
Real-time visualization and interaction with
static and live optical coherence tomography
volumes in immersive virtual reality

MARK DRAELOS,1,* BRENTON KELLER,1 CHRISTIAN VIEHLAND,1

OSCAR M. CARRASCO-ZEVALLOS,1 ANTHONY KUO,1,2 AND JOSEPH
IZATT1,2

1Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
2Department of Ophthalmology, Duke University Medical Center, Durham, NC 27710, USA
*mark.draelos@duke.edu

Abstract: Virtual reality (VR) head-mounted displays are an attractive technology for viewing
intrasurgical optical coherence tomography (OCT) volumes because they liberate surgeons
from microscope oculars. We demonstrate real-time, interactive viewing of OCT volumes in a
commercial HTC Vive immersive VR system using previously reported ray casting techniques.
Furthermore, we show interactive manipulation and sectioning of volumes using handheld
controllers and guidance of mock surgical procedures in porcine eyes exclusively within VR. To
the best of our knowledge, we report the first immersive VR-OCT viewer with stereo ray casting
volumetric renders, arbitrary sectioning planes, and live acquisition support. We believe VR-OCT
volume displays will advance ophthalmic surgery towards VR-integrated surgery.
© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement
OCIS codes: (170.4500) Optical coherence tomography; (330.4460) Ophthalmic optics and devices; (100.6890)
Three-dimensional image processing.

References and links
1. O. M. Carrasco-Zevallos, C. Viehland, B. Keller, M. Draelos, A. N. Kuo, C. A. Toth, and J. A. Izatt, “Review of

intraoperative optical coherence tomography: technology and applications,” Biomed. Opt. Express 8, 1607–1637
(2017).

2. P. N. Dayani, R. Maldonado, S. Farsiu, and C. A. Toth, “Intraoperative use of handheld spectral domain optical
coherence tomography imaging in macular surgery,” Retina 29, 1457–1468 (2009).

3. L. B. Lee and S. K. Srivastava, “Intraoperative spectral-domain optical coherence tomography during complex retinal
detachment repair,” Ophthalmic. Surg. Lasers Imaging 42, 71–74 (2011).

4. G. Geerling, M. Muller, C. Winter, H. Hoerauf, S. Oelckers, H. Laqua, and R. Birngruber, “Intraoperative 2-
dimensional optical coherence tomography as a new tool for anterior segment surgery,” Arch. Ophthalmol. 123,
253–257 (2005).

5. E. Lankenau, D. Klinger, C. Winter, A. Malik, H. H. Müller, S. Oelckers, H.-W. Pau, T. Just, and G. Hüttmann,
Combining Optical Coherence Tomography (OCT) with an Operating Microscope (Springer, 2007), pp. 343–348.

6. Y. K. Tao, J. P. Ehlers, C. A. Toth, and J. A. Izatt, “Intraoperative spectral domain optical coherence tomography for
vitreoretinal surgery,” Opt. Lett. 35, 3315–3317 (2010).

7. S. Binder, C. I. Falkner-Radler, C. Hauger, H. Matz, and C. Glittenberg, “Feasibility of intrasurgical spectral-domain
optical coherence tomography,” Retina 31, 1332–1336 (2011).

8. J. P. Ehlers, Y. K. Tao, S. Farsiu, R. Maldonado, J. A. Izatt, and C. A. Toth, “Integration of a spectral domain optical
coherence tomography system into a surgical microscope for intraoperative imaging,” Invest. Ophthalmol. Vis. Sci.
52, 3153 (2011).

9. P. Hahn, J. Migacz, R. O’Donnell, S. Day, A. Lee, P. Lin, R. Vann, A. Kuo, S. Fekrat, P. Mruthyunjaya, E. A. Postel,
J. A. Izatt, and C. A. Toth, “Preclinical evaluation and intraoperative human retinal imaging with a high-resolution
microscope-integrated spectral domain optical coherence tomography device,” Retina 33, 1328–1337 (2013).

10. P. Hahn, J. Migacz, R. O’Connell, J. A. Izatt, and C. A. Toth, “Unprocessed real-time imaging of vitreoretinal surgical
maneuvers using a microscope-integrated spectral-domain optical coherence tomography system,” Graefes Arch.
Clin. Exp. Ophthalmol. 251, 213–220 (2013).

11. P. Steven, C. Le Blanc, K. Velten, E. Lankenau, M. Krug, S. Oelckers, L. M. Heindl, U. Gehlsen, G. Hüttmann,
and C. Cursiefen, “Optimizing descemet membrane endothelial keratoplasty using intraoperative optical coherence
tomography,” JAMA Ophthalmology 131, 1135–1142 (2013).

 Vol. 9, No. 6 | 1 Jun 2018 | BIOMEDICAL OPTICS EXPRESS 2825

#325982 https://doi.org/10.1364/BOE.9.002825
Journal © 2018 Received 15 Mar 2018; revised 20 May 2018; accepted 22 May 2018; published 30 May 2018

mailto:mark.draelos@duke.edu
https://doi.org/10.1364/OA_License_v1
https://crossmark.crossref.org/dialog/?doi=10.1364/BOE.9.002825&domain=pdf&date_stamp=2018-05-30
https://crossmark.crossref.org/dialog/?doi=10.1364/BOE.9.002825&domain=pdf&date_stamp=2018-06-04

12. Y. K. Tao, S. K. Srivastava, and J. P. Ehlers, “Microscope-integrated intraoperative OCT with electrically tunable
focus and heads-up display for imaging of ophthalmic surgical maneuvers,” Biomed. Opt. Express 5, 1877–1885
(2014).

13. J. P. Ehlers, T. Tam, P. K. Kaiser, D. F. Martin, G. M. Smith, and S. K. Srivastava, “Utility of intraoperative optical
coherence tomography during vitrectomy surgery for vitreomacular traction syndrome,” Retina 34, 1341–1346
(2014).

14. J. P. Ehlers, P. K. Kaiser, and S. K. Srivastava, “Intraoperative optical coherence tomography using the RESCAN
700: Preliminary results from the DISCOVER study,” Br. J. Ophthalmol. 98, 1329–1332 (2014).

15. J. P. Ehlers, S. K. Srivastava, D. Feiler, A. I. Noonan, A. M. Rollins, and Y. K. Tao, “Integrative advances for
OCT-guided ophthalmic surgery and intraoperative OCT: Microscope integration, surgical instrumentation, and
heads-up display surgeon feedback,” PLoS One 9, e105224 (2014).

16. P. Hahn, O. Carrasco-Zevallos, D. Cunefare, J. Migacz, S. Farsiu, J. A. Izatt, and C. A. Toth, “Intrasurgical human
retinal imaging with manual instrument tracking using a microscope-integrated spectral-domain optical coherence
tomography device,” Translational Vision Science & Technology 4, 1 (2015).

17. D. H. Nam, P. J. Desouza, P. Hahn, V. Tai, M. B. Sevilla, D. Tran-Viet, D. Cunefare, S. Farsiu, J. A. Izatt, and
C. A. Toth, “Intraoperative spectral domain optical coherence tomography imaging after internal limiting membrane
peeling in idiopathic epiretinal membrane with connecting strands,” Retina 35, 1622–1630 (2015).

18. L. Lytvynchuk, C. Glittenberg, and S. Binder, “The use of intraoperative spectral domain optic coherence tomography
in vitreoretinal surgery: The evaluation of efficacy,” Acta Ophthalmologica 93, 1667 (2015).

19. L. M. Heindl, S. Siebelmann, T. Dietlein, G. Hüttmann, E. Lankenau, C. Cursiefen, and P. Steven, “Future prospects:
Assessment of intraoperative optical coherence tomography in ab interno glaucoma surgery,” Current Eye Research
40, 1288–1291 (2015).

20. S. Siebelmann, P. Steven, and C. Cursiefen, “Intraoperative optical coherence tomography: Ocular surgery on a higher
level or just nice pictures?” JAMA Ophthalmology 133, 1133–1134 (2015).

21. S. Siebelmann, P. Steven, D. Hos, G. Hüttmann, E. Lankenau, B. Bachmann, and C. Cursiefen, “Advantages of
microscope-integrated intraoperative online optical coherence tomography: Usage in Boston keratoprosthesis type I
surgery,” J. Biomed. Opt. 21, 16005 (2016).

22. C. Shieh, P. DeSouza, O. Carrasco-Zevallos, D. Cunefare, J. A. Izatt, S. Farsiu, P. Mruthyunjaya, A. N. Kuo, and
C. A. Toth, “Impact of microscope integrated OCT on ophthalmology resident performance of anterior segment
maneuvers in model eyes,” Invest. Ophthalmol. Vis. Sci. 56, 4086 (2015).

23. N. D. Pasricha, C. Shieh, O. M. Carrasco-Zevallos, B. Keller, J. A. Izatt, C. A. Toth, and A. N. Kuo, “Real-time
microscope-integrated OCT to improve visualization in DSAEK for advanced bullous keratopathy,” Cornea 34,
1606–1610 (2015).

24. C. A. Toth, O. Carrasco-Zevallos, B. Keller, L. Shen, C. Viehland, D. H. Nam, P. Hahn, A. N. Kuo, and J. A. Izatt,
“Surgically integrated swept source optical coherence tomography (SSOCT) to guide vitreoretinal (VR) surgery,”
Invest. Ophthalmol. Vis. Sci. 56, 3512 (2015).

25. O. M. Carrasco-Zevallos, B. Keller, C. Viehland, L. Shen, G. Waterman, B. Todorich, C. Shieh, P. Hahn, S. Farsiu,
A. N. Kuo, C. A. Toth, and J. A. Izatt, “Live volumetric (4D) visualization and guidance of in vivo human ophthalmic
surgery with intraoperative optical coherence tomography,” Sci. Rep. 6, 31689 (2016).

26. J. Probst, D. Hillmann, E. M. Lankenau, C. Winter, S. Oelckers, P. Koch, and G. Hüttmann, “Optical coherence
tomography with online visualization of more than seven rendered volumes per second,” J. Biomed. Opt. 15, 1–4
(2010).

27. Y. Jian, K. Wong, and M. V. Sarunic, “Graphics processing unit accelerated optical coherence tomography processing
at megahertz axial scan rate and high resolution video rate volumetric rendering,” J. Biomed. Opt. 18, 1–5 (2013).

28. J. P. Ehlers, A. Uchida, and S. Srivastava, “THE INTEGRATIVE SURGICAL THEATER: Combining intraoperative
optical coherence tomography and 3D digital visualization for vitreoretinal surgery in the DISCOVER study,” Retina
(2017).

29. TrueVision Systems, “NGENUITY,” http://www.truevisionsys.com/ngenuity.html.
30. G. D. Aaker, L. Gracia, J. S. Myung, V. Borcherding, J. R. Banfelder, D. J. D’Amico, and S. Kiss, “Volumetric

three-dimensional reconstruction and segmentation of spectral-domain OCT,” Ophthalmic. Surg. Lasers Imaging 42
Suppl, S116–S120 (2011).

31. I. Kozak, P. Banerjee, J. Luo, and C. Luciano, “Virtual reality simulator for vitreoretinal surgery using integrated
OCT data,” Clin. Ophthalmol. 8, 669–672 (2014).

32. H. Roodaki, K. Filippatos, A. Eslami, and N. Navab, “Introducing augmented reality to optical coherence tomography
in ophthalmic microsurgery,” in “IEEE International Symposium on Mixed and Augmented Reality,” (2015), pp. 1–6.

33. L. Shen, O. Carrasco-Zevallos, B. Keller, C. Viehland, G. Waterman, P. S. Hahn, A. N. Kuo, C. A. Toth, and J. A.
Izatt, “Novel microscope-integrated stereoscopic heads-up display for intrasurgical optical coherence tomography,”
Biomed. Opt. Express 7, 1711–1726 (2016).

34. S. J. Horvath, “The optical coherence tomography microsurgical augmented reality system (OCT-MARS): A novel
device for microsurgeries,” Ph.D. thesis, Carnegie Mellon University, Pittsburgh, PA (2016).

35. Carl Zeiss Meditec, “OPMI LUMERA 700 and RESCAN 700 from ZEISS,” https://www.zeiss.com/meditec/us/
products/ophthalmology-optometry/glaucoma/therapy/surgical-microscopes/opmi-lumera-700.html.

36. L. Shen, B. Keller, O. Carrasco-Zevallos, C. Viehland, P. K. Bhullar, G. Waterman, A. N. Kuo, C. A. Toth, and J. A.

 Vol. 9, No. 6 | 1 Jun 2018 | BIOMEDICAL OPTICS EXPRESS 2826

http://www.truevisionsys.com/ngenuity.html
https://www.zeiss.com/meditec/us/products/ophthalmology-optometry/glaucoma/therapy/surgical-microscopes/opmi-lumera-700.html
https://www.zeiss.com/meditec/us/products/ophthalmology-optometry/glaucoma/therapy/surgical-microscopes/opmi-lumera-700.html

Izatt, “Oculus Rift® as a head tracking, stereoscopic head mounted display for intra-operative OCT in ophthalmic
surgery,” Invest. Ophthalmol. Vis. Sci. 57, 1701 (2016).

37. T. J. Buker, D. A. Vincenzi, and J. E. Deaton, “The effect of apparent latency on simulator sickness while using a
see-through helmet-mounted display,” Human Factors 54, 235–249 (2012).

38. J. P. Schulze, C. Schulze-Dobold, A. Erginay, and R. Tadayoni, “Visualization of three-dimensional ultra-high
resolution OCT in virtual reality,” Stud. Health Technol. Inform. 184, 387–391 (2013).

39. E. Bukaty, C. G. Glittenberg, and S. Binder, “Interactive, stereoscopic, three dimensional, virtual reality visualization
of optical coherence data sets of vitreo-macular tractions before and after enzymatic vitreolysis,” Invest. Ophthalmol.
Vis. Sci. 56, 5919 (2015).

40. C. Viehland, B. Keller, O. M. Carrasco-Zevallos, D. Nankivil, L. Shen, S. Mangalesh, T. Viet du, A. N. Kuo, C. A.
Toth, and J. A. Izatt, “Enhanced volumetric visualization for real time 4D intraoperative ophthalmic swept-source
OCT,” Biomed. Opt. Express 7, 1815–1829 (2016).

41. M. Levoy, “Display of surfaces from volume data,” IEEE Computer Graphics and Applications 8, 29–37 (1988).
42. D. Nankivil, G. Waterman, F. LaRocca, B. Keller, A. N. Kuo, and J. A. Izatt, “Handheld, rapidly switchable,

anterior/posterior segment swept source optical coherence tomography probe,” Biomed. Opt. Express 6, 4516–4528
(2015).

43. B. P. DeJong, J. E. Colgate, and M. A. Peshkin, Mental Transformations in Human-Robot Interaction (Springer,
Netherlands, 2011), vol. 1010 of Intelligent Systems, Control and Automation: Science and Engineering, book
section 3, pp. 35–51.

44. M. Draelos, B. Keller, C. Toth, A. Kuo, K. Hauser, and J. Izatt, “Teleoperating robots from arbitrary viewpoints in
surgical contexts,” in “IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),” (2017), pp.
2549–2555.

1. Introduction

Optical coherence tomography (OCT) is an increasingly popular imagingmodality for intrasurgical
guidance in ophthalmology [1–21]. Incorporation of OCT scanners into traditional surgical
microscopes for live cross-sectional and volumetric imaging at video rates has only further
established OCT as a key intraoperative technology [22–27]. Ophthalmic surgeons often struggle,
however, as consumers of OCT datasets due to poor visualization. OCT, intraoperative or
otherwise, simply does not benefit the surgeon if they cannot find the desired cross-section,
orient the volume intuitively, or appreciate the spatial relationships between tissue structures
in three dimensions. The OCT community has consequently invested considerable effort into
developing visualization techniques that give surgeons the high-quality views they need. These
techniques include stereoscopic systems for use inside [28, 29] and outside [30, 31] the operating
room and heads-up displays (HUDs) incorporated into microscopes for intraoperative augmented
reality [15, 32–35].

Virtual reality (VR) has drawn attention as a method for displaying complex images, including
OCT volumes. Formerly an expensive research technology, VR is commercially available in 3D
monitors/televisions and even relatively high-end consumer-oriented immersive head-mounted
displays (HMDs). HMDs exhibit several notable advantages for VR compared with 3D TVs
and HUDs [36]. HMDs not only offer a much larger field of view (potentially the full 4π sr) to
display imagery, owing to users’ unrestricted head motion, but also permit users to move through
a virtual space. Even while immersed, video feedthrough of HMD-mounted and other cameras
can maintain users’ connection with the physical world. In the ophthalmic surgery context, we
believe immersed surgeons can even gain a heightened situational awareness through careful
context-dependent feedthrough of relevant information, such as patient status data displays (e.g.,
vital signs monitors) and pre- or intra-operative imaging visualizations. Far from “blinded” to the
outside world, an HMD-immersed surgeon potentially has access to much more information than
they could see when obligated to direct their attention through the microscope oculars alone. With
increasingly clever VR interfaces that make navigating virtual menus and switching between
video displays intuitive, the immersed surgeon can simply look around the operating room as
usual while simultaneously benefiting from OCT and other data visualizations.

To provide a compelling visual experience, however, immersive VR systems require complete
control over users’ visual inputs. Unfortunately, such extensive control can predispose users

 Vol. 9, No. 6 | 1 Jun 2018 | BIOMEDICAL OPTICS EXPRESS 2827

to motion sickness. If, when users move their heads, the VR system fails to track that motion
sufficiently accurately (tracking error) or fails to render the viewed scene sufficiently quickly
(rendering lag), the discordance between users’ visual and vestibular senses may induce simulator
sickness [37]. VR manufacturers have suitably addressed tracking error by synthesizing data from
accurate fixed-base HMD pose trackers and responsive HMD-integrated inertial measurement
units. Similarly, they have mitigated the rendering lag by imposing high frame rate requirements
on VR applications and by predicting the HMD pose one or more frames ahead. For many
consumer VR systems, this means rendering at no less than 90 fps.

VR for OCT visualization is not new, however. In 2013, Schulze et al. explored non-immersive
3D TV-based VR for viewing OCT volumes using a texture-based approximation to ray casting
for volumetric rendering [38]. In 2015, Bukaty et al. reported viewing of segmentation results
from macular traction datasets in seated immersive VR with the Oculus Rift (Oculus VR; Irvine,
CA) using a mesh reconstruction approach [39]. We extend these works by developing an
interactive VR-OCT viewer for both static and live datasets using the Vive (HTC; New Taipei
City, Taiwan) for room-scale immersive VR. Rather than using texture-based approximations
or mesh reconstructions, we optimize our previously reported graphics processing unit (GPU)
enhanced ray casting algorithms [40] for high-quality volumetric rendering at 180 fps (90 fps per
eye) as required for immersive VR. In particular, we structure our GPU algorithms to capitalize
on the frame rate differential between volume acquisition and VR rendering (e.g., 10 fps vs.
180 fps). This paper describes GPU approaches and data organization techniques for high-frame
rate ray casting, presents performance comparisons for optimizations with their quality trade-offs,
and demonstrates guidance of mock surgical procedures exclusively by live OCT and video
feedthrough from within immersive VR.

2. Volume ray casting

Volume ray casting is a direct volumetric rendering technique for visualizing 3D volumes. In
medical imaging applications, the volume is typically a scalar field (e.g., reflectance or density)
with shading and classification transfer functions. These transfer functions assign application-
dependent color and opacity, respectively, to each voxel. Volume ray casting samples and blends
these colors and opacities along imagined rays to generate a representative 2D image [41].

2.1. Ray generation

Figure 1 shows the typical scheme for a 3D rendering with perspective in graphics environments
like OpenGL (The Khronos Group; Beaverton, OR) and DirectX (Microsoft; Redmond, WA).
The rendering pairs a “world” of geometries with a “camera” that projects this world into an
image. The camera’s field of view and vantage point are defined by projection and modelview
matrices, respectively. The projection matrix P defines a pyramid extending from the camera’s
focal point along the −z axis, which the camera’s near and far clip planes truncate into a frustum.
Objects within the frustum participate in the render; objects outside do not. The modelview
matrix M positions the camera’s frustum in the world such that it contains the objects of interest.
Both matrices are 4 × 4 and operate on homogenous coordinates.
After transforming all object points into camera coordinates with M, each 3D object point

a = (x, y, z) is projected into a 2D point b = (u, v) on the image plane of pixels. Any plane
parallel to the xy-plane at a negative z offset suffices as an image plane because the pixel size
scales with the z offset. Mathematically, the perspective projection process is expressed as

−z

b
w

1

 = −z


u
v

w

1

 = P


x
y

z
1

 = P
[
a
1

]
, (1)

 Vol. 9, No. 6 | 1 Jun 2018 | BIOMEDICAL OPTICS EXPRESS 2828

o
x

y

z

a

b

d

u

v

Focal
Point

Render
Frustum

Near Clip
Plane

Far Clip
Plane

Possible
Image Plane

Object

Fig. 1. Diagram of projective geometry for a perspective 3D rendering. The 3D object point
a in camera coordinates is projected to the 2D image point b with pixel coordinates (u, v).
The ray d from o passes through both a and b.

where the leading factor of −z arises from the perspective projection. As shown in Fig. 1, u and v
determine b’s position on the image plane, but w only reflects the depth of a. This is consistent
with a 3D ray’s complete specification by two parameters. Thus, u and v uniquely determine the
ray from the focal point that passes through a.
Although many schemes for ray generation in volume ray casting exist, choosing rays that

correspond to pixels is particularly helpful when working with both volume and mesh objects.
When volume ray casting using rays from the focal point through the image plane’s pixels, the
volume behaves like a normal object posed in the 3D scene. The resulting volumetric render
coincides pixel-for-pixel with the 3D graphics render such that compositing them together is
trivial. Furthermore, each ray’s origin and direction vectors can be extracted from P and M,
which completely define the 3D graphics render. The ray origin is simply o = (0, 0, 0) in camera
coordinates. The ray direction d for a given pixel b is determined from Eq. (1) by noting that it
holds for any z. Choosing z = −1 conveniently eliminates this parameter. Furthermore, w does
not affect the ray, so it is chosen as zero. Solving for x and y, which define the ray in camera
coordinates, gives

[
d
1

]
=


x
y

−1
1

 = P−1


u
v

0
1

 = P−1

b
0
1

 , (2)

which is subsequently normalized such that ‖d‖ = 1. To obtain the ray in world coordinates, the
ray origin is transformed by M−1, [

o′
1

]
= M−1

[
o
1

]
, (3)

and the ray direction is rotated by M−1,[
d′
0

]
= M−1

[
d
0

]
. (4)

Notably, M−1 always exists because M is a homogenous transformation matrix. P−1 exists if
neither clip plane includes the origin. This is typically required by the graphics environment.

 Vol. 9, No. 6 | 1 Jun 2018 | BIOMEDICAL OPTICS EXPRESS 2829

o

x

y
z

d0

d1

d2

d3

d4

d5

d6

d7

d8

d9

Fig. 2. Illustration of sampling the volume with ten rays. Each ray samples the volume at a
fixed interval from entry until exit. Circles denote the sample positions.

2.2. Sampling

Fig. 2 depicts how the previously generated rays sample the volume’s color and opacity. The rays
propagate outward from the common origin in fixed steps along their respective directions of
travel. Specifically, the ray’s ith step is at position

pi = o +
[
t0 + (i − 1)∆t

]
d, (5)

where ∆t is the step size and t0 is the initial propagation distance. t0 is chosen per ray to avoid
unnecessary steps before the ray enters the volume. At every step, the rays sample the volume’s
color c(x) and opacity α(x). These application-dependent functions are designed to reveal or
highlight certain volume features. For example, shading is frequently incorporated into α(x) to
give the volume an appearance of structure.
Evaluating c(x) and α(x) incurs the largest computational cost of volume ray casting. These

functions internally query the volume, or do so indirectly via gradient computations. Unfortunately,
it is desirable to keep ∆t small to preserve render quality, which increases the sample count. If
∆t is too large, the resulting render may not capture smaller structures within the volume. The
target application typically enforces an upper bound on ∆t such that optimizations other than
increasing ∆t are preferred for expediting slow renders. Furthermore, each ray takes samples at
unique positions; because the rays all propagate in different directions from the same point, their
paths never cross. The sample count is consequently proportional to the ray count as well.

2.3. Blending

Blending combines each ray’s samples into a single pixel value with color and opacity. Many
techniques in 3D graphics exist for this purpose; however, the front-to-back method is particularly
advantageous because samples are blended in the order the ray encounters them. Once the pixel
has accumulated sufficient opacity, the ray can “exit early” to skip subsequent samples without
significantly affecting the pixel’s final color. As the ray encounters each sample, it performs
front-to-back blending according to

cr,i = cr,i−1 + c(pi)α(pi)(1 − αr,i−1) (6)
αr,i = αr,i−1 + α(pi)(1 − αr,i−1), (7)

where cr,i and αr,i are the accumulated color and opacity at the ith step. Blending is initialized
with cr,0 = 0 and αr,0 = 0 for a perfectly black and completely transparent initial pixel. The

 Vol. 9, No. 6 | 1 Jun 2018 | BIOMEDICAL OPTICS EXPRESS 2830

final pixel color and opacity are cr,n and αr,n, respectively, where n is the index of the final step.
These recursive equations can be expressed as

cr,n =
n∑
i=1

c(pi)α(pi)
i−1∏
j=1

[
1 − α(pj)

] (8)

αr,n = 1 −
n∏
i=1

[
1 − α(pi)

]
(9)

in closed form [40]. In practice, the recursive form lends to more efficient computation if cr,i−1
and αr,i−1 are cached. For color renders, each channel blends independently according to Eq. (6).

3. GPU optimizations

We applied four distinct optimizations to perform ray casting as in [40] but at the high frame
rates needed for immersive VR systems. The first two improve data storage and computational
efficiency without significant render quality reduction. The second two, however, eliminate
expensive computations and thereby degrade the rendered volume’s visual appearance. Notably,
we performed these optimizations without sampling density or resolution reductions. Table 1
summarizes the optimizations and introduces the letter-based convention we use for referencing
combinations of them. A numeric suffix after the configuration letters specifies the render
resolution (e.g., PCNI-512 at 512 × 512 pixels). An underscore indicates that a particular
optimization class is left unspecified (e.g., E_LF refers to both ESLF and ECLF). The “baseline”
configuration from [40] is ESLF.

Table 1. Letter Convention for Render Configurations

Quality Class Letter Configuration

Preserving
Data Layout

E intensity
P gradient packing
K voxel packing

Kernel S sequential (2D)
C concurrent (3D)

Degrading

Texture
Interpolation

L trilinear
N nearest

Data Type F floating-point (32 bits)
I integer (8 bits)

3.1. Data layout

Data layout has a significant impact on rendering runtime because it affects the volume sampling
latency. This latency is exaggerated for large volumes, which may exceed texture memory cache
sizes, and for renders with shading and edge enhancement, which require multiple samples for
gradient computations. In a render with gradient-based shading especially, a single ray may incur
several hundred gradient computations depending upon its propagation depth and step size. The
gradient is computed with central finite differences in three dimensions for six total volume
texture lookups (E). GPUs optimize texture memory for spatial locality, yet the number of rays
and the volume’s storage size can still cause performance-reducing cache misses. We avoided
these six texture lookups in two separate techniques: gradient packing and voxel packing.

 Vol. 9, No. 6 | 1 Jun 2018 | BIOMEDICAL OPTICS EXPRESS 2831

a
bc

d

e

f
g

h

081624
v.x

081624
v.y

Fig. 3. Storage arrangement for voxel packing. The voxel’s eight corner values (a – h) are
stored as 8 bit integers in a 32 bit integer two-vector (v). Numbers indicate bit offsets into
each integer.

Gradient packing (P) combines volume sampling and gradient computation into a single
texture lookup. We accomplish this by precomputing the gradient for the entire volume once at
voxel resolution and interleaving it with the volume intensity as a four-vector. The x, y, and z
vector components store the vector-valued gradient whereas the w vector component stores the
scalar-valued volume intensity. This approach is effective because the volume is rendered much
faster (180 fps) than it is acquired (10 fps for typical real-time OCT systems). Consequently, the
gradient is computed only when the volume is updated and cached for many render frames until
the next update. Interleaving the gradient and intensity thus reduces each ray propagation step to
a single volume texture lookup, even with gradient-based shading. Because ray casting uses voxel
resolution for its gradient computation, precomputing the gradient at the voxel level does not
significantly affect render quality. Storage of three additional values does quadruple the volume
size in memory, especially when a 32 bit floating-point data type is used. If an 8 bit data type
is chosen instead, the packed gradient fits into the storage size of a single 32 bit floating-point
scalar.

Voxel packing (K) combines volume sampling, gradient computation, and trilinear interpolation
into a single texture lookup. We accomplished this by bit-packing each voxel’s eight corner
values as 8 bit integers into one 32 bit integer two-vector using the scheme in Fig. 3. As with
gradient packing, voxel packing is performed once and then reused in subsequent renders until
the next volume update. When sampling the volume during ray propagation, we round that ray’s
position to the containing voxel and retrieve that voxel’s corners via a single texture lookup
with nearest-neighbor interpolation. This approach avoids the additional volume samples needed
behind the scenes for a texture lookup with trilinear interpolation. With the eight voxel corners
available, we manually perform trilinear interpolation within the render kernel to compute the
volume intensity and gradient at the ray’s actual position. The resulting render quality is slightly
degraded because the manual interpolation performs poorly at the voxel faces. Nevertheless,
voxel packing provides quality comparable to trilinear interpolation without requiring additional
volume samples. The storage of one additional 32 bit integer does double the volume size in
memory, but not as much as gradient packing with a 32 bit floating-point four-vector.

3.2. Kernel launch

The GPU kernel launch configuration (e.g., block size) affects performance through streaming
multiprocessor scheduling. We improved GPU occupancy by combining ray casting kernels
for the left and right eyes into a single kernel invocation (C) rather than invoking the same

 Vol. 9, No. 6 | 1 Jun 2018 | BIOMEDICAL OPTICS EXPRESS 2832

render kernel once for each eye (S). This was accomplished with a third kernel dimension that
serves as an index into an array of render parameters. We extended this approach to allow an
arbitrary number of concurrent ray castings as needed in 360° recordings, for example. In practice,
aggregating multiple identical kernels into a single monolithic one allows the GPU to achieve
greater efficiency in streaming multiprocessor usage. This optimization does not alter the ray
casting computation and thus does not affect render quality or storage requirements.

3.3. Interpolation and data type

We reduced GPU computation by converting from texture trilinear interpolation (L) to nearest-
neighbor interpolation (N). This improves performance by avoiding the extra texture lookups
otherwise performed. Furthermore, when using nearest-neighbor interpolation, the volume texture
data type can be changed from 32 bit floating point (F) to 8 bit integer (I) without affecting quality
because the interpolation result is independent of data type. In [40], the volume intensity was
originally an 8 bit integer so no precision was gained from floating-point storage. This data type
change further increases performance by reducing the volume texture size in memory by a factor
of four. The decreased memory size increases the fraction of the volume that will fit in the texture
cache, which reduces cache misses.

4. Interactive virtual reality viewer

Our VR-OCT viewer supports interactive posing and sectioning of static and live volumes
while meeting the rendering requirements of immersive VR. We implemented our viewer using
OpenGL and OpenVR (Valve Corporation; Bellevue, WA), which allows us to integrate with
any OpenVR-supported hardware. Section 4.1 provides an overview of the viewer’s rendering
pipeline while Section 4.2 focuses on live sectioning. Section 4.3 extends the pipeline to handle
live volume datasets, and then Section 4.4 describes the user interactivity scheme.

4.1. Pipeline

The rendering pipeline is divided into three stages that execute sequentially every frame: pose
update, volumetric render, and compositing (Fig. 4). During pose update, we queried the VR
tracking system for updatedHMDand controller poses. In accordancewithOpenVR recommended
practices, we used the pose velocity to predict the HMD and controller poses at the instant when
the HMD screen redraws. We used these predicted poses to drive the eye view matrices and
controller input poses for ray casting and user interactivity features, respectively.
The volume render stage is responsible for producing an image from the volumetric datasets

stored in GPU texture memory. Typical real-time viewing applications render OCT volumes
at 512 × 512 pixels and 30 fps. In contrast, rendering at the Vive’s native resolution and frame
rate of 1512 × 1680 pixels and 90 fps, respectively, is difficult without building a small render
farm. Ray casting only within the screen area containing the volume significantly reduces this
rendering burden. Thus, we computed the on-screen volume bounding rectangle and performed
ray casting at 512 × 512 pixels only within that rectangle using the view and projection matrices
for each eye. This optimization allowed us to concentrate rays in the OCT screen region while
sharing the view and projection matrices with the scene camera. The volumetric render image
consequently remained sharp even when occupying a small screen region. The process was
performed independently for each eye because of the difference in view and projection matrices
between eyes. Additional volumes could be readily incorporated here, if needed, with further
bounding box projections and ray castings at the associated computational expense. For later
compositing steps, we considered the ray casting intensity as the transparency channel of a
uniform intensity texture. This produced an effect where less dense regions of the OCT volume
appear more translucent rather than less bright.

 Vol. 9, No. 6 | 1 Jun 2018 | BIOMEDICAL OPTICS EXPRESS 2833

The compositing stage combines the OCT volumetric render image with the 3D scene to
produce the final image for each eye. Compositing is done at OpenVR’s recommended Vive
oversampling resolution of 1512 × 1680 pixels. For simplicity, we divided the VR scene into the
background, volume, and foreground layers. The scene background layer contained static models
to help orient the user (e.g., a floor). The volume layer included only the OCT volumetric render
image. The scene foreground layer contained interactive models with which the user manipulated
the volume (e.g., Vive controller models). To build the final image, the scene background layer
was first rendered onto a black background using the eye’s view and projection matrices. We
chose a completely black background to enhance volume visibility. Similarly, we included only
an unobtrusive wireframe floor to orient the user without detracting from the volume’s visibility.
Next, a rectangle textured with the volumetric render that matched the volume’s on-screen
bounding rectangle was rendered in orthographic projection. We enabled OpenGL texture linear
interpolation for upsampling or downsampling the volumetric render image as needed. Finally,
the scene foreground was rendered. We performed these renders into OpenGL framebuffer objects
using the HMD-specific non-visible pixel mask and submitted the resultant textures to OpenVR
for presentation.

4.2. Live sectioning

We implemented dynamic volume sectioning by defining a set of cut planes that bounded ray
propagation. The ith cut plane is defined by a point pi and a normal vector n̂i in the volume space.
Similarly, each ray is defined by an origination point o and direction vector d (Fig. 5(a)). The cut
plane divides the volume into the hidden half-space for which (x − pi) · n̂i < 0 and the visible
half-space for which (x − pi) · n̂i ≥ 0, where x is a point in the volume. Rays passing through the
hidden half-space accumulate no additional color and opacity. Conversely, rays passing through
the visible half space accumulate color and opacity as in Eq. (6). When more than one cut plane
is present, the volume’s only visible portion is that region within the intersection of every cut
plane’s visible half-space, which is a convex hull by construction. We call this region the visible
convex hull (VCH). Applying cut planes is thus equivalent to ray casting as if the volume were
completely transparent except within the VCH.
Rather than explicitly computing the complete VCH, we instead determined the distance

Volume
Acquisition

HMD
Eye Pose M−1, P−1 Bounds

Projection

Ray
Casting

Volume
Overlay

Scene
Render

Texture
Submit

HMD
Eye Pose M−1, P−1 Bounds

Projection

Ray
Casting

Volume
Overlay

Scene
Render

Texture
Submit

Fig. 4. Virtual reality display pipeline for right (bottom, red) and left (top, blue) eyes. The
pipeline begins (left) with OCT volume acquisition (green) or OpenVR pose update and
completes (right) with HMD texture submissions.

 Vol. 9, No. 6 | 1 Jun 2018 | BIOMEDICAL OPTICS EXPRESS 2834

o

ni

pi

d
t =

(pi−o) · n̂i

d · n̂i

Parallel
|d · n̂i| ≈ 0

Intersect
|d · n̂i|> 0

Behind
(pi−o) · n̂i > 0

In Front
(pi−o) · n̂i ≤ 0

Aligned
d̂ · n̂i ≥ 0

Opposed
d̂ · n̂i < 0

Discard
Ray

None

Update Near
tn = max(t, tn)

Update Far
t f = min(t, t f)

(b)(a)

Fig. 5. (a) Ray-plane intersection geometry for a non-parallel ray. (b) Decision tree from left
to right for a cut plane’s effect on a given ray.

along its propagation vector at which each ray enters (tn) and exits (t f) the VCH. If the ray
intersects the VCH, it is then propagated from o+ tnd to o+ t f d according to Eq. (5) with t0 = tn
for n =

⌈
(t f − tn)/∆t

⌉
steps. The distances tn and t f are readily computed using the ray-plane

intersection equation as tn = max D and t f = min D where

D =
{
(pi − o) · n̂i

d · n̂i
: i = 1, . . . , k

}
(10)

for k cut planes with points {pi} and normals {n̂i}. If the ray is parallel to any cut plane such that
d · n̂i = 0 and lies behind the cut plane such that (pi − o) · n̂i > 0, it is discarded; otherwise, the
ray is unaffected by that cut plane. Figure 5(b) summarizes this procedure, which is performed
independently for each ray.

4.3. Live volumes

We supported volume texture updates to enable viewing and manipulation of live OCT volumes
within the VR environment. For live volumes, viewing and acquisition are traditionally collocated
because the OCT engine is responsible for display. In contrast, we elected to stream OCT volumes
across an Ethernet network from the OCT engine to the VR system and thereby decouple viewing
from acquisition. This is advantageous in that dedicated computational resources can be allocated
separately to viewing and acquisition and in that multiple viewers can display the same acquired
data concurrently in different locations. Capitalizing upon this networked approach, however,
requires attention to efficient data handling as the processed OCT volume is no longer immediately
available in the viewer’s device (GPU) memory.

To support remote viewing, we implemented a network server in our acquisition software that
streamed sets of processed B-scans. Once the acquisition GPU completed processing of a B-scan
batch, these B-scans were copied to host (CPU) memory and written out to all connected network
clients. This incurred little overhead because B-scans were already copied from device to host
memory for writing to persistent storage. The VR-OCT viewer implemented a network client that
received each B-scan batch and incrementally updated the volume texture. To minimize delays,
the viewer performed concurrent network reads, host-to-device transfers, and texture updates. A
dedicated CPU thread read each B-scan batch into rotating pinned host memory buffers. When a
given buffer was filled, a host-to-device transfer for that buffer was issued in a dedicated “copy”
GPU stream and a matching update kernel invocation was issued in a dedicated “update” GPU

 Vol. 9, No. 6 | 1 Jun 2018 | BIOMEDICAL OPTICS EXPRESS 2835

stream. The update kernel performed gradient or voxel packing, depending upon the active data
layout scheme, and directly updated the volume texture. A GPU event was used to synchronize
the kernel execution and transfer without host intervention. Serializing all update kernels in the
same GPU stream ensured that the volume texture was updated in the acquisition order.

4.4. Interactivity

We added interactivity to the VR-OCT viewer with two handheld Vive controllers for posing
and sectioning the volume. The user independently switched each controller between posing and
sectioning using specific positions on the directional pad.

In posing mode, the user could translate, rotate, and scale the volume. When the user depressed
the trigger of one controller only, the relative motion of the controller was then mapped onto the
volume. This produced an effect where the user grabbed and moved the volume as if grasped
by the hand. When the user depressed the triggers of both controllers, the controllers’ relative
motion affected the volume’s rotation and scale. Increasing or decreasing the distance between
the controllers magnified or minified the volume, respectively. This allowed the user to zoom the
volume in or out, much like the pinch gesture common on touchscreen-enabled devices. Rotating
the controllers about each other applied the same rotation to the volume. This produced an effect
where the user grabbed the volume with two hands and pivoted it about its center.

In sectioning mode, a translucent cut plane was drawn extending from the controller. When
the user partially depressed the controller’s trigger, the volume was sectioned with that cut plane,
which moved with the controller. When the user completely depressed the trigger, the volume
was persistently sectioned with that cut plane. Subsequently releasing the trigger allowed the
user to start another live section. The persistent cut planes were defined in the volume’s local
coordinate system and therefore moved, rotated, and scaled with the volume. All cut planes were
cleared using a button on the controller.

5. Methods

We evaluated our VR-OCT viewer’s rendering latency, live volume latency, and user experience
through benchmarking and testing. Sections 5.1 and 5.2 describe the OCT and graphics systems,
respectively, for these evaluations. Sections 5.3 through 5.5 present our testing methodology.

5.1. OCT system parameters

We used two different OCT systems to evaluate our VR-OCT viewer. System A was the OCT
system previously reported in [42]. This system illuminated a spectrally-balanced interferometer
with a 1060 nm swept-frequency source (Axsun Technologies; Bileraca, MA) at a 100 kHz
A-scan rate. The optical signal detection chain used a 1.8GS/s digitizer (AlazarTech; Quebec,
Canada) to measure the output of a balanced photoreceiver (Thorlabs; Newton, NJ). We
acquired 1327 × 1024 × 128 voxel volumes at 0.39 vol/s for ray casting latency characterization
(Section 5.3). SystemB illuminated aMach-Zender topology interferometer with a 1060 nm swept-
frequency source (Axsun Technologies; Bileraca,MA) at a 100 kHzA-scan rate. Again, the optical
signal detection chain used a 1.8GS/s digitizer (AlazarTech; Quebec, Canada) to measure the
output of a balanced photoreceiver (Thorlabs; Newton, NJ). We acquired 500 × 500 × 128 voxel
volumes at 1.56 vol/s for live volume latency analysis (Section 5.4) and 481 × 301 × 96 voxel
volumes at 3.46 vol/s for user experience assessment (Section 5.5).

5.2. Ray casting parameters

Our VR computer featured dual GPUs; a NVIDIA GTX 1080 was dedicated to ray casting
whereas all other graphics processing (e.g., scene compositing) was performed on a NVIDIA
GTX 670. We used CUDA (NVIDIA; Santa Clara, CA) with “fast math” enabled for GPU

 Vol. 9, No. 6 | 1 Jun 2018 | BIOMEDICAL OPTICS EXPRESS 2836

programming. The ESLF-512 configuration (see Table 1) represented baseline performance
for all metrics. Ray propagations used a step size of 0.01 in normalized texture space, were
limited to 500 steps, and exited early at 95% opacity in all configurations. All renderings used
the parameters given in Table 2 according to their definitions in [40].

Table 2. Ray Casting Rendering Parameters

Edge Enhancement Feature Enhancement Depth-Based Shading Phong Shading

Constant Value Constant Value Constant Value Constant Value

kg1 0.25 k f 1 0.05 kd1 1.2 kp1 1.2
kg2 0.3 k f 2 0.4 kd2 4 kp2 0.45

kd3 0.5 kp3 0.6
kp4 1

5.3. Ray casting latency characterization

We characterized ray casting latency for compatible configurations from Table 1 using a
standardized battery of stereo renders. For a given configuration, we rendered static volumes at
512 × 512 pixels from views uniformly distributed over a sphere and recorded ray casting kernel
execution durations using the NVIDIA Visual Profiler. To elicit worst-case performance, we
used synthetic, all-zero volumes sized 1 × 1 × 1 voxels and 256 × 256 × 256 voxels to examine
computational overhead and caching effects, respectively. To elicit typical performance, we
used a static 1327 × 1024 × 128 voxel anterior segment volume acquired with System A. Each
viewing angle was repeated at four distances for a total of 648 renders per volume and per
configuration, after 100 initial “warm-up” renders. We evaluated all possible configurations
with the E and P data layouts except those using trilinear interpolation with integer data types
(LI). Such configurations were excluded because they produced unacceptably low render quality.
For the most optimized configuration (PCNI), we considered renders at 768 × 768 pixels and
1024 × 1024 pixels as well to determine if higher resolutions were possible while still meeting the
render deadline. Additionally, we evaluated the KCNI configuration as an alternative to trilinear
interpolation (L) for preserving render quality.

5.4. Live volume latency characterization

We characterized live volume latency by measuring the time required for changes in System
B’s acquired signal to affect an ongoing stereo render. With its photoreceiver unpowered, we
artificially alternated System B’s signal between zero and saturation in software by overwriting
acquired A-scans and streamed processed B-scans in chunks of 4 to the VR computer over a
1Gbps Ethernet network. Furthermore, we adapted our software to synchronize a light emitting
diode (LED) with the artificial signal level alternations. In the ongoing ray casting with the
PCNI-512 configuration, saturated B-scans rendered as pure white (high brightness) whereas
zero B-scans rendered as pure transparency onto the black background (low brightness). Using a
Grasshopper3 (FLIR Systems; Wilsonville, OR) camera viewing both the LED and HMD oculars
in a dimly-lit environment, we recorded 600 fps video that captured the delay between LED
illumination and HMD brightness change with approximately 1.67ms resolution. In addition, we
recorded the render and update kernel execution durations with the NVIDIA Visual Profiler to
assess the impact of live updates on VR frame rate.

5.5. User experience assessment

We assessed user experience with regards to image quality and usability through two sets of mock
surgical procedures in ex vivo porcine eyes. In each procedure, an experienced anterior segment

 Vol. 9, No. 6 | 1 Jun 2018 | BIOMEDICAL OPTICS EXPRESS 2837

surgeon performed partial-thickness passes through the cornea with a 6-0 suture needle. We
imaged each pass with System B in real-time and streamed processed B-scans in chunks of 32 to
the VR computer over a 1Gbps Ethernet network. For the “observed” procedure set, the surgeon
executed passes with the unaided eye and on-screen OCT while a nearby observer wearing the
HMD followed along in VR-OCT. The operator used interactive volume posing and sectioning
to reveal needle depth during a series of passes. For the “guided” procedure set, the surgeon
guided the same needle passes exclusively with VR-OCT. The surgeon wore the HMD which
displayed live OCT from System B in addition to external video feedthrough from the HMD’s
front-facing camera to improve situational awareness. We presented external video on a plane
fixed in the surgeon’s field of view that aligned the camera’s perspective with the physical world
and then rendered the OCT volume over this plane with colorization to provide extra contrast (see
Fig. 10(a) for example). To facilitate surgeon interaction in VR-OCT, an assistant manipulated
the volume using VR controllers at the surgeon’s request by viewing a screen that mirrored the
HMD. To keep handheld controller motions intuitive, the assistant and surgeon faced the same
direction in the tracked VR environment.

We also assessed render quality by comparing the output of incrementally optimized configu-
rations from Table 1. For quality comparison purposes, we compared renders with a standardized
volume and viewing angle to the baseline ESLF configuration. Images for quality analysis were
taken directly from the ray casting output and did not include other 3D scene elements. We
examined these images overall and at magnification for preservation of fine detail and introduction
of artifacts.

6. Results

We performed renders in sixteen different configurations for a total of 31,104 stereo ray castings
across the three test volumes when evaluating ray casting latency. Figs. 6 and 7 show ray casting
latency and speedup factors for the 1 × 1 × 1 voxel and 256 × 256 × 256 voxel all-zero volumes,
respectively. The most optimized PCNI-512 configuration achieved speedup factors of 3.08 and
4.87 from baseline for the respective volumes. The quality-preserving KCNI-512 configuration
achieved speedup factors of 1.73 and 3.14 from baseline for the same volumes. PCNI-768 and
PCNI-1024 showed much more modest speedup factors, however, especially for the single voxel

1 10
Render Duration (ms)

PCNI-1024
PCNI-768
KCNI-512
PCLI-512
PCNI-512
PSNI-512
PCNF-512
PSNF-512
ECNI-512
ECNF-512
ESNF-512
ESNI-512
ECLF-512
ESLF-512
PCLF-512
PSLF-512

R
en

de
rC

on
fig

ur
at

io
n

0.86
1.39
1.73
2.61
3.08
2.96
2.64
2.56
1.50
1.50
1.47
1.47
1.01
1.00
0.93
0.92

Fig. 6. Stereo ray casting latency and speedup (right) by render configuration for a
1 × 1 × 1 voxel transparent volume. The vertical blue line indicates the median latency
in the baseline ESLF-512 configuration.

 Vol. 9, No. 6 | 1 Jun 2018 | BIOMEDICAL OPTICS EXPRESS 2838

1 10
Render Duration (ms)

PCNI-1024
PCNI-768
KCNI-512
PCLI-512
PCNI-512
PSNI-512
PCNF-512
PSNF-512
ECNF-512
ECNI-512
ESNF-512
ESNI-512
PCLF-512
PSLF-512
ECLF-512
ESLF-512

R
en

de
rC

on
fig

ur
at

io
n

1.50
2.56
3.14
4.46
4.87
4.26
3.55
2.52
2.50
2.48
1.97
1.96
1.78
1.50
1.27
1.00

Fig. 7. Stereo ray casting latency and speedup (right) by render configuration for a
256 × 256 × 256 voxel transparent volume. The vertical blue line indicates the median
latency in the baseline ESLF-512 configuration.

1 10 100
Render Duration (ms)

PCNI-1024
PCLI-512
KCNI-512
PCNI-768
PCNI-512
PSNI-512
PCNF-512
PSNF-512
PCLF-512
PSLF-512
ECNI-512
ECNF-512
ESNI-512
ESNF-512
ECLF-512
ESLF-512

R
en

de
rC

on
fig

ur
at

io
n

0 %
13 %

1 %
0 %
0 %
0 %

31 %
43 %
93 %

100 %
100 %
100 %
100 %
100 %
100 %
100 %

Fig. 8. Stereo ray casting latency and render overrun rate (right) by render configuration for
a 1327 × 1024 × 128 voxel typical OCT volume. The vertical blue line indicates the 90 fps
deadline at 11.1ms.

volume. Fig. 8 shows ray casting latency and overrun rates for the 1327 × 1024 × 128 voxel
typical volume. The overrun rate is the fraction of stereo render durations that exceeded 11.1ms,
the interval corresponding to 90 fps. The PCNI-512 and KCNI-512 configurations achieved 0%
and 1% overrun rates, respectively, compared to 100% for the baseline ELSF-512 configuration.
Both PCNI-768 and PCNI-1024 demonstrated 0% overrun rates.

We measured 32 ± 8ms delay from acquisition to display across 13 zero/saturation transitions
when assessing live volume latency. At 90 fps, this corresponds to a 3 ± 1 frame delay. OCT
processing in batches of four B-scans introduced a fixed latency of approximately 10ms, leaving
approximately 22 ± 8ms of latency attributable to network transfer and volume update. During
live updates, the VR pipeline maintained a median frame interval of 11.2ms, corresponding to
89.3 fps, over 833 renders with 375 updates. The longest observed frame interval was 11.7ms. The

 Vol. 9, No. 6 | 1 Jun 2018 | BIOMEDICAL OPTICS EXPRESS 2839

render and update kernels accounted for 98.3% and 1.6% of GPU execution time, respectively.
Fig. 9 illustrates the observer’s VR-OCT experience during the “observed” procedure set.

The VR rendering pipeline operated without noticeable frame drops or lag, despite live volume
updates. The immersed user viewed volumes from any perspective by looking and walking
around or inside them. Similarly, the user readily manipulated the volume’s pose and applied live
cut planes through the controller-based interaction modes to reveal needle bite depth. Fig. 10
shows the surgeon’s VR-OCT experience during the “guided” procedure set. The surgeon
successfully visualized the tool and completed needle passes guided exclusively in VR-OCT. The
live OCT visualization provided sufficient detail to identify and maneuver the needle tip near the
cornea without microscope assistance. Furthermore, the surgeon effectively used external video
feedthrough to orient themselves in the procedure environment. They had difficulty, however,
controlling the tool outside of the OCT field of view due to low camera resolution. The assistant
found the HMD display mirror adequate for satisfying the surgeon’s volume manipulation
requests.
Fig. 11 shows render quality obtained with incremental optimization. Gradient packing (P)

slightly altered the output from baseline (E) but did not significantly degrade its quality. Switching
from trilinear (L) to nearest-neighbor (N) interpolation yielded noticeably fuzzy output which
masked previously visible volume features. Converting from floating-point (F) to integer (I)
data types with nearest-neighbor interpolation did not significantly alter quality. Voxel packing
(K), however, greatly restored render quality but not without introducing some gradient-related
artifacts.

7. Discussion

Our VR-OCT viewer demonstrated successful visualization of OCT volumes without significant
frame drops or lag at 90 fps. The primary drivers of this success were the large speedups obtained
with certain optimization combinations. The combination responsible for the most speedup
varied with the volume type and size, however. For the computation-bound renders in Fig. 6,
changing from floating-point (F) to integer (I) data type produced the single greatest observed
speedup (PCLF→ PCLI). Despite this potential, PCLI yielded poor quality output and later
overran a substantial fraction of typical volume renders in Fig. 8. Gradient packing (P) produced

Fig. 9. Example view through the HMD as the user (top right) sections a live OCT volume
(top left) to reveal needle bite depth. Insets are not visible in HMD. See Visualization 1 for
full video.

Vol. 9, No. 6 | 1 Jun 2018 | BIOMEDICAL OPTICS EXPRESS 2840

https://doi.org/10.6084/m9.figshare.5979604

(a)

(b)

(c)

Fig. 10. Demonstration of mock corneal surgery in a porcine eye guided by VR-OCT and
HMD camera feedthrough (a). The surgeon passes a needle through the cornea without a
microscope (b) and uses an assistant for volume manipulation (c). See Visualization 2 for
full video.

a superior speedup but only when combined with nearest-neighbor (N) interpolation (P_LF→
P_NF). Surprisingly, P_LF performed worse than E_LF, most likely due to four-vector rather than
scalar trilinear interpolation. The combinations in P_NF avoid this interpolation for a speedup.
In contrast, the broader effects of kernel launch and data types are not seen until the larger,
memory-bound volumes in Figs. 7 and 8. These optimizations produce smaller gains which the
quick renders for small volumes do not elicit.

In meeting VR requirements, we unfortunately conceded some render quality. As seen in Fig. 11,
our best performing configuration, PCNI-512, yielded the fuzziest renders, primarily due to its
avoidance of trilinear interpolation (L). Partially restoring quality with KCNI-512 barely “meets”
the 90 fps deadline for a typical volume in Fig. 8 and actually overruns in 1% of renders. On the
other hand, if somewhat fuzzy renders are acceptable, PCNI scales to 1024 × 1024 pixels while
still meeting deadlines. Resolution is thus more available than quality, which is a trade-off that
can be made on a case-by-case basis. We expect the continual advancement of GPU technology
will eventually bring larger texture caches and faster interpolation to improve this situation. That
said, because each render is independent, ray casting for the two eyes could be split over two
GPUs with existing technology. This would double the number of host-to-device transfers, but as
long as the volume is rendered many more times than it is updated, an incremental speedup of up
to two would be possible. This approach could in theory be extended by splitting up individual
eye renders into parts for separate GPUs to process, but expanding beyond several GPUs may
require multiple computers or specialized hardware. Distributing live updates to all GPUs may
become difficult in this case.

The viewer’s interactivity features provided new ways to visualize OCT volumes. Users could
walk through, carry, spin, and look at volumes that floated comfortably in front of them, towered
through the ceiling, or fit compactly in their hand. Furthermore, the ability to add multiple live
sectioning planes offered new insights into OCT volumes, especially when viewing inside hollow
structures. These new viewing techniques are relevant even beyond intrasurgical use; there exist
opportunities for VR-OCT in educational settings and collaborative, shared VR experiences.
Notably, our VR-OCT viewer is not specific to ophthalmology. Any scalar 3D volume can be
displayed and sectioned in our optimized viewer.
Intrasurgical interactivity via handheld controllers presented a significant problem, however,

Vol. 9, No. 6 | 1 Jun 2018 | BIOMEDICAL OPTICS EXPRESS 2841

https://doi.org/10.6084/m9.figshare.5979607

Full Render Center Zoom of Full Render

E_
LF

-5
12

P_
LF

-5
12

P_
N

F-
51

2
P_

N
I-5

12
K

_N
I-5

12

Fig. 11. Render quality by configuration for a 1327 × 1024 × 128 voxel typical OCT volume.
Optimization increases progressively from top to bottom until the K data layout is used to
restore interpolation. Quality is independent of kernel launch configuration (Section 3.2).

 Vol. 9, No. 6 | 1 Jun 2018 | BIOMEDICAL OPTICS EXPRESS 2842

primarily because the surgeon’s hands were already busy with surgical tools. In addition to
maintaining surgeon situational awareness during VR immersion (Section 1), this is a potential
barrier to VR-OCT’s introduction into the operating room. We avoided the issue here by
introducing an assistant exclusively for VR control, although other workarounds include motion
capture-compatible surgical tools and camera-based eye or hand tracking. These solutions
are fundamentally insufficient, however. Even if surgeons had convenient and ergonomic VR
interactivity, they would find themselves limited to small visualization changes while operating
because large view rotationswould sever their intuitive connection to their tools [43]. Consequently,
surgeons would suffer from misalignment between their hands and viewed tool motions, offsetting
the benefits of intraoperative volumetric imaging. Even worse, consciously compensating for
such misalignment would incur a significant performance penalty. We believe that surgical robots
offer the best solution for intrasurgical VR interactivity because they free surgeons from their
tools and can restore or even improve performance [44]. With their hand motions computationally
transformed into the intended tool motions, surgeons are no longer needlessly tethered in an
otherwise unrestricted VR environment.

8. Conclusion

To the best of our knowledge, we have reported the first immersive VR-OCT viewer with stereo
ray casting volumetric renders, arbitrary sectioning planes, and live acquisition support. We have
demonstrated this viewer’s suitability for both review of pre-recorded volumes and guidance
of mock surgical procedures in porcine eyes. VR-OCT brings the benefits of interactivity, full
field of view display, and unrestricted head orientation to ophthalmic surgeons. We believe that
VR-OCT may eventually become standard for intrasurgical navigation and medical education in
OCT-guided ophthalmic procedures.

Funding

National Institutes of Health (R01-EY023039, F30-EY027280, T32-GM007171); NVIDIA
Global Impact Award (2016)

Acknowledgments

The authors would like to thank the Duke Advanced Research in Swept Source/Spectral Domain
OCT Imaging Laboratory for their support.

Disclosures

AK: Leica Microsystems (P), ClarVista (C). JI: Leica Microsystems (P, R), Carl Zeiss Meditec
(P, R).

 Vol. 9, No. 6 | 1 Jun 2018 | BIOMEDICAL OPTICS EXPRESS 2843

