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Abstract: Photoreceptor ellipsoid zone (EZ) defects visible on optical coherence tomography 
(OCT) are important imaging biomarkers for the onset and progression of macular diseases. 
As such, accurate quantification of EZ defects is paramount to monitor disease progression 
and treatment efficacy over time. We developed and trained a novel deep learning-based 
method called Deep OCT Atrophy Detection (DOCTAD) to automatically segment EZ defect 
areas by classifying 3-dimensional A-scan clusters as normal or defective. Furthermore, we 
introduce a longitudinal transfer learning paradigm in which the algorithm learns from 
segmentation errors on images obtained at one time point to segment subsequent images with 
higher accuracy. We evaluated the performance of this method on 134 eyes of 67 subjects 
enrolled in a clinical trial of a novel macular telangiectasia type 2 (MacTel2) therapeutic 
agent. Our method compared favorably to other deep learning-based and non-deep learning-
based methods in matching expert manual segmentations. To the best of our knowledge, this 
is the first automatic segmentation method developed for EZ defects on OCT images of 
MacTel2. 
© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement 
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1. Introduction 
Macular telangiectasia type 2 (MacTel2) is a progressive retinal disease of unknown cause 
which affects with varying severity the juxtafoveolar region of both eyes. Clinical signs of 
MacTel2 include loss of retinal transparency, crystalline deposits, telangiectatic vessels, and 
pigment plaques which result in a slow decline in visual acuity [1–5]. The early signs are 
often subtle and difficult to identify with ophthalmoscopy [3]. 

With optical coherence tomography (OCT) it is possible to obtain high-resolution retinal 
images [6], on which retinal layer boundaries can be delineated with micron (and even 
submicron [7]) accuracy. OCT has become a valuable tool to diagnose MacTel2 [2]. Signs of 
MacTel2 visible on OCT include hypo-reflective spaces in the inner and outer retina, thinning 
and defects of the retina temporal to the foveal center, and atrophy of the hyper-reflective 
layer or band that is located external to the external limiting membrane (ELM) and internal to 
a band thought to represent cone photoreceptor tips [2–5, 8, 9]. There is an ongoing lively 
debate regarding the exact cellular structure that correlates with this hyper-reflective band and 
the nomenclature used to describe it. Recent publications [10–16], including that from a 
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consensus International Nomenclature group [17], refer to this band as the ellipsoid zone (EZ) 
as it is thought to represent the ellipsoid region of the photoreceptor inner segments which 
have densely-packed mitochondria that are likely hyper-reflective on OCT [18]. However, 
other studies, including a recent one that used adaptive optics to characterize this structure 
[9], refer to it as the junction between the inner segments and outer segments (IS/OS) of the 
photoreceptors [2–4, 8, 19–22]. In this paper, without making a judgment about the true 
nature of this band, we have used the EZ terminology, as it is more commonly used in the 
recent MacTel2 clinical trial literature [13, 23–25]. 

The 3-dimensional (3-D) information contained within OCT images can be projected to 
create a 2-D en face summed voxel projection (SVP) image. The SVP is useful to assess 
topographic locations and to quantify retinal lesion areas that include those caused by EZ 
atrophy or defects [2–4, 23]. 

Correlation between EZ defects and loss of retinal function has been established in 
previous MacTel2 studies [3, 4, 19, 20, 23, 26], in which segmentation of EZ defects has been 
achieved manually [3,4] or semi-automatically [21, 23]. Of note, the semi-automatic method 
by Mukherjee et al. [23] used a popular graph search algorithm [27, 28] to automatically 
segment retinal layer boundaries on individual OCT B-scans, which were then assessed and 
manually corrected by expert graders. An en face thickness map was generated from these 
segmentations, and thresholded to determine EZ defect areas. Subsequently, Gattani et al. 
[21] developed an iterative semi-automatic method to segment EZ defect boundaries based on 
manual initialization of seed locations by the user on the en face image. 

EZ defects are also observed in other retinal diseases such as age-related macular 
degeneration (AMD) [22], macular edema (ME) [10], and diabetic retinopathy (DR) [11]. 
Semi-automatic EZ defects analysis has also been performed in these diseases [10, 12, 29]. 

Automatic segmentation and quantification of EZ defects would be a very useful tool to 
analyze EZ defects in clinical trials, especially in longitudinal studies where patients are 
observed over time to monitor disease progression or treatment efficacy. Most recently, Wang 
et al. [11] developed an automatic method to detect EZ defects in OCT images of DR using 
graph search and fuzzy c-means. In general, these automatic and semi-automatic methods to 
segment EZ defects involve a two-step process; first, defective retinal layer boundaries are 
segmented (e.g. using graph search [30–32], random forest classifiers [33], or active contours 
[34]); then, EZ thicknesses or pixel intensities are projected onto an en face image where EZ 
defects can be identified. 

Deep learning is a powerful approach that has been used, especially in the past few years, 
in computer vision for object recognition, classification, and semantic segmentation [35–40]. 
Deep learning methods have been successfully used in many areas of medical imaging; for 
example, to detect and classify lesions, to segment organs and sub-structures, and to register 
and enhance medical images [41]. Convolutional neural networks (CNNs) are particularly 
suitable for image analysis. A CNN generally consists of several layers of filters learned from 
labeled training data that extract multi-scale features from an input and then map the extracted 
features to the associated label. Deep learning models have also been applied to a variety of 
ophthalmic image processing applications [42–47] that include OCT layer segmentation 
algorithms. Specifically, Fang et al. [48] was the first to utilize a CNN to segment inner 
retinal layer boundaries on OCT images of diseased eyes. Roy et al. [49], Xu et al. [50], and 
Venhuizen et al. [51] adopted variant versions of the fully-convolutional network (FCN) [37] 
and U-net [52] CNN models to delineate the boundaries of fluid masses and pigment 
epithelium detachment. Many other variants of CNNs have been recently employed for 
segmenting a variety of anatomic and pathologic features on OCT images [53–59]. 

Quantification of targeted biomarkers assessed at different time points (e.g. the growth of 
EZ defect areas over time) is a key method to evaluate treatment efficacy in clinical trials, as 
well as in clinical care. As such, patients enrolled in a clinical trial are frequently imaged with 
OCT over multiple visits. The accuracy of classic automatic image segmentation techniques 
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(e.g. graph search [27]) is similar for all these visits, and at each visit, segmentation errors 
must be manually corrected [60–62]. Accordingly, the overall human workload to manually 
correct these errors is relatively constant at each visit using these classic techniques. 
However, despite progression of disease and treatment effects, it is reasonable to assume that 
the OCT images from the same eye of the same patient at different visits should have strong 
similarities in their anatomical and pathological structures. Fortunately, deep learning 
frameworks are well-suited to analyze temporal data, such as electronic medical health 
records [63–65]. For medical images, we will show how the algorithm can learn from its 
errors in previous encounters with images of a specific subject, which can, thereby, decrease 
the need for manual correction at each visit. 

In this paper, we describe a novel deep learning-based method using a CNN to 
automatically segment 2-D en face EZ defect areas from 3-D OCT volumes obtained from 
eyes with MacTel2 without the need to segment retinal layer boundaries as an intermediate 
step. We further developed a transfer learning paradigm to learn from mistakes in segmenting 
the baseline images of a particular subject and fine-tuned our CNN to segment with higher 
accuracy the subsequent OCT images. We show the efficacy of our deep learning-based 
method with longitudinal transfer learning, which we call Deep OCT Atrophy Detection 
(DOCTAD), to segment images obtained from a clinical trial of a novel therapeutic agent to 
inhibit the progression of EZ defects in eyes with MacTel2. 

2. Methods 
We developed and trained DOCTAD to classify the EZ on individual OCT A-scans as normal 
or defective (atrophied) and automatically estimate the EZ defect areas in OCT volumes. In 
addition, a transfer learning procedure was utilized to demonstrate the benefits of learning 
from a subject’s past scan information to improve the segmentation at future time points. The 
performance of DOCTAD was evaluated using the Dice similarity coefficient and errors in 
the predicted EZ defect areas. 

2.1 Data set 

The study data set consisted of retinal spectral domain (SD)-OCT volumes of 134 eyes from 
67 subjects from the international, multicenter, randomized phase 2 trial of ciliary 
neurotrophic factor for MacTel2 (NCT01949324; NTMT02; Neurotech, Cumberland, RI, 
USA). This study complied with the Health Insurance Portability and Accountability Act 
(HIPAA) and Clinical Trials (United States and Australia) guidelines, adhered to the tenets of 
the Declaration of Helsinki and was approved by the institutional ethics committees at each 
participating center. 

We analyzed data at two different time points, six months apart, at which subjects were 
imaged on Spectralis SD-OCT units (Heidelberg Engineering GmBH, Heidelberg, Germany) 
at different imaging centers. We refer to the SD-OCT volumes obtained at the first time point 
as the baseline volumes and those obtained at the second time point as the 6-month volumes. 
The data set consisted of a total of 25,876 B-scans. Most SD-OCT volumes consisted of 97 B-
scans with 1024 A-scans each, within a 20° × 20° (approximately 6 mm × 6 mm) retinal area. 
The exceptions were two 6-month volumes with 37 B-scans, and twelve baseline and four 6-
month volumes with 512 A-scans per B-scan. All B-scans had a height of 496 pixels with an 
axial pixel pitch of 3.87µm/pixel. We removed no subject or eye from the data set regardless 
of image quality or defect size, and even included those eyes that were eventually excluded 
from the clinical trial, to be most faithful to a real-world clinical trial scenario, whereby the 
segmentation outcome determines the eligibility for trial enrollment. 

The process to attain the gold standard EZ defects segmentation is described in our 
previous publication [23]. In brief, for each B-scan, the inner limiting membrane (ILM), inner 
EZ, inner retinal pigment epithelium (RPE), and Bruch’s membrane (BrM) layer boundaries 
were first segmented by graph search [27, 28] using the Duke OCT Retinal Analysis Program 
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(DOCTRAP; Duke University, Durham, NC, USA) software. Automatic segmentation was 
reviewed and manually corrected by an expert Reader at the Duke Reading Center. A second, 
more senior Reader reviewed the layers delineated by the first Reader and corrected these 
segmentations, as needed. An EZ thickness map was generated by axially projecting the EZ 
thicknesses, defined by the inner EZ and inner RPE layer boundaries, onto a 2-D en face 
image. This image was then interpolated using bicubic interpolation to obtain a pixel pitch of 
10µm in each direction. EZ thicknesses of less than 12µm were classified as EZ defects [23] 
and the EZ thickness map was thresholded to obtain a binary map of EZ defects. The 
resulting binary map of EZ defects was used as the gold standard in this study. Figure 1 
illustrates this process and Fig. 2 shows a representative B-scan with EZ defects. 

 

Fig. 1. (a) Retinal OCT volume. (b) Gold standard (manual) segmentation of the ILM (orange), 
inner EZ (magenta), inner RPE (cyan), and BrM (yellow) layer boundaries by expert Readers. 
The EZ thickness is defined by the inner EZ and inner RPE layer boundaries. (c) En face EZ 
thickness map. (d) Gold standard (manual) binary map of EZ defects. EZ thicknesses of less 
than 12µm were classified as EZ defects. 

 

Fig. 2. B-scan from the position marked by the red line on Fig. 1(c-d) showing the gold 
standard (manual) segmentation of the inner EZ (magenta) and inner RPE (cyan) layer 
boundaries by expert Readers and the EZ defects identified (white). 

2.2 Cluster extraction 

Since EZ defects are usually continuous in a local region, it is natural to assume that 
information from adjacent A-scans and B-scans can be useful in determining the absence or 
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presence of EZ defects. Thus, the training of DOCTAD was based on a set of normal and 
defective A-scan clusters which were sampled from the OCT volumes as follows. 

As a pre-processing step, we first used a simple method to swiftly locate an approximated 
location of the retina in the OCT volume and to remove as much of the background as 
possible while retaining full view of the retina. For each volume, the 20th B-scan was 
smoothed with a Gaussian filter (11 × 11 pixels, σ = 11 pixels) and thresholded (at 0.4 of the 
maximum intensity of the smoothed image) to obtain estimates of the retinal nerve fiber layer 
(RNFL), the innermost retinal layer, and the RPE layer, which is just external to the outer 
retinal boundary. These layers often appear as the brightest layers in the image. For each A-
scan, the mean position of the RNFL and RPE was calculated and the median value across all 
A-scans was taken to be the estimated center of the retina for the volume. Then, all the 
images in the volume were cropped to a height of 256 pixels about the estimated center. 

For every A-scan, a cluster of A-scans (256 × 16 × 5 pixels) centered at that A-scan was 
extracted and labeled according to the gold standard manual segmentation. Any clusters that 
fell outside the lateral field-of-view were mirrored about the center A-scan. Figure 3 
illustrates the dimensions of such a cluster. We used data from a carefully-designed clinical 
trial. Nonetheless, some of the volumes had different scan densities. Accordingly, to ensure 
that our algorithm was robust, even given image acquisition inconsistencies that resulted in 
volumes with varying scan densities, we used the same cluster dimensions for all volumes to 
train the CNN to be invariant to scan density. Additionally, efficient CNNs for classification 
are often trained with approximately equal numbers of samples per class. Thus, since the EZ 
defect areas in the volumes were very small compared to the normal EZ areas, for each 
volume, normal clusters were randomly sampled with a probability equal to the ratio between 
the EZ defect area and normal area. 

 

Fig. 3. Clusters of dimensions 256 × 16 × 5 pixels were extracted from the OCT volumes. 

2.3 CNN architecture 

The CNN architecture used in DOCTAD is shown in Fig. 4. It consists of 20 convolutional, 
pooling, batch normalization, fully-connected, and softmax layers. It was constructed using 
standard CNN design principles. Certain aspects were modified to suit the structure of our 
data. In the convolutional layers, rectangular (7 × 3 pixels) instead of square (3 × 3 pixels) 
filters were used to extract features as the retinal images have greater variation in the vertical 
direction. A batch normalization layer, which has been demonstrated to improve training [66], 
was added after the convolutional layers before the rectified linear unit (ReLU) operation was 
applied. In the first two pooling layers, we used 4 × 1 max-pooling instead of the 
conventional 2 × 2 max-pooling to efficiently downsample the input as it propagated through 
the network. At the end of the network is a softmax layer to perform classification. In this 
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case, our architecture performed binary classification (normal or defective) and the final 
output was a two-element vector. 

 

Fig. 4. DOCTAD CNN architecture showing the number of features (top) and filter sizes 
(bottom) of the convolutional and fully-connected layers, pooling sizes of the pooling layers, 
and the output dimensions of each layer as indicated by the layer number. 

2.4 Training the CNN 

The CNN was trained on the clusters and labels extracted from the baseline volumes of 
subjects in the training set. The parameters of the CNN were randomly initialized using 
Xavier initialization [67] and optimized using Adam optimization [68] to minimize the binary 
cross-entropy loss,   defined as 

 
1

1
[ log( ) (1 ) log(1 )]

N

i i i i
i

y p y p
N =

= − + − −  (1) 

where yi is the gold standard class label (0 for normal, 1 for defective) and pi is the predicted 
probability of the cluster i being defective. N is the number of clusters used per mini-batch or 
the mini-batch size. The value of pi was the final output from the softmax layer. A mini-batch 
size of 250 and learning rate of 0.0001 was used during training, without any weight 
regularization. The network was trained for a maximum of 10 epochs until the best 
performance was achieved on a hold-out validation set, which was usually between 3 to 10 
epochs in our experiments. Performance metrics are detailed in Section 2.7. 

2.5 Prediction 

Once trained, DOCTAD was used to predict a binary map of EZ defects from a given OCT 
volume of an eye. During prediction, clusters centered on every A-scan were extracted and 
passed as inputs to the trained CNN to obtain the probability of each cluster being defective. 
An en face probability map was generated and interpolated to obtain a pixel pitch of 10µm in 
each direction. Any clusters with a probability of greater than 0.5 was considered defective 
and the probability map was thresholded to obtain the final predicted binary map of EZ 
defects. Figure 5 illustrates this process. 
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Fig. 5. During prediction, clusters of every A-scan were extracted from the given OCT volume 
and passed as inputs to the trained CNN to generate an en face probability map which was 
thresholded to obtain the predicted binary map of EZ defects. 

2.6 Longitudinal transfer learning 

As previously mentioned, deep learning frameworks are well-suited to take advantage of the 
correlation between the OCT images from the same eye of the same patient at different time 
points. Thus, we expect that fine-tuning a trained CNN on a specific subject’s scan 
information from a previous time point would improve its performance when making a 
prediction on the same subject’s scans at a future time point. 

In this sub-section, we utilize an interpretation of the general transfer learning approach 
[69], which we call longitudinal transfer learning. In longitudinal transfer learning, we fine-
tune the proposed CNN model based on the semi-automatically corrected segmentations 
acquired at a previous time point and use the fine-tuned model to automatically segment the 
EZ defects in the same eye at a later time point. Specifically, we first train the CNN as 
described in Section 2.4 with the baseline volumes. Then, for each eye in our data set, we 
fine-tuned the trained CNN with clusters extracted from the baseline volume and evaluated 
performance on the 6-month volume of the corresponding eye. To fine-tune the CNN, we 
used a smaller batch-size of 100, lowered the learning rate to 0.00001, and trained it for a 
maximum of 10 epochs until the best performance was achieved on the baseline volume. It is 
possible that fine-tuning does not improve the performance on the baseline volume of some 
subjects. In these cases, the CNN is not updated and the performance both before and after 
fine-tuning would be unchanged. 

2.7 Performance metrics 

Two metrics were used to evaluate the performance of DOCTAD – the Dice similarity 
coefficient (DSC) [70] and errors in the predicted EZ defect areas. 

The DSC was calculated between the gold standard and predicted binary map of EZ 
defects as 

 
2

,
2

TP
DSC

TP FP FN
=

+ +
 (2) 

where TP was the number of true positives, FP was the number of false positives and FN was 
the number of false negatives (in pixels) in the predicted binary map of EZ defects. False 
positives or “over-prediction” indicated a scenario in which DOCTAD predicted EZ defects 
where the gold standard identified the area as normal. False negatives or “under-prediction” 
indicated a scenario in which DOCTAD failed to predict EZ defects where the gold standard 
identified the area as defective. The DSC ranged from 0 to 1 where a value of 1 indicated 
complete agreement between the gold standard and predicted binary maps of EZ defects. This 
metric was the one used to monitor the performance on the hold-out validation set during 
training. 

The DSC is a relative measure and for volumes with small EZ defect areas, the DSC is 
drastically affected by small errors. In the extreme case, for example, a volume with no EZ 
defects will have a DSC of 0 if even one pixel is predicted as defective. Thus, we also 
calculated the total, Et and net, En errors of the predicted EZ defect areas as 

                                                                           Vol. 9, No. 6 | 1 Jun 2018 | BIOMEDICAL OPTICS EXPRESS 2690 



 ,tE k FP FN= +  (3) 

 ,nE k FP FN= −  (4) 

where k = 0.0001 is the conversion factor from pixels to mm2 and .  is the absolute value. The 

errors in the predicted EZ defect areas are absolute values and this metric is, therefore, more 
robust, especially for volumes with small EZ defect areas. 

2.8 Implementation 

DOCTAD was implemented in Python using the TensorFlow [71] (Version 1.2.1) library. On 
a desktop computer equipped with an Intel Core i7-6850K CPU and four NVIDIA GeForce 
GTX 1080Ti GPUs, the average prediction time was approximately 12 seconds per SD-OCT 
volume. For longitudinal transfer learning, the average deployment time to fine-tune the CNN 
was approximately 5 minutes per SD-OCT volume. 

3. Results 
We report the average performance metrics of DOCTAD and alternative methods on all 
volumes, as well as the subset of clinically-significant (CS) volumes. CS volumes were 
defined as volumes having a gold standard EZ defect area of more than 0.16 mm2, consistent 
with the lower limit EZ defect area required for enrollment in the MacTel2 clinical trial [23]. 

3.1 Comparison to alternative methods on baseline volumes 

We compared DOCTAD to the alternative method whereby the layer boundaries were first 
segmented, and then the EZ thicknesses projected onto an en face image where EZ defects 
could be identified. To segment the layer boundaries, we used two popular retinal layer 
boundary segmentation algorithms – DOCTRAP [27, 28], a graph search-based algorithm, 
and CNN-GS [48], a deep learning-based algorithm. We compared the performance of 
DOCTAD to DOCTRAP and CNN-GS on the baseline volumes in our data set. 

DOCTRAP automatically segments 9 layer boundaries. The inner EZ and inner RPE 
correspond to boundaries 7 and 8, respectively. To account for any biases due to different 
conventions in marking the boundaries, we calculated the pixel shift that minimized the 
absolute difference between the DOCTRAP boundary segmentations with respect to the gold 
standard boundary segmentation across all baseline volumes and found that no pixel shifts 
were necessary. 

To train both CNN-GS and DOCTAD, we used 6-fold cross validation to ensure 
independence of the training and testing sets. The 67 subjects were divided into six folds 
(groups), each consisting of 11 or 12 subjects. Baseline volumes of the subjects in five folds 
were used as the training set while the remaining volumes were used as the testing set. From 
the training set, volumes of subjects in one fold were set aside as the hold-out validation set. 
In the original work, CNN-GS was trained to segment 9 layer boundaries. However, as our 
data set consisted of only 4 manually-segmented layer boundaries as shown in Fig. 1(b), we 
modified the CNN-GS architecture to predict only 4 layer boundaries and trained CNN-GS 
using the methodology and parameters as described in the original work [48]. We trained 
DOCTAD as described in Section 2.4. 

For DOCTRAP and CNN-GS, an EZ thickness map was generated for each volume by 
axially projecting the EZ thicknesses onto an en face image and interpolating to obtain a pixel 
pitch of 10µm in each direction as in the gold standard. EZ thicknesses of less than 12µm 
were classified as EZ defects and the EZ thickness map was thresholded to obtain a predicted 
binary map of EZ defects. For DOCTAD, the predicted binary maps of EZ defects were 
directly obtained as described in Section 2.5. Table 1 shows the average performance metrics 
of DOCTRAP, CNN-GS, and DOCTAD on the baseline volumes. 
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Table 1. Performance metrics (mean ± standard deviation, median) of DOCTRAP [27, 
28], CNN-GS [48], and our new DOCTAD method on 134 baseline volumes using 6-fold 

cross validation. 

Volumes 
Performance 

metric 

Method 

Gold standard 
(Manual) 

DOCTRAP CNN-GS DOCTAD 

All 

EZ defect areas 
(mm2) 

0.68 ± 0.69, 0.51 0.03 ± 0.04, 0.01 0.32 ± 0.40, 0.19 0.71 ± 0.66, 0.55 

DSC - 0.06 ± 0.15, 0.02 0.50 ± 0.23, 0.53 0.79 ± 0.22, 0.87 

Et (mm2) - 0.67 ± 0.68, 0.52 0.46 ± 0.51, 0.32 0.19 ± 0.21, 0.13 

En (mm2) - 0.66 ± 0.67, 0.49 0.40 ± 0.44, 0.28 0.11 ± 0.17, 0.06 

CS 

EZ defect areas 
(mm2) 

0.84 ± 0.68, 0.67 0.03 ± 0.05, 0.01 0.39 ± 0.41, 0.25 0.87 ± 0.64, 0.71 

DSC - 0.05 ± 0.06, 0.03 0.52 ± 0.18, 0.54 0.86 ± 0.12, 0.89 

Et (mm2) - 0.83 ± 0.68, 0.63 0.56 ± 0.52, 0.38 0.22 ± 0.22, 0.15 

En (mm2) - 0.81 ± 0.67, 0.62 0.49 ± 0.44, 0.33 0.12 ± 0.18, 0.07 

 
The overall performance of both DOCTRAP and CNN-GS were poor with small DSC 

values and large errors. DOCTAD was able to identify EZ defects areas with high accuracy, 
resulting in a mean DSC of 0.86 on 107 CS volumes. Figures 6–7 show examples of the 
boundary segmentations and predicted EZ defect areas by DOCTRAP, CNN-GS, and 
DOCTAD. The errors made by DOCTAD occurred mostly around the boundaries of the EZ 
defect areas, some of which are difficult to classify even for expert Readers, as further 
discussed in Section 3.3. 

3.2 Improvements with longitudinal transfer learning 

Next, we studied the effect of fine-tuning DOCTAD for a specific subject’s eye as described 
in Section 2.6. For each subject’s eye, we fine-tuned the CNN trained on the baseline 
volumes for which the subject was not included in the initial training set. To demonstrate that 
any improvement in performance was due to the usage of the subject’s baseline volume 
during fine-tuning instead of simply an extended training time, we also fine-tuned the CNN 
on the initial training set using the same methodology and parameters as in the proposed 
longitudinal transfer learning procedure. Performance was evaluated on the 6-month volume 
of the corresponding eye both before and after fine-tuning. We used the Wilcoxon signed-
rank test to determine the statistical significance of the observed differences. Table 2 shows 
the average performance metrics of DOCTAD on the 6-month volumes before and after fine-
tuning. 

Overall, fine-tuning on the subject’s baseline volume resulted in an improved 
performance when predicting EZ defect areas. There was a significant increase in DSC 
especially for the 109 CS volumes, and decreased errors in the predicted EZ defect areas. 
Figure 8 shows examples of predicted EZ defect areas on the 6-month volumes before and 
after fine-tuning on the subject’s baseline volume. In contrast, fine-tuning on the initial 
training set did not result in comparable performance improvement overall. 

                                                                           Vol. 9, No. 6 | 1 Jun 2018 | BIOMEDICAL OPTICS EXPRESS 2692 



 

Fig. 6. (a – c) Overlay of gold standard (manual) and predicted binary maps of EZ defects by 
DOCTRAP, CNN-GS, and our new DOCTAD method showing TP (green), FP (blue) and FN 
(red). (d) B-scan from the position marked by the yellow line on (a-c). (e) Gold standard 
(manual) boundary segmentations and EZ defect areas (white). (f – h) Boundary segmentations 
and predicted EZ defect areas by DOCTRAP, CNN-GS, and DOCTAD showing TP (green), 
FP (blue) and FN (red). DOCTRAP and CNN-GS correctly identified some EZ defects despite 
errors in the boundary segmentations. 

 

Fig. 7. (a – c) Overlay of gold standard (manual) and predicted binary maps of EZ defects by 
DOCTRAP, CNN-GS, and our new DOCTAD method showing TP (green), FP (blue) and FN 
(red). (d) B-scan from the position marked by the yellow line on (a-c). (e) Gold standard 
(manual) boundary segmentations and EZ defect areas (white). (f – h) Boundary segmentations 
and predicted EZ defect areas by DOCTRAP, CNN-GS, and DOCTAD showing TP (green), 
FP (blue) and FN (red). DOCTRAP correctly identified some EZ defects despite errors in the 
boundary segmentations whereas CNN-GS correctly identified more EZ defects with more 
accurate boundary segmentations. 
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Table 2. Performance metrics (mean ± standard deviation, median) of DOCTAD on 134 
6-month volumes before and after fine-tuning both on the initial training set and the 

subject’s baseline volume using 6-fold cross validation. Statistically significant differences 
(p-value < 0.05) are shown in bold. 

Volumes 
Performance 

metric 

Method 

Gold standard 
(Manual) 

Before fine-
tuning 

After fine-tuning 

On initial 
training set 

On baseline 
volume 

All 

EZ defect areas 
(mm2) 

0.71 ± 0.71, 0.54 0.74 ± 0.70, 0.56 0.76 ± 0.72, 0.60 0.78 ± 0.74, 0.61 

DSC - 0.82 ± 0.16, 0.88 0.82 ± 0.17, 0.88 0.83 ± 0.17, 0.89 

Et (mm2) - 0.18 ± 0.20, 0.12 0.18 ± 0.20, 0.12 0.17 ± 0.21, 0.11 

En (mm2) - 0.11 ± 0.17, 0.06 0.12 ± 0.17, 0.06 0.11 ± 0.20, 0.06 

CS 

EZ defect areas 
(mm2) 

0.87 ± 0.71, 0.70 0.89 ± 0.69, 0.73 0.92 ± 0.71, 0.76 0.93 ± 0.73, 0.76 

DSC - 0.85 ± 0.12, 0.89 0.85 ± 0.12, 0.89 0.87 ± 0.10, 0.90 

Et (mm2) - 0.21 ± 0.21, 0.14 0.21 ± 0.21, 0.14 0.20 ± 0.22, 0.13 

En (mm2) - 0.13 ± 0.18, 0.07 0.13 ± 0.18, 0.08 0.12 ± 0.21, 0.07 

 
A major challenge in developing transfer learning techniques is to produce positive 

transfer (improved performance) while avoiding negative transfer (reduced performance) 
which in practice, is difficult to achieve simultaneously [72]. In our case, negative transfer 
may occur when the CNN overfits to features in the baseline volume that do not generalize to 
the 6-month volume, such as noise patterns in the images. Therefore, while there was an 
overall improvement across all volumes, there were some instances in which the performance 
on the 6-month volume did not improve following the longitudinal transfer learning 
procedure, either due to overfitting, or if the CNN was not updated during the fine-tuning as 
described in Section 2.6 (unchanged performance). Additionally, it is also possible that there 
is an improvement in one performance metric but a reduction in another. Table 3 shows the 
breakdown of the effect of the longitudinal transfer learning procedure on the performance of 
individual volumes. 

Table 3. Performance breakdown on 134 6-month volumes after fine-tuning on the 
subject’s baseline volume. 

Volumes 
Performance 

metric 

Percentage of volumes (%) 

Unchanged 
performance 

Improved 
performance 

Reduced performance 

All 

DSC 26 41 33 

Et (mm2) 26 43 31 

En (mm2) 26 38 36 

CS 

DSC 22 46 32 

Et (mm2) 22 44 34 

En (mm2) 22 41 37 
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Fig. 8. Predicted binary maps of EZ defects on the 6-month volumes by DOCTAD before and 
after fine-tuning on the subject’s baseline volume showing TP (green), FP (blue), FN (red) and 
B-scans corresponding to the position marked by the yellow lines. Fine-tuning improved the 
EZ defects segmentations. 

3.3 Qualitative analysis 

Upon qualitative assessment of the EZ defects segmentations by DOCTAD, there was good 
agreement between the gold standard and predicted binary maps of EZ defects. Some of the 
false positives or “over-prediction” could be associated with borderline-defective areas. We 
refer to borderline-defective areas as areas where the EZ is certainly diseased, but it is not 
clear if it is completely lost or is in transition to become completely defective. These are 
difficult to classify even for expert Readers and are subject to judgment calls, which may be 
inconsistent among different Readers. Figure 9 shows examples of some false positives 
associated with borderline-defective areas. 

On the other hand, some of the false negatives or “under-prediction” could be associated 
with the CNN’s limited field of view, as it only “sees” clusters. If a cluster was from a region 
where the retina was partially obscured, usually by shadowing from overlying blood vessels 
or intra-retinal pigment, DOCTAD was likely to make a prediction error. Figure 10 shows 
examples of false negatives associated with regions obscured by intra-retinal pigment. 
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Fig. 9. Predicted binary maps of EZ defects by DOCTAD showing TP (green), FP (blue), FN 
(red) and B-scans corresponding to the position marked by the yellow lines. The false positives 
(blue) occurred in borderline-defective areas. 

 

Fig. 10. Predicted binary maps of EZ defects by DOCTAD showing TP (green), FP (blue), FN 
(red) and B-scans corresponding to the position marked by the yellow lines. The false 
negatives (red) occurred in regions obscured by intra-retinal pigment. 

One of the main motivations for developing a method to automatically segment EZ 
defects is to replace the time-consuming and subjective task of manual segmentation. Despite 
the careful review and manual correction of the EZ layer boundaries in the thousands of 
images by the expert Readers, there were occasional errors in the gold standard manual 
segmentations. Figure 11 shows an example of a manual segmentation error in the gold 
standard that was correctly identified by DOCTAD as EZ defects. 

 

Fig. 11. (a) B-scan with EZ defects that was missed in the gold standard (manual) 
segmentation (yellow arrow). (b) Gold standard (manual) boundary segmentations and EZ 
defects areas (white). (c) Predicted EZ defects areas by DOCTAD showing TP (green), FP 
(blue) and FN (red). The missed EZ defects (yellow arrow) were correctly identified but 
considered false positives (blue). 
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4. Conclusions 
We have developed DOCTAD, a novel deep learning-based method to automatically segment 
EZ defects on SD-OCT images from eyes with MacTel2. We developed and trained 
DOCTAD to classify clusters of A-scans as normal or defective to create an en face binary 
map of EZ defects given a SD-OCT volume of an eye. Our method can localize and quantify 
EZ defects accurately compared to the gold standard manual segmentation. It does not require 
any segmentation of retinal layer boundaries as an intermediate step and outperforms two 
popular retinal layer boundary segmentation algorithms – DOCTRAP [27, 28] and CNN-GS 
[48]. It achieved a higher mean DSC of 0.86 on 107 CS volumes, compared to a mean DSC 
of 0.05 and 0.52 achieved by DOCTRAP and CNN-GS, respectively. 

We further demonstrated that when longitudinal information was available, DOCTAD 
could be fine-tuned for a specific subject to improve the segmentation at future time points. In 
our experiments, subjects were imaged at two time points – baseline and 6-month. With fine-
tuning using the baseline volumes, a higher mean DSC of 0.87 was achieved on 109 CS 6-
month volumes, compared to a mean DSC of 0.85 achieved without fine-tuning. The fine-
tuning procedure can be continuously applied as more images are collected over time to 
improve the segmentation performance of DOCTAD. We expect that volumes that did not 
benefit from the longitudinal transfer learning procedure at the 6-month time point may do so 
at a future time point. 

DOCTAD’s average segmentation speed of 12 seconds per volume is fast enough for 
most clinical applications. Yet, some niche applications such as real-time OCT-guided ocular 
surgery require even faster execution times [73]. Currently, the segmentation time is limited 
by the need to extract and process clusters for every A-scan. In the future, we plan to adapt 
our method to process the 3-D SD-OCT volumes as a whole without the need for cluster 
extraction by adapting 3-D CNNs for volumetric segmentation [74–76] to automatically 
segment and additionally, project EZ defects onto 2-D en face images, which would decrease 
the segmentation time. While 5 minutes is needed for the longitudinal transfer learning 
procedure, this step is often implemented offline during the 6-month period between each 
imaging time point. 

The errors in the predicted EZ defect areas by DOCTAD could be in large associated with 
borderline-defective areas, or regions obscured by blood vessels or intra-retinal pigment. 
While we expect that using larger clusters may mitigate to a certain degree the false negatives 
associated with regions obscured by blood vessels or intra-retinal pigment, it would also 
increase the likelihood of false positives and the computation time. Additionally, in some 
cases, such as the first example shown in Fig. 8, the proposed longitudinal transfer learning 
procedure was able to correct some of these false negatives. Also, although the study data set 
was reviewed and corrected by two expert OCT Readers, we found (albeit rare) instances of 
manual segmentation error, which further highlights the need for an objective and consistent 
automatic segmentation method. An example is shown in Fig. 11, where upon image review it 
was deemed that DOCTAD correctly detected a region of EZ defects missed by the manual 
Readers. Such errors naturally occur when manually segmenting large data sets in a multi-
center clinical trial. We did not alter manual segmentation when calculating the overall error 
of DOCTAD, so we would not bias the reported results in favor of our algorithm. While we 
expect that in the near future clinical trials will still utilize the current approach of semi-
automatic segmentation, we expect that utilization of our deep learning method will 
significantly reduce the workload and will improve the accuracy of semi-automatic grading. 
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