMCDDA 2017; Assi et al.
2017).

Themolecular mechanism of action of synthetic cathinones
is based on their interaction with transporters of monoamine
neurotransmitters such as dopamine, serotonin, and norepi-
nephrine (Cozzi et al. 1999; Simmler et al. 2013, 2014;
Baumann et al. 2013). Many synthetic cathinones such as
mephedrone, methylone, and MDPV were shown to exhibit
high blood-brain barrier permeability in an in vitro model
(Simmler et al. 2013; Martínez-Clemente et al. 2013). Users
compared effects of these substances with those elicited by
MDMA and cocaine (Assi et al. 2017; Carhart-Harris et al.
2011). The Bpositive/desired^ effects reported by users were
euphoria, stimulation, and empathy (Winstock et al. 2011b;
Assi et al. 2017; Carhart-Harris et al. 2011; Zawilska and
Wojcieszak 2013; ACMD 2010b). However, it should be em-
phasized that adverse effects were also reported, regarding
mostly the cardiovascular, nervous, and gastrointestinal sys-
tems. For instance, in the cardiovascular system,
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hypertension, tachycardia, chest pain, palpitations, cardiac ar-
rest, and myocarditis were reported after the use of cathinones
(Assi et al. 2017; Zawilska and Wojcieszak 2013; Winstock
et al. 2011a; Prosser and Nelson 2012; ACMD 2010b). The
toxic effects concerning the nervous system included hyper-
thermia, insomnia, headache, dizziness, memory problems,
confusion, blurred vision, bruxism, paresthesias, mydriasis,
tremors, seizures, hallucinations/delusions, anxiety, agitation,
and psychosis (Vallersnes et al. 2016; Winstock et al. 2011a,
b; Zawilska and Wojcieszak 2013; Prosser and Nelson 2012;
ACMD 2010b). Symptoms regarding the gastrointestinal sys-
tem were abdominal pain, nausea, vomiting, and anorexia
(Zawilska and Wojcieszak 2013; Winstock et al. 2011a;
Prosser and Nelson 2012; ACMD 2010b).

Many drugs of abuse have been demonstrated to impair
cognitive skills and exert neurotoxic effects (den Hollander
et al. 2012; Gardner et al. 2009; Parrott 2000; Reneman
et al. 2001; Thompson et al. 2004). MDMA, an active com-
ponent of Becstasy,^ was shown to be toxic to brain serotonin
neurons (Reneman et al. 2001). There is evidence of hippo-
campal atrophy in chronic users of Becstasy^ (den Hollander
et al. 2012; Gardner et al. 2009). Memory impairments in
Becstasy^ users were also documented (Parrott 2000).
Additionally, chronic methamphetamine abuse was shown to
reduce hippocampal volume and hippocampal deficits corre-
lated with impaired memory performance in its users
(Thompson et al. 2004). Accumulating data suggest that syn-
thetic cathinones may also be neurotoxic and impair functions
of the nervous system (Hadlock et al. 2011; Marusich et al.
2012; López-Arnau et al. 2014, 2015; Martínez-Clemente
et al. 2014; den Hollander et al. 2013). In mice, methylone
induced astrogliosis in the hippocampus as well as dopami-
nergic and serotonergic impairment (López-Arnau et al.
2014). Its administration in rats caused the depletion of sero-
tonin and its transporters’ levels (den Hollander et al. 2013).
Noteworthy, mephedrone was reported to impair working
memory in humans (Freeman et al. 2012). Interestingly, there
are different results regarding its neurotoxicity in animal
models (Hadlock et al. 2011; López-Arnau et al. 2015;
Martínez-Clemente et al. 2014; Baumann et al. 2012; den
Hollander et al. 2013, Angoa-Pérez et al. 2012, 2014). Some
studies on long-term neurochemical effects of mephedrone in
rodents suggest lack of neurotoxicity (Baumann et al. 2012;
den Hollander et al. 2013; Angoa-Pérez et al. 2012, 2014),
whereas other studies indicate that it exerts neurotoxic effects
(Hadlock et al. 2011; Martínez-Clemente et al. 2014; López-
Arnau et al. 2015). Probably, the discrepancies are due to
different experimental design, e.g., species, dosage, and am-
bient temperature as well as relation of experimental condi-
tions to drug pharmacokinetics and pharmacodynamics.

Recent in vitro studies have also shown that synthetic
cathinones may exhibit neurotoxic properties. However, the
precise molecular mechanisms of their action have not been

fully elucidated. Noteworthy, mephedrone elicited cytotoxic-
ity against cortical neurons isolated from mouse embryos
(Martínez-Clemente et al. 2014). Pyrovalerone and its deriv-
atives reduced the viability of human neuroblastoma SH-
SY5Y cells (Wojcieszak et al. 2016). Our recent investigation
revealed that 3-FMC inhibits growth and induces cell cycle
arrest in HT22 immortalized mouse hippocampal cells
(Siedlecka-Kroplewska et al. 2014). Recently, some synthetic
cathinones have been demonstrated to induce oxidative stress,
autophagy, and apoptosis in neuronal cells (Valente et al.
2017; Matsunaga et al. 2017). Methylone and MDPV induced
oxidative stress, autophagy, and apoptosis in differentiated
human neuroblastoma SH-SY5Y cells (Valente et al. 2017).
Similarly, treatment of human neuroblastoma SK-N-SH cells
with α-pyrrolidinononanophenone (α-PNP) led to oxidative
stress, autophagy, and apoptotic cell death (Matsunaga et al.
2017). Taking into account these findings, the aim of this
study was to examine whether 3-FMC induces oxidative
stress, autophagy, and apoptosis in HT22 hippocampal cells.
Our results provide evidence that the mechanism of action of
this synthetic cathinone in HT22 cells involves induction of
oxidative stress as well as activation of autophagy. We also
found that 3-FMC at millimolar concentrations is able to in-
duce caspase-dependent apoptotic cell death.

Materials and Methods

Chemicals

3-Fluoromethcathinone was purchased from LGC Standards
(UK). Stock solutions of this compound were prepared in
sterile physiological saline solution and diluted to indicated
concentrations shortly before use. Rabbit anti-LC3 primary
antibodies were purchased from Medical & Biological
Laboratories Co. (Japan). Mouse anti-p62 antibody was ob-
tained from Santa Cruz Biotechnology, Inc. (USA). Cy3-
conjugated goat anti-rabbit secondary antibodies were obtain-
ed from Jackson ImmunoResearch Laboratories, Inc. (USA).
Horseradish peroxidase-conjugated mouse anti-GAPDH pri-
mary antibodies, horseradish peroxidase-conjugated goat anti-
rabbit secondary antibodies, and horseradish peroxidase-
conjugated rabbit anti-mouse secondary antibodies were pur-
chased from Sigma-Aldrich (USA). H2DCFDA (2′,7′-
dichlorodihydrofluorescein diacetate) was obtained from
Molecular Probes (USA). Hoechst 33342 was purchased from
Sigma-Aldrich (USA). All other reagents, obtained from com-
mercial suppliers, were of analytical grade.

Cell Culture

The immortalized mouse hippocampal HT22 cell line was
kindly provided by Professor M. Woźniak (Department of
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Medical Chemistry, Medical University of Gdańsk, Poland).
Cells were maintained at 37 °C in a humidified atmosphere
containing 5% CO2, in Dulbecco’s Modified Eagle’s Medium
(Sigma-Aldrich, USA), supplemented with 10% heat-
inactivated fetal bovine serum (Sigma-Aldrich, USA),
100 IU/ml penicillin (Sigma-Aldrich, USA), and 100 μg/ml
streptomycin (Sigma-Aldrich, USA).

Measurement of Intracellular Reactive Oxygen
Species

HT22 cells were seeded in 6-well plates (2 × 105cells per well)
and allowed to attach for 24 h. Next, cells were incubated with
3-FMC for 45 or 90 min. Simultaneously, control cells were
incubated in the absence of 3-FMC. Thirty minutes before the
end of incubation with 3-FMC, H2DCFDA (final concentra-
tion 10μM)was added. Cells were then washed, suspended in
ice-cold phosphate-buffered saline (PBS), and analyzed for
DCF fluorescence by flow cytometry (Becton Dickinson
FACSCalibur, USA).

Western Blotting Analysis

HT22 cells were incubated in the absence (control) or pres-
ence of 3-FMC for 24 h. After incubation, cell lysates were
prepared using Mammalian Cell Extraction Kit (BioVision,
Inc., USA). The total concentration of proteins in cell lysates
was determined using the Bradford protein assay. Protein sam-
ples (45 μg of total protein per sample) were separated elec-
trophoretically by SDS-PAGE (12%) and transferred onto
PVDF membrane. The membrane was incubated with 5%
non-fat dry milk in TBS (tris-buffered saline) at room temper-
ature (RT) for 1 h. After washing with TBST (0.1% Tween20
in TBS), the membrane was incubated with specific rabbit
anti-LC3 primary antibodies (1:4000) or mouse anti-p62 pri-
mary antibodies (1:200) at 4 °C overnight, and after subse-
quent washing incubated with appropriate horseradish
peroxidase-conjugated secondary antibodies (1:10,000) for
2 h at RT. The membrane was also incubated with horseradish
peroxidase-conjugated anti-GAPDH primary antibodies
(1:50,000, 1 h at RT) for loading control. The bound antibod-
ies were detected by the enhanced chemiluminescence meth-
od using the Chemiluminescent Peroxidase Substrate (Sigma-
Aldrich, USA). The densitometric analysis of immunoreactive
protein bands was performed using Quantity One Software
(Bio-Rad, USA).

Immunofluorescent Analysis

HT22 cells were seeded in 4-well tissue culture chamber (8 ×
104 cells per well) on PCA slide (Sarstedt, Germany) and
allowed to attach for 24 h. Next, cells were incubated in the
absence (control) or presence of 3-FMC for 24 h. Following

incubation, cells were washed with PBS, fixed, and perme-
abilized for 5 min in cold methanol at − 20 °C. After washing
with PBS, cells were incubated for 30 min (RT) with 10%
FBS (fetal bovine serum, 10% FBS in PBS). Next, cells were
washed with PBS and incubated with specific rabbit anti-LC3
primary antibodies (1:500) for 1 h (RT). After washing with
PBS, cells were incubated with Cy3-conjugated anti-rabbit
secondary antibodies (1:600) for 1 h (RT) in the dark.
Following washing with PBS, cells were stained with 5 μg/
ml Hoechst 33342 for 15 min (RT) in the dark. Next, samples
were mounted in the Permafluor mounting medium (Thermo
Scientific, USA) and covered with glass coverslips. Slides
were examined by the confocal microscope system FV10i
(Olympus, Japan). The images were obtained using × 60 ob-
jective lens.

Hoechst 33342 Staining

Adherent cells undergoing cell death tend to detach from
the surface of tissue culture flasks. In order to prevent cell
loss and better examine nuclear morphology of 3-FMC-
treated cells, we tried to improve our standard procedure
of cell staining for confocal microscopy. HT22 cells were
seeded in 6-well plates (2 × 105 cells per well) and allowed
to attach for 24 h. Next, cells were incubated in the absence
(control) or presence of 3-FMC for 24 h. After incubation,
all cells were collected, i.e., including cells detached from
the surface of the culture flask as well as cells collected after
trypsinization. Following washing with PBS, cells were
cytocentrifuged (1 × 105 cells per slide) onto microscopic
poly-L-lysine-coated slides (Sigma-Aldrich, USA). After
fixation and permeabilization in cold methanol for 5 min
at − 20 °C, cells were washed with PBS and stained with
5 μg/ml Hoechst 33342 for 15 min (RT) in the dark. Next,
samples were mounted in the Permafluor mounting medium
(Thermo Scientific, USA) and covered with glass cover-
slips. Slides were examined by the confocal microscope
system FV10i (Olympus, Japan). The images were obtained
using × 60 objective lens.

Annexin V-FITC/PI Assay

Phosphatidylserine externalization was examined using
Annexin V-FITC Apoptosis Detection Kit (BD Pharmingen,
USA). HT22 cells were seeded in 6-well plates (2 × 105cells
per well) and allowed to attach for 24 h. Next, cells were
incubated in the absence (control) or presence of 3-FMC for
24 h. Following incubation, cells were stained with FITC-
conjugated annexin Vand PI according to the manufacturer’s
protocol. Samples were analyzed by flow cytometry (Becton
Dickinson FACSCalibur, USA).
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Caspase-3 Activity Assay

Caspase-3 activity was measured using FITC-conjugated
Monoclonal Active Caspase-3 Antibody Apoptosis Kit I
(BD Pharmingen, USA). HT22 cells were seeded in 6-well
plates (2 × 105 cells per well) and allowed to attach for 24 h.
Next, cells were incubated in the absence (control) or presence
of 3-FMC for 24 h. Following incubation, cells were stained
with FITC-conjugated anti-active caspase-3 antibody accord-
ing to the manufacturer’s protocol and flow cytometric anal-
yses were performed (Becton Dickinson FACSCalibur, USA).

Statistical Analysis

Statistical analysis was performed using Statistica 12 software
(StatSoft, Poland). Data are expressed as means ± SD.
Statistical differences between samples were evaluated using
the non-parametric Mann-Whitney U test. Differences were
considered significant at *p < 0.05 and **p < 0.01.

Results

Effect of 3-FMC on Generation of Reactive Oxygen
Species

We have previously found that 3-FMC is cytotoxic to HT22
cells at relatively high, millimolar concentration since 24 h of
treatment with 1, 2, or 4 mM 3-FMC reduced the viability of
HT22 cells by 16, 34, and 76%, respectively (Siedlecka-
Kroplewska et al. 2014). To find out whether the mechanism
of action of 3-FMC involves oxidative stress, we examined the
effect of this compound on the intracellular production of reac-
tive oxygen species (ROS). Our results showed that the forma-
tion of ROS increased after treatment of HT22 cells with 3-FMC.
Compared to control cells, exposure to 2 or 4 mM 3-FMC re-
sulted in a statistically significant increase in ROS formation after
45 min (Fig. 1a), whereas 1 mM 3-FMC significantly induced
ROS generation after 90 min of incubation (Fig. 1b).

Detection of Autophagy in 3-FMC-Treated HT22 Cells

The microtubule-associated protein 1 light chain 3 (LC3)
plays an important role in autophagy (Eskelinen 2005).
During autophagy, the cytosolic form of LC3 (LC3-I) is
conjugated with phosphatidylethanolamine forming the
membrane-bound form of LC3 (LC3-II). Detection of
LC3-II is a hallmark of the formation of autophagic vacu-
oles. To investigate the effects of 3-FMC on autophagic
pathways, we examined the conversion of LC3-I to LC3-
II. The western blotting analysis revealed that after 24 h of
treatment of HT22 cells with 3-FMC, the level of LC3-II
increased, indicating processing of LC3-I and formation of
LC3-II. This effect was concentration-dependent and was
most pronounced at the 3-FMC concentration of 4 mM
(Fig. 2). The relative LC3-II level (normalized to loading
control GAPDH) after exposure to 1, 2, and 4 mM 3-FMC
was 1.3, 2.0, and 4.4, respectively. The relative LC3-I level
after 3-FMC treatment decreased compared to control and
for 1, 2, and 4 mM 3-FMC, it was equal to 0.6, 0.2, and
0.2, respectively (Fig. 2).

The immunofluorescent staining with anti-LC3 antibodies
revealed the accumulation of LC3-positive dots in HT22 cells
treated with 1, 2, or 4 mM 3-FMC for 24 h (Fig. 3), suggesting
accumulation of autophagic vacuoles. It was particularly evi-
dent after exposure to 4 mM 3-FMC. In control cells, LC3
staining was mostly diffuse, indicative of cytosolic localiza-
tion of LC3 protein (Fig. 3).

In order to find out whether the accumulation of autoph-
agic vacuoles in HT22 cells results from activation or inhi-
bition of autophagy, we evaluated the level of p62/
SQSTM1 protein. The p62 protein, also known as
sequestosome-1 (SQSTM1), interacts with ubiquitinated
proteins targeting them for degradation by autophagy
(Klionsky et al. 2012). Our results showed that its level in
HT22 cells decreased after 3-FMC treatment (Fig. 2). The
relative p62/SQSTM1 level (normalized to loading control
GAPDH) after exposure to 1, 2, and 4 mM 3-FMC was 0.8,
0.2, and 0.1, respectively (Fig. 2).
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Fig. 1 Effect of 3-FMC on intracellular ROS production in HT22 cells.
HT22 cells were treated with 3-FMC for 45 min (a) or 90 min (b). Cells
were analyzed by flow cytometry as described in Materials and Methods.

Data are presented as means ± SD of three independent experiments, n =
4 (n, number of samples per each experimental point), *p < 0.05, statisti-
cally significant differences compared to control (untreated cells)
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Detection of Cell Death

Our previous results revealed that treatment of HT22 cells
with 3-FMC led to an increase in the number of cells in the
sub-G1 fraction, indicative of apoptosis (Siedlecka-
Kroplewska et al. 2014). In line with this finding, in the
present study, we examined markers of apoptotic cell
death such as phosphatidylserine externalization,
caspase-3 activation, chromatin condensation, and frag-
mentation of cell nuclei.

Loss of the plasma membrane asymmetry manifested by
phosphatidylserine externalization belongs to early apoptotic
events (Galluzzi et al. 2012). As shown in Fig. 4a, the effect of
3-FMC on phosphatidylserine externalization was concentra-
tion-dependent. The prominent changes were observed after
treatment with 4 mM 3-FMC, when annexin V+/PI− cells
(corresponding to early apoptotic cells) and annexin V+/PI+

cells (corresponding to late apoptotic/necrotic cells) constitut-
ed about 11 and 27% of the total measured cell population,
respectively (Fig. 4a). Exposure of HT22 cells for 24 h to 1
and 2 mM 3-FMC had a negligible effect on fractions of
annexin V+/PI− cells and annexin V+/PI+ cells.

We found that 3-FMC-induced cell death was associated
with caspase-3 activation (Fig. 4b). The active caspase-3 par-
ticipates in the executive stage of apoptosis (Galluzzi et al.
2012). After 24 h of incubation of HT22 cells with 1 or
2 mM 3-FMC, 5% and over 8% of the total measured cell
population, respectively, showed caspase-3 activity (Fig. 4b).
This effect was most prominent after 24 h of treatment with
4 mM 3-FMC, since the fraction of cells with active caspase-3
was then over 30% (Fig. 4b).

Changes of the nuclear morphology typical for apoptotic
cell death include chromatin condensation and nuclear frag-
mentation (Prokhorova et al. 2015). The immunofluorescent
analysis revealed that after exposure to 1 or 2 mM 3-FMC, the
majority of HT22 cells exhibited intact cell nuclei with well
visible nucleoli (Fig. 3). Noteworthy, at the same time, LC3-
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Fig. 2 Detection of autophagy. HT22 cells were treated with 1, 2, or
4 mM 3-FMC for 24 h. The relative protein levels of LC3-I, LC3-II,
and p62 normalized to loading control GAPDH were quantitated by den-
sitometry as described in Materials and Methods. Similar results were
obtained in three independent experiments. C—control, untreated cells
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analysis. Confocal micrographs
of HT22 cells treated with 1, 2,
and 4 mM 3-FMC for 24 h. Cells
were incubated with primary anti-
LC3 antibodies. Following incu-
bation with Cy3-conjugated sec-
ondary antibodies and Hoechst
33342, cells were examined by
confocal microscopy as described
in Materials and Methods. Data
are representative of three inde-
pendent experiments. Bars
10 μm, control—untreated cells,
arrowheads—autophagic vacu-
oles, short arrows—nucleoli, long
arrow—a cell undergoing mitosis,
asterisks—newly formed cells af-
ter cell division
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positive structures were present, indicative of autophagic vac-
uoles. Both accumulation of autophagic vacuoles and an intact
nucleus are characteristics of cells undergoing autophagy (Liu
and Ouyang 2014). Interestingly, after treatment with 1 mM3-
FMC, even cells undergoing mitosis were observed (Fig. 3).
After 24-h exposure of HT22 cells to 4 mM 3-FMC, the ma-
jority of cells exhibited intact nuclear architecture, accompa-
nied by the presence of autophagic vacuoles (Fig. 3).
However, confocal micrographs revealed that the shape of
cells treated with 4 mM 3-FMC changed and was more round-
ed in comparison to untreated cells and cells treated with low-
er concentrations of this drug, suggesting decreased cell adhe-
sion to the surface of the culture flask. Annexin V/PI double
staining analysis revealed a high number of dead cells after
treatment with 4 mM 3-FMC (Fig. 4a). Considering that ad-
herent cells undergoing death tend to detach from the surface
of the culture flask and may be lost during washing steps, we
modified our standard procedure of slides preparation for con-
focal microscopy as described in Materials and Methods.
Noteworthy, the detached cells may be suspected of pro-
nounced apoptotic nuclear alterations. Using our improved
method, we detected the presence of nuclear fragmentation
and chromatin condensation after 24 h of treatment with
4 mM 3-FMC (Fig. 4c).

Discussion

Recently, several in vitro and in vivo studies have shown that
synthetic cathinones may exert neurotoxic effects (López-
Arnau et al. 2014; Siedlecka-Kroplewska et al. 2014,
Matsunaga et al. 2017; Valente et al. 2017; Hadlock et al.
2011; Martínez-Clemente et al. 2014; López-Arnau et al.
2015; den Hollander et al. 2013; Marusich et al. 2012).
There is evidence indicating that these drugs, especially at
high concentrations, may cause neuronal cell death (López-
Arnau et al. 2014; Siedlecka-Kroplewska et al. 2014;
Matsunaga et al. 2017; Valente et al. 2017). The precise mo-
lecular mechanisms of their action have not been fully eluci-
dated. In this study, we used HT22 immortalized mouse hip-
pocampal cells as an in vitro model of neuronal cells. HT22
cell line is widely used to study glutamate toxicity as well as
Alzheimer’s and Parkinson’s diseases (Kumari et al. 2012;
Fukui et al. 2009; Yang et al. 2015; Jensen et al. 2017;
Gliyazova and Ibeanu 2016; Kang et al. 2013). Noteworthy,
the hippocampus is the unique region of the brain, where the
neural stem cells can be found (Kempermann et al. 2015). It
plays a crucial role in the formation of memory (Yonelinas
2013). Accumulating evidence suggests that drug abuse may
lead to hippocampal atrophy and memory deficits (den
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Fig. 4 Detection of cell death. a Phosphatidylserine externalization
induced by 3-FMC in HT22 cells (annexin V-FITC/PI staining, flow
cytometry analysis). Cells were treated with 1, 2, or 4 mM 3-FMC for
24 h. Data are presented asmeans ± SD of three independent experiments.
n = 4–5,*p < 0.05, statistically significant differences compared to control
(untreated cells). b Caspase-3 activation in 3-FMC-treated HT22 cells
(flow cytometry analysis). Cells were treated with 1, 2, or 4 mM 3-
FMC for 24 h. Data are presented as means ± SD of three independent

experiments. n = 4–7, **p < 0.01, statistically significant differences
compared to control (untreated cells). c Confocal micrographs of HT22
cells treated with 4 mM 3-FMC for 24 h. Cells were stained with Hoechst
33342 as described in Materials and Methods. Data are representative of
three independent experiments. Bars 10 μm, control—untreated cells,
short arrows—nucleoli, arrowheads—fragments of cell nuclei, aster-
isks—cell nuclei with condensed chromatin
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Hollander et al. 2012; Gardner et al. 2009; Parrott 2000;
Thompson et al. 2004).

In the present study, we demonstrate that 3-FMC induces
oxidative stress in HT22 cells. After treatment with 3-FMC,
we observed a concentration-dependent increase in the intra-
cellular production of ROS. In agreement with our finding,
recent in vitro studies have indicated that oxidative stress may
also be involved in the mechanism of action of other synthetic
cathinones such as α-PNP, methylone, and MDPV
(Matsunaga et al. 2017; Valente et al. 2017). Exposure to α-
PNP led to oxidative stress in human neuronal SK-N-SH cells
(Matsunaga et al. 2017). Methylone and MDPV increased the
production of reactive oxygen and nitrogen species in human
dopaminergic SH-SY5Y cells (Valente et al. 2017).
Interestingly, other psychostimulant drugs such as amphet-
amine or methamphetamine were also shown to induce oxi-
dative stress in neuronal cells (Huang et al. 1997; Cadet and
Brannock 1998; Brown and Yamamoto 2003; Tian et al. 2009;
Huang et al. 2017). The designer drug N-benzylpiperazine
(BZP) induced oxidative stress in human glioblastoma LN-
18 cells (Persona et al. 2016). It is important to note that the
overproduction of reactive oxygen or nitrogen species triggers
oxidative damage of cellular structures and disturbs cellular
homeostasis (Halliwell 1996).

We found that 3-FMC activates autophagy in HT22 cells.
Noteworthy, the higher the 3-FMC concentration, the more
pronounced were the markers of autophagy. Confocal micros-
copy revealed an increased number of LC3-positive structures
in 3-FMC-treated HT22 cells. Moreover, we detected conver-
sion of cytosolic LC3-I to membrane-bound LC3-II, indica-
tive of the formation of autophagic vacuoles. The western
blotting analysis revealed a concentration-dependent increase
in LC3-II expression. The cytosolic LC3-I protein serves as a
substrate to form the LC3-II protein, present in membranes of
autophagosomes, nascent amphisomes, and nascent
autolysosomes (Eskelinen 2005). Both accumulation of au-
tophagic vacuoles and an elevated LC3-II level may suggest
upregulation of autophagy; however, they may also indicate
inhibition of autophagic flux associated with impaired degra-
dation and reduced turnover of autophagosomes (Klionsky
et al. 2012). Therefore, in order to better evaluate the autoph-
agic status, we examined the level of p62/SQSTM1 protein.
An increased level of p62/SQSTM1 was shown to correlate
with the inhibition of autophagy, whereas its decreased level
with activation of autophagy (Klionsky et al. 2012). We found
that p62/SQSTM1 protein level decreased after 3-FMC treat-
ment, suggesting that accumulation of autophagic vacuoles in
HT22 cells resulted from activation rather than inhibition of
autophagy.

Autophagy is an evolutionarily conserved process dur-
ing which damaged or misfolded proteins as well as dam-
aged cell organelles can be eliminated (Yang and Klionsky
2010). It is active at basal level in virtually all cells and

serves mainly as a prosurvival mechanism underlying cel-
lular homeostasis. In neuronal cells, it is essential to main-
tain their functions. Insufficient or impaired autophagic ac-
tivity has been described in neurodegenerative disorders
such as Alzheimer’s disease, Parkinson’s disease, amyotro-
phic lateral sclerosis, and HIV-associated neurocognitive
disorders (Cai et al. 2016). However, autophagy may also
function as a cell death mode known as autophagic cell
death (Galluzzi et al. 2012). There is a limited number of
studies demonstrating that cell death is executed by autoph-
agy (Galluzzi et al. 2012). In most cases, autophagy appears
to be a cytoprotective response activated by dying cells
(Galluzzi et al. 2012; Kroemer and Levine 2008).
Autophagy can be upregulated in response to nutrient de-
pletion, hypoxia, or oxidative stress (Yang and Klionsky
2010). Many chemical compounds induce cellular stress
and activate autophagy as an adaptive stress-response and
a prosurvival mechanism (Yang et al. 2011; Eskelinen
2011). The cytoprotective role of autophagy may be related
then to clearance of oxidized or aggregated proteins and
damaged cell organelles. Accumulating evidence suggests
that autophagy may be implicated in the mechanism of ac-
tion of drugs of abuse. Numerous psychoactive substances
including MDMA, methamphetamine, cocaine, α-PNP,
methylone, and MDPV were found to induce autophagy
(Li et al. 2014, 2016; Mercer et al. 2017; Kanthasamy
et al. 2006; Chandramani Shivalingappa et al. 2012;
Larsen et al. 2002; Cao et al. 2016; Matsunaga et al.
2017; Valente et al. 2017). Interestingly, methylone and
MDPV were shown to induce both oxidative stress and
autophagy in SH-SY5Y cells (Valente et al. 2017). α-PNP
also led to oxidative stress induction as well as autophagy
upregulation in SK-N-SH cells (Matsunaga et al. 2017). In
the present study, oxidative stress induced by 3-FMC in
HT22 cells may result in damage of proteins or organelles.
Thus, upregulation of autophagy in 3-FMC-treated HT22
cells may appear as a consequence of disturbed cellular
homeostasis. The decreased level of p62/SQSTM1 protein
in 3-FMC-treated HT22 cells suggests autophagy activa-
tion with concomitant degradation of damaged proteins or
damaged cellular organelles. Of note, p62 protein serves as
a selective autophagy receptor involved in autophagic
clearance of misfolded proteins, protein aggregates, or
depolarized mitochondria, whose efficient elimination is
critical for cellular homeostasis and survival (Rogov et al.
2014). p62 interacts with ubiquitinated autophagy sub-
s t r a t e s a n d LC3 , b e c ome s i n c o r p o r a t e d i n t o
autophagosomes, and subsequently degraded (Klionsky
et al. 2012). Therefore, it can be speculated that autophagy
activated in our experimental model appears as a
prosurvival process. However, this hypothesis requires fur-
ther investigation. Valente et al. demonstrated that antioxi-
dants were able to attenuate generation of reactive oxygen
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and nitrogen species as well as partially inhibit autophagy
and apoptosis induced by methylone and MDPV in SH-
SY5Y cells, supporting the role of autophagy as a cellular
self-defense response against oxidative stress (Valente et al.
2017).

Our results revealed that 3-FMC is able to induce apoptotic
cell death in HT22 cells. This effect was prominent after treat-
ment of cells with 4 mM 3-FMC; whereas at a lower concen-
tration of this drug, it was negligible. The cell death mecha-
nism was associated with caspase-3 activation and
phosphatidylserine externalization. Morphological changes
characteristic for apoptotic cell death such as chromatin con-
densation and fragmentation of cell nuclei were also observed.
These findings corroborate results of our previous study
(Siedlecka-Kroplewska et al. 2014). Four millimolar 3-FMC
significantly increased the number of HT22 cells in the sub-
G1 fraction (Siedlecka-Kroplewska et al. 2014), correspond-
ing to the lowmolecular weight DNA fragments, indicative of
apoptotic internucleosomal DNA fragmentation (Wlodkowic
et al. 2011).

Taking into account the above findings, after treatment
with 1 or 2 mM 3-FMC, only autophagy markers were ob-
served in HT22 cells; whereas after exposure to 4 mM 3-
FMC, both autophagic and apoptotic characteristics were de-
tected. Thus, 3-FMC induced autophagy or both autophagy
and apoptosis, depending on its concentration. In agreement
with our results, recent in vitro studies also showed induction
of both autophagy and apoptosis after treatment with other
synthetic cathinones (Valente et al. 2017; Matsunaga et al.
2017). After treatment of HT22 cells with 1 or 2 mM 3-
FMC, the number of dead cells was negligible, which supports
the hypothesis that autophagy activation may be a
cytoprotective cell response. However, toxicity of 4 mM 3-
FMC was probably too high to be prevented by autophagy.
Therefore, the number of dead cells dramatically increased.
Induction of apoptosis by 4 mM 3-FMC in HT22 cells indi-
cates that apoptotic pathways are involved in the mechanism
of cell death. Numerous studies suggest that there is an inter-
play between autophagy and apoptosis (Thorburn 2008).
Autophagic and apoptotic signaling pathways share some me-
diators, e.g., Beclin-1 interacts with anti-apoptotic Bcl-2 fam-
ily proteins (Thorburn 2008). Autophagy as a prosurvival
mechanism may block or delay apoptotic cell death.
Intriguingly, caspase activation may serve as a molecular
switch between autophagy and apoptosis (Wu et al. 2014).
Activated caspases degrade autophagic proteins and inhibit
autophagic response determining cell fate. In the present
study, the number of HT22 cells with active caspase-3 signif-
icantly increased after treatment with 4 mM 3-FMC, suggest-
ing a possible switch from autophagy to apoptosis. However,
further studies are needed to confirm this hypothesis.

Our finding that relatively high, millimolar concentrations
of 3-FMC exerted significant biological effects in neuronal

HT22 cells is consistent with reports of other authors
concerning in vitro studies on drugs of abuse. For example,
methylone and MDPV reduced viability of SH-SY5Y cells by
60% at the concentration of 2.797 and 1.693 mM, respectively
(Valente et al. 2017). Moreover, methylone affected viability
of cultured cortical neurons and the calculated LD50 value
after 24 and 48 h of incubation was over 1 mM (López-
Arnau et al. 2014). Other drugs including MDMA or meth-
amphetamine also exerted cytotoxic effects in vitro at milli-
molar concentrations (Li et al. 2014, 2016; Mercer et al. 2017;
Huang et al. 2017). It is difficult to predict what would be the
3-FMC concentration in the human brain in vivo after its
administration. It may depend on the administration route as
well as the ability of this drug to penetrate the blood-brain
barrier. The most common administration routes of synthetic
cathinones reported by users are insufflation and oral inges-
tion (Freeman et al. 2012; Assi et al. 2017). The less common
routes are intravenous, subcutaneous, intramuscular injections
as well as rectal insertion, smoking, and insertion in the eye
(eyeballing) (Assi et al. 2017). Assuming the average periph-
eral blood volume of 5 L and intravenous administration
route, the calculated 3-FMC dose leading to its 1, 2, or
4 mM blood concentration is equal to 1.09, 2.18, and 4.35 g,
respectively. Noteworthy, based on users’ self-reports, doses
depend on the drug and the administration route and range
from a few milligrams to over 1–2 g in a single session
(Busardò et al. 2015). However, higher doses were also doc-
umented (Busardò et al. 2015; EMCDDA 2010). According
to case reports concerning synthetic cathinone-related intoxi-
cations, users reported doses up to 7 g (EMCDDA 2010).
Some users reported to use drugs over several consecutive
days (Winstock et al. 2011b). The risk of overdosing seems
to be high, since users experience a desire to redose (Winstock
et al. 2011b; Freeman et al. 2012). It should be emphasized
that there are numerous reports on acute and lethal intoxica-
tion with synthetic cathinones (Boulanger-Gobeil et al. 2012;
Winder et al. 2013; Corkery et al. 2012; Adamowicz et al.
2013; Marinetti and Antonides 2013; Cosbey et al. 2013;
Antonowicz et al. 2011; Lusthof et al. 2011; Wood et al.
2011; Murray et al. 2012; Brandt et al. 2010; Schifano et al.
2012; Maskell et al. 2011; Warrick et al. 2012; Wikström et al.
2010; Imam et al. 2013).

In conclusion, our results provide evidence that 3-FMC
induces oxidative stress and activates autophagy in HT22
neuronal cells. We propose that autophagy triggered by
oxidative damage in 3-FMC-treated HT22 cells may ap-
pear as a cellular defense mechanism, however, when it
cannot prevent toxicity of a high dose of 3-FMC apoptotic
pathways become activated. Further studies may help un-
derstand molecular mechanisms of 3-FMC neurotoxicity.
Noteworthy, the implication of oxidative stress in the
mechanism of action of 3-FMC strongly suggests that
abuse of this synthetic cathinone may disturb neuronal
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homeostasis and impair functioning of the central nervous
system.
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