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Diabetes is a widespread disease affecting 422 million 
people worldwide in 2014 according to a World Health 
Organization report.1 It occurs when the glucose-insulin 
regulatory system fails to maintain glucose levels in blood 
within the euglycemic range of 70 ± 180 mg/dL, leading 
to long and short term complications. In this context, glu-
cose sensors played a crucial role in the last years to 
improve diabetes management and therapy. Self-
monitoring blood glucose (SMBG) sensors provided inva-
sive and sparse glucose measures used to retrospectively 
analyze and adjust therapy parameters.2 More recently, 
minimally invasive continuous glucose monitoring (CGM) 
sensors provided less invasive and almost continuous 
data, describing the dynamic of the system being mea-
sured and enabling further applications like the prediction 

of hypo- and hyperglycemic alarms,3 the artificial pan-
creas for automatic control of glucose levels in blood,4,5 
personalized lifestyle change suggestions to prevent long-
term metabolic consequences,6 and others.7,8 Noninvasive 
CGM (NI-CGM) sensors are the natural next steps in the 
evolution of CGM devices due to obvious reasons related 
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Abstract
Background: Extensive past work showed that noninvasive continuous glucose monitoring with a wearable multisensor 
device worn on the upper arm provides useful information about glucose trends to improve diabetes therapy in controlled 
and semicontrolled conditions.

Method: To test previous findings also in uncontrolled conditions, a long term at home study has been organized to collect 
multisensor and reference glucose data in a population of 20 type 1 diabetes subjects. A total of 1072 study days were 
collected and a fully on-line compatible algorithmic routine linking multisensor data to glucose applied to estimate glucose 
levels noninvasively.

Results: The algorithm used here calculates glucose values from sensor data and adds a constant obtained by a daily 
calibration. It provides point inaccuracy measured by a MARD of 35.4 mg/dL on test data. This is higher than current state-
of-the-art minimally invasive devices, but still 86.9% of glucose rate points fall within the zone A

R
+B

R
.

Conclusions: The multisensor device and the algorithmic routine used earlier in controlled conditions tracks glucose 
changes also in uncontrolled conditions, although with lower accuracy. The examination of learning curves suggests that 
obtaining more data would not improve the results. Therefore, further efforts would focus on the development of more 
complex algorithmic routines able to compensate for environmental and physiological confounders better.
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to the wearer’s comfort. Many noninvasive technologies 
were proposed over the years to measure glucose noninva-
sively, among others optical,9 electromagnetic,10 as well 
as acoustic11 and others.12-14 These technologies provide a 
characterization of the biological properties of the skin or 
biological fluids (like saliva15 or tears16) that can be used 
to track glucose changes with reasonably good accuracy 
in strictly controlled conditions.17-20 However, none of 
them provided point accuracy close to that of minimally 
invasive CGM devices under uncontrolled conditions. 
The reason being the latter measure in the sub cutis with 
an enzymatic sensor that is in contact with biological flu-
ids containing glucose molecules, whereas NI-CGM 
devices measure skin characteristics modulated by glu-
cose changes that are also sensitive to intrinsic (physiol-
ogy related) and extrinsic (environment related) 
confounders. These non-glucose-related physiological 
confounders, like blood perfusion, sweating and ortho-
static fluid shift as well as environmental ones, like tem-
perature and humidity, must be measured and properly 
compensated to provide reliable and accurate glucose esti-
mation also in uncontrolled situations typical of home 
use.21-24 The need for such a broad characterization of 
phenomena lead to the development of the multisensor 
concept, where glucose and non-glucose-related sensors 
are embedded within the same device.20 An algorithmic 
routine is then necessary to properly combine the mea-
sured channels for a robust estimation of glucose values. 
Mechanistic models relating multisensor channels and 
glucose are not yet available due to the complex nature of 
physiology in skin and underlying tissues and interaction 
among the aforementioned phenomena. For this reason, 
black-box statistical models were used previously.20,25,26 
The bespoken challenges cause point accuracy of NI-CGM 
devices to be not yet at the same level as their minimally 
invasive counterpart. However, glucose rate of change has 
shown to be estimated with reasonably good accuracy and 
can be used as adjunctive information to SMBG reading to 
judge the risk associated with hypo- and hyperglycemic 
events in controlled or semiuncontrolled conditions.26,27

The aim of this article is to report on the performance of 
algorithmic routines developed to analyze data from a long-
term study with a wearable multisensor device for NI-CGM, 
showing how models developed for controlled and semicon-
trolled conditions are essentially still valid but require fur-
ther effort to cope with unexpected events in the data 
typically met in uncontrolled conditions.

Methods

Study Population

Of the 23 subjects initially enrolled in the study who signed 
an informed consent agreement, 2 completed only block A 
(see Study Design section ) and were thus excluded from the 
study and 1 withdrew before starting.

A total of 7 female and 13 male patients of Caucasian ori-
gin with type 1 diabetes, 38 ± 13 years (mean ± SD), BMI 
24.1 ± 3.0 kg/m2, duration of diabetes 17.0 ± 13.0 years, 
HbA1c 7.5 ± 0.9%, completed this study. The study was per-
formed in accordance with Good Clinical Practice (GCP) 
and the Declaration of Helsinki.

Over the entire study there were 1072 accepted and a total 
of 191 excluded study days (runs) respectively, which repre-
sent 15% of all runs.

Study Design

After the screening visit, patients completed an in-clinic study 
day (block A) to be introduced to the device and get trained in 
the operation of the entire set up. Patients were then sent 
home and collected each a total of ten home-use days (block 
B). Patients returned for another three in-clinic days (block 
C), including two nights. While in the clinic, blood samples 
were taken routinely by the study personnel via an inserted 
venous catheter for blood glucose reference measurement 
using a HemoCue Glucose 201+ (HemoCue, Sweden) every 
10 to 20 minutes. In parallel patients were performing regular 
SMBG via finger pricking and blood sampling, using a 
Ascensia Contour BMG (Bayer, Switzerland).

During the entire study, patients were noting down insulin 
dosing, activity levels or special events using a dedicated log 
book tool installed on the personal digital assistant (PDA).

After completion of the three in-clinic days (block C), 
patients returned home to perform at least another 20 study 
days under regular home use conditions during a period of 
6-12 months (block D).

Multisensor System

The design and validation of the multisensor concept used in 
this study has been extensively reported previously.28-34 To char-
acterize the biophysical properties of the skin and underlying 
tissues as well as the detrimental effects, the multisensor embeds 
a mix of dielectric spectroscopy (DS) and optical modules, as 
well as temperature, humidity, and sweat sensors. Finally, to 
measure motion effects, a 3-axes inertial sensor is implemented. 
Dielectric properties of the skin are investigated in the frequency 
range 0.1-200 MHz with three electrodes of different size to 
sample different penetration depths, in the 1-200 KHz range 
with one electrode and in the 1-3 GHz range with two additional 
grounded coplanar waveguides. Optical properties are mea-
sured with 2 entities of 3 LEDs, each at 3 different wavelengths: 
green (568 nm), red (660 nm), and infrared (798 nm).

All channels are sampled every 20 seconds and data trans-
mitted via Bluetooth connection to a PDA and finally down-
loaded to a PC together with all other reference data.

Data Analysis Procedure

Figure 1 shows the block diagram of the data processing rou-
tine used to evaluate the multisensor data and the data 
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required at each stage. The algorithm is designed to work 
prospectively and in real-time once it is tuned during the 
training phase.

Model Definition. The complex nature of the physiological 
system being measured and the interaction with perturbing 
effects support the hypothesis that measured data describe a 
nonlinear dynamical system, for example, the dermal blood 
volume variations as a function of thermoregulation.35,36 The 
internal working principles for such processes are typically 
expressed by mechanistic models.37 However, for our prob-
lem these models have not yet been developed. We therefore 
use the multiple linear model:

 y X e= +β  (1)

where y  is a nx1( )  vector collecting all reference SMBG 
measurements, X  is a nxp( )  matrix containing values 
obtained from sensor measurements. β  is the vector of p  
coefficients that are to be estimated from data, and e  repre-
sents the portion of the glucose variation not explained by 
the model. The latter is assumed to be independent and iden-
tically distributed according to the normal distribution. Note 
that by using transformed sensor measurements and other 
derived terms in X , nonlinear effects and interactions can be 
described by the model. This structure of the model has been 
developed in earlier studies.20,25

Model Estimation. The multisensor system used in the study 
is based on DS sensors that provide dielectric properties of 
the skin as a function of the frequency, leading in practice to 
a high dimensionality of the measurement space and to high 
correlation among subsets of variables. The problem of esti-
mating β  in (1) is then ill-conditioned and suitable tech-
niques must be used to avoid overfitting to the training data 
allowing the model to generalize over unseen test data. In the 
past, different methodologies were used to control complex-
ity and the best ones were those selecting only a subset of the 

input variables like regularization based techniques—for 
example, the least absolute shrinkage and selection operator 
or elastic-net regression,27 or greedy algorithms based on 
stepwise backward and/or forward selection methods.25 In 
this work the model is derived combining a stepwise variable 
selection technique and the Akaike’s information criterion 
similar to what was done in Mueller et al.25

The available data from blocks A, B, C, and D are split into 
a training set (blocks A, B, and C) used to estimate the model 
and a test set (block D) to test the global model on an indepen-
dent set of data not seen during the model derivation stage.38

Model Application. Once the parameter vector β  is estimated, 
glucose estimation for multisensor data at a given time 
instant ti  is given by a linear combination of the different 
j-th channels:

 y Xi
j

p

i j j
� �=

=
∑
1

, β  (2)

Calibration. Previous work showed that device calibration dur-
ing the manufacturing phase causes differences among multi-
sensor devices to be negligible.39 As can be seen in Figure 2, 
the clustering of the DS sensor data is due to subject specific 
differences. To deal with these differences, an additional degree 
of freedom to adjust the baseline to each subject is required. 
Thus, a constant is added to all estimated BG values of an indi-
vidual. Here, the constant is derived from a single calibration 
value: The first reference BG value available after the adapta-
tion period of 75 minutes which is in the range [70, 300] mg/dL 
and for which the estimated glucose rate is not rapidly chang-
ing, that is, is within –2¸2 mg/dL/min. is obtained. The constant 
is chosen to make the estimated BG value equal to it.40

Novelty Detection. In uncontrolled conditions met in daily life 
situations unexpected events can influence the multisensor 
channel data and deteriorate the accuracy of glucose estimates 
because they were not visible in the training data and thus not 

Figure 1. Block diagram of data processing and data required at each step (multisensor and reference BG).
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properly compensated. The novelty detection module in cas-
cade to the calibration stage monitors the multisensor channels 
and makes sure the data are within the boundaries of applica-
bility of the model. If the module recognizes a data behavior 
associated with a situation it does not know how to handle 
properly it raises a flag, waits for 30 minutes during which 
glucose is not displayed, and asks for a new calibration. 
Describing in details the functioning of the novelty detection 
module is out of the scope of the present article, but we will 
give a brief overview. The approach consisted of training an 
artificial network classifier to detect situations which were 
manually flagged as exceptions on the basis of features 
describing the distribution of the data as well as from the so 
called innovation, that is, the difference between what the sys-
tem should be doing and what is actually doing.

Output Filtering. When the estimated BG value leaves the 
range of 30¸400 mg/dL, the estimate is suppressed for the 
following 30 minutes and restarted only when a new refer-
ence BG value is available for a new calibration.

Performance Calculation. Glucose values estimated by the 
“multisensor + algorithm routine” ensemble is compared 
against BG data and the accuracy measured with a set of 
indicators widely used in the diabetes community.

Statistical metrics. We consider the mean absolute differ-
ence (MAD), indicating how much estimated glucose values 
are lower or higher than the reference:

 MAD
n

y y
i

n

i i= −
=
∑1
1

  (3)

and the mean absolute relative difference (MARD), which 
characterizes the relative errors (in %) of the estimated 
glucose:

 MARD
n

y y

y
i

n i i

i
=

−

=
∑1
1



 (4)

where yi  and y i , for i n= …1, , , are, respectively, the n  
reference BG samples and the glucose estimates.

Figure 2. Boxplots of signal distribution for two channels (2 and 50 MHz, a, b and c, d respectively) measured with the long electrode 
and parametrized by magnitude (a, c) and phase (b, d). Mean and standard deviation are also given (orange). Given over all patients/
devices (gray) and per patient/device. One device per patient, except AB06 and AB12 that used several devices.
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Metrics related to clinical relevance. Finally, a popular 
method used in the diabetes community to judge the point 
accuracy of glucose sensors is the Clarke error grid (CEG) 
proposed by Clarke and coworkers.41 The scatterplot of BG 
as estimated by the model and SMBG values is broken down 
into five regions labelled A to E, see Clarke et al41 for defi-
nition. The most dangerous situations are those where esti-
mated glucose values fall into zones C/D/E because, from a 
clinical point of view, they will lead to unnecessary or even 
wrong and potentially dangerous treatments. An evolution of 
CEG developed for CGM sensors is the rate error grid (REG) 
that measures the accuracy of estimated glucose trends with 
analogous regions labelled from A

R
 to E

R
; see Clarke et al42 

for details.

Results

Internal Validation

Figure 3 and Table 1 collect the accuracy results when the 
global model estimated on the training data set is applied to 
the same data with an initial adjustment of the baseline.

External Validation

Figure 4 shows the results for the CEG and the statistics 
regarding the number of points falling in the different zones. 
The REG, measuring accuracy of estimated glucose trend, is 
not available because the reference sampling SMBG needed 

to calculate reference trend values is too sparse since by pro-
tocol the subjects were instructed to collect 10 SMBGs dur-
ing the day at home.

Table 2 reports on the results obtained after each stage of 
the algorithmic routine. Calibration at stable glucose levels 
instead of calibration after 75 min reduces the MAD of about 
50%, and further improvements are achieved when monitor-
ing multisensor channels for unexpected events and filtering 
the output.

Overall, the point accuracy for an externally validated, 
on-line compatible, global model in uncontrolled conditions 

Table 1. Statistical Accuracy Measures for Internal Validation for the Global Model.

Avg r2 MAD (mg/dL) MARD (%) CEG A+B (A) (%) REG A+B (A) (%)

Initial baseline adjustment 0.84 53.5 31.2 87.5 (35.2) 89.9 (63)

Figure 3. Internal validation results in terms of the CEG (left) and the REG (right). Colors correspond to subjects.

Figure 4. External validation: CEG for block D. Colors 
correspond to subjects.
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is lower than under controlled or semicontrolled conditions 
(global model MAD 29.8 mg/dL, MARD 21.1 mg/dL39), 
likely due to perturbations not yet properly compensated.

Discussion

External validation results show that point accuracy of the 
NI-CGM multisensor device is not at the same level of mini-
mally invasive ones, for example, recently showing single 
digit MARD value of 9%.43 Understanding possible direc-
tions for improvement is essential to shrink the accuracy gap 
and provide a noninvasive technological solution that can be 
used to improve diabetes therapy. For instance, learning 
curves are used to analyze the bias-variance tradeoff when 
estimating models from data.38 The bias component of the 
error indicates whether or not the model is complex enough 
to capture the complexity of the data, whereas variance of the 
error indicates if the model can generalize well over unseen 
data, that is, it is overfitting. Figure 5 shows the root mean 

squared error (RMSE) used to evaluate the difference 
between model estimates and reference data as a function of 
the training data available expressed by the number of sub-
jects included in the training set (to take into account also 
intersubject variability). When only few subjects are used, 
the training error is small because data are overfitted but the 
model cannot generalize on unseen data leading to big test 
error. As soon as the number of subjects in the training set 
increases the training error increases because it becomes 
harder to fit the data but the model will generalize better over 
test data (lower test error). Eventually, the train and test 
learning curves converge indicating the model is not overfit-
ting anymore, that is, the model has low variance. However, 
train and test curves converge to RMSE value between 40-50 
mg/dL indicating that the current model has a high bias and 
more data would not help in this case, but rather this suggests 
that more complex or partially adaptive models should be 
used to properly combine multisensor channels to account 
for cofounding factors and intersubject variability.

Conclusions

In this work we reported some of the findings and chal-
lenges we met in a long-term study with a wearable mul-
tisensor device for NI-CGM in uncontrolled conditions at 
home. The goals of the study were to collect data over a 
long period of time, including different seasons, tempera-
ture range and climate conditions to test and to further 
develop the algorithms used previously in controlled and 
semicontrolled settings for NI-CGM. A data set of 1072 
runs from T1D patients is now available including data 
from the multisensor as well as SMBGs and log books 
with meals, insulin and activity. As can be seen in Figure 
2, data show the expected subject-/device-specific charac-
teristics as in previous work.39 Point accuracy is reduced 
in uncontrolled versus controlled conditions39 and is not 
yet comparable to that of minimally invasive CGM but 
glucose rate performance in data blocks A and C as mea-
sured by the REG shows that 63% of the points are in A

R
 

zone and almost 89.9% of the points are within zones 
A

R
+B

R
. This result opens long-term possibilities to use 

NI-CGM devices to applications specifically developed 
after the advent of CGM devices, for example, scoring of 
hypo- and hyperglycemic events44 and suggestions for 
insulin dosing adjustments.45,46

Figure 5. Learning curves for the linear model in equation 1. 
Train (blue) and test (red) error curves as a function of the amount 
of subjects’ data used for training.

Table 2. Performance Summary for External Validation on Block D for the Global Model Estimated on Blocks A, B, and C.

Avg r2 MAD (mg/dL) MARD (%) CEG A+B (A) (%)

Initial baseline adjustment 0.50 109 107 80.7 (30.9)
+ Initial baseline adjustment at “stable” glucose 0.49 56.3 49.9 83.5 (33.0)
+ Novelty detection 0.51 52.2 46.4 84.2 (34.6)
+ Output filtering 0.50 42.1 35.4 86.9 (39.1)

Table entries show the performance improvement due to each processing routine. “Stable” glucose means SMBG rate of change within [–2, +2] mg/dL/min.
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The analysis showed that the multisensor system is sen-
sitive to glucose changes in all patients but some unex-
plained sources of error still persist. This can be explained 
with the assumptions about the model used, linear and 
static, that cannot capture the complexity of the measured 
physiological process and their interactions that are non-
linear and dynamical. This is also corroborated by the 
learning curve analysis that suggests more data would not 
help. It seems that uncontrolled conditions of daily life are 
not yet modelled adequately. Therefore, more complicated 
modelling techniques could be applied to further compen-
sate complex perturbing effects met in uncontrolled condi-
tions. Such models might be nonlinear or adaptive in the 
parameters models38 or better reflect knowledge of the 
system.47,48
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