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Tea plant (Camellia sinensis) is a typical fluoride (F) hyperaccumulator enriching most F in old leaves. There
is association between the risk of fluorosis and excessive consumption of teas prepared using the old leaves.
It is meaningful to develop methods for controlling F levels in tea leaves. We generated a comprehensive
RNA-seq dataset from tea plants grown at various F levels for different durations by hydroponics, aiming at
providing information on mechanism of F metabolism in tea plant. Besides raw reads of the RNA-seq
dataset, we present assembled unigenes and aligned unigenes with annotations versus the Gene Ontology
(GO) databases, Kyoto Encyclopaedia of Genes and Genomes (KEGG) databases, and Nonredundant (Nr)
protein databases with low e-values. 69,488 unigenes were obtained in total, in which 40,894 were given Nr
annotations.
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Background & Summary
Tea plants accumulate abundant fluoride (F) from environments without toxicity1–3. The F concentration
in mature tea leaves was up to 2800 mg/kg4. In general, tea brewing leaches 24–83% of total F into
infusions4. An adult drinking five cups of tea per day would intake 8.0–303% F content of the Polish SAI
(Safe and Adequate Daily Intake)5. Long-term consumption of brick teas with excess F would increase the
risk of dental and skeletal fluorosis6,7.

Fluoride uptake by tea plant is highly related to Al, Ca and anion channels. Adding Al to the soil or
hydroponic solution increased F accumulation in tea plant but had no effect on Al accumulation8. Tea
plant might absorb F through a F-Al complex9. Endogenous Ca2+ and CaM played an important role in F
accumulation when there was Al3+ in the hydroponic solution10. The addition of Ca2+ decreased the
passages in cell wall or membrane, resulting in reduction of F uptake11. F uptake by tea plants was related
to anion channel, because anionic channel inhibitor NPPB or DIDS could reduce F absorption12.

For non-model organisms with limited information of genome, ribonucleic acid sequencing (RNA-
Seq) is an efficient approach to transcriptome profiling13–15. In this study, RNA-Seq was tested on tea leaf
samples from hydroponic tea plants grown at three levels of F for two growing duration, with two
biological replicates and control. Based on 10 cDNA libraries, a de novo assembled transcriptome was
generated using all F treatments and control samples. After de novo assembly, total 69,488 unigenes were
obtained with N50 of 869 bp. The unigene dataset can help explore the potential genes towards F
metabolism in tea plant.

Methods
Experiment design
Two-year-old tea cuttings of Camellia sinensis cv. ‘JK2’ were cultured by hydroponic method in a climate
chamber at 25± 2 °C, 70± 10% relative humidity and 12 h light/12 h dark16. The nutrient solution was
renewed weekly with formula as below: 100.05 mg/L NH4NO3, 34.68 mg/L KH2PO4, 1.64 mg/L K2HPO4,
2.15 mg/L CaSO4·2H2O, 49.00 mg/LMgSO4·7H2O, 33.32 mg/L Al2(SO4)3·10H2O, 0.28 mg/L FeS-
O4·7H2O, 14.21 mg/L Na2SiO3·9H2O, 5.00 mg/L H3BO3, 3.00 mg/L MnSO4, 0.44 mg/L ZnSO4·7H2O,
0.16 mg/L CuSO4·5H2O, 0.16 mg/L Na2MoO4·2H2O, and the pH of the solution was adjusted to 4.8–5.2
by 0.1 mol/L HCl or 0.1 mol/L NaOH16. After eight weeks acclimation in the nutrient solution, the tea
plants were treated with three levels of F (0, 5, 20 mg/L). Third leaf from apical bud with biological
replicates were sampled for F content analysis and RNA extraction on the day before F treatment using 0
mg/L group as control, and 5 mg/L, 20 mg/L combined with 1st, 3rd day as treatment groups. The labels of
F treatment were as below, sampling before F treatment from 0mg/L F group was used as control (tabbed
as Ftea-CK), 5 mg/L F for 1 day (tabbed as Ftea-S5-1), 5 mg/L F for 3 days (tabbed as Ftea-S5-3), 20 mg/L
F for 1 day (tabbed as Ftea-S20-1), 20 mg/L F for 3 days (tabbed as Ftea-S20-3). The experiment design
and the sampling standard were illustrated in Fig. 1.

Fluoride determination
F contents in tea samples were determined using F ion selective electrode (Shanghai Ruosull Technology
Co., Ltd., Shanghai China) mainly following the method described by Stevens et al.17. To inactivate
enzymes in tea leaves, we added a pretreatment of F determination by microwaving tea leaves for 60 s.
Then the leaves were dried at 120 °C for 30 min and at 75 °C for 3 h to 48 h until the weights of the leaves
remained unchanged. Dry samples (0.15 g) were accurately measured into conical flasks with 20 mL
boiling water for 30 min and shook up per 10 min. Then the solutions were transferred into 50mL
volumetric flask with TISAB solution (3 mol/L sodium acetate: 0.75 mol/L sodium citrate= 1:1 v/v) and
metered the solution to 50 mL with ddH2O. Each solution was measured by F ion selective electrode until
the change in mV was less than 0.2 mV/min. The standard curve was constructed by NaF (AR grade,
dried at 105 °C for 2 h). All F concentrations of samples were calculated by direct calibration from the
standard curve. The reclaim rate of the added F was 95.0–99.3%, with coefficient of variation 2.1%. The
results of F contents in different tea samples were listed in Table 1.

RNA extraction
Total RNA was extracted using an RNAprep pure plant kit special for plants with high content of
polysaccharide or polyphenols (TIANGEN Biotech Co., Ltd., Beijing, China). The quality and quantity of
extracted RNA were measured by agarose gel electrophoresis and Nanodrop 2000 (Quawell Technology,
Inc., San Jose, USA). The extracted RNA samples were stored at −80 °C.

Library construction and transcriptome sequencing
Three μg total RNA of each sample was used for cDNA library construction using TruSeq Stranded
mRNA LT Sample Prep Kit (Illumina, San Diego, CA, USA). The mRNA was extracted from total RNA
by oligo (dT)-attached magnetic beads. A cDNA library was generated before Next-Generation
Sequencing (NGS) in five steps: (1) The mRNA was fragmented using divalent cations under elevated
temperature in an Illumina proprietary fragmentation buffer, with mRNA fragment length ranging from
200 to 300 bp; (2) First-strand cDNA was synthesized by random oligonucleotides and SuperScript II
using the mRNA fragments as template. (3) Second-strand cDNA was synthesized in a mixture of buffer,
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dNTPs, RNase H, and DNA polymerase I, in which thymine (T) was replaced by uracil (U) so as to
generate strand-specific library. (4) DNA fragments with ligated adaptor molecules on both ends were
selectively enriched using Illumina PCR Primer Cocktail in a 15 cycle PCR reaction. After PCR
amplification of the cDNA library, the libraries between 300–400 bp were chosen for next step. (5)
Products were purified (AMPure XP system) and quantified using the Agilent high sensitivity DNA assay
on a Bioanalyzer 2100 system (Agilent). Finally, Illumina NextSeq500 was performed to generate 2 × 150
bp paired-end (PE) reads. The major process of the study was listed in Fig. 2.

De novo assembly and annotation
Before assembly, the reads with low quality were removed and adapters were filtered with Cutadapt
(Version 1.2.1)18. Clean reads were pooled and RNA-Seq de novo assembly was carried out using Trinity,
including assembling the reads into contigs by Inchworm, clustering the contigs to generate De Brujin

Time (d) F level (mg/kg)

Ftea-CK Ftea-S5 Ftea-S20

1 180.6± 1.3 265.5± 4.5 305.4± 3.5

3 179.4± 1.2 376.7± 2.4 513.3± 4.2

Table 1. The results of fluoride treatment on F levels in tea leaves. Time (d): F treating duration on tea
cuttings. F level (mg/kg): F contents in tea samples. Ftea-CK: tea cuttings under 0 mg/L F concentration in
hydroponic solutions. Ftea-S5: tea cuttings under 5 mg/L F concentration in hydroponic solutions. Ftea-S20:
tea cuttings under 20 mg/L F concentration in hydroponic solutions.
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Figure 1. Experiment design and sampling standard. Sampling on 0 day under 0 mg/L F treatment was used

as control (tabbed as Ftea-CK), and sampling on 1 and 3 days under 0 mg/L F treatment were used for F

determination; Ftea-S5-1: 5 mg/L F treatment for 1 day; Ftea-S5-3: 5 mg/L F treatment for 3 days; Ftea-S20-1:

20 mg/L F treatment for 1 day; Ftea-S20-3: 20 mg/L F treatment for 3 days. F levels in all samples were

measured and the de novo assembled transcriptome was based on Ftea-CK, Ftea-S5-1, Ftea-S5-3, Ftea-S20-1,

and Ftea-S20-3 with biological replicates.
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Graph (DBG) by Chrysalis, and obtaining transcripts based on DBG19. The fixed default K-mer value was
25. Details of contigs and unigenes were listed in Table 2. The obtained unigenes were annotated by
conducting a local BLASTx search. To classify the functions of contigs, GO annotation was performed
using Blast2GO software20, and KEGG orthology and pathway annotations were obtained by KAAS
(KEGG Automatic Annotation Server). These methods are expanded versions of descriptions in our
related work16.

Contig Unigene

Total Length (bp) 66,634,674 40,814,856

Sequence Number 219,018 69,488

Max. Length (bp) 7,149 6,325

Mean Length (bp) 304.2 587.4

N50 (bp) 412 869

N50 Sequence No. 35,411 13,326

N90 (bp) 131 250

N90 Sequence No. 160,691 51,233

GC% 45.36 43.75

Table 2. Summary of contigs and unigenes. Total Length (bp): the sum length of all contigs or unigenes.
Sequence Number: the number of assembled contigs or unigenes. Max length: the length of longest contig or
unigene. Mean length: the average length of contigs or unigenes. N50 (bp): arranging all sequences from longest
to shortest, then adding the sequences with permutation. When the sum of the sequences reaches to 50% of
total length, the length of last sequence is N50 (bp). N50 Sequence NO: the number of sequences longer than
N50. N90 (bp): arranging all sequences from longest to shortest, then adding the sequences with permutation.
When the sum of the sequences reaches to 90% of total length, the length of last sequence is N90 (bp). N90
Sequence NO: the number of sequences longer than N90. GC%: the percentage of GC in all bases.

10 RNA samples

Sequencing Quality Control 
Software: FastQC

Sequencing Illumina  
NextSeq500

Raw data

Annotation Database 
Soft ware: Blast 

Database: GO KEGG NR

De novo Assembly  
using Trinity

Library construction

Including three parts:  
Inchworm, Chrysalis and Butterfly

1. mRNA extraction 
2. Fragmentation obtained 
3. cDNA first-strand construction 
4. cDNA second-strand construction 
5. PCR amplification 
6. Products purification  

Figure 2. Schematic overview of the study. We collected 5 samples with replicates (third leaf from bud)

including control and various fluoride treatments. After cDNA construction, Illumina NextSeq500 was used for

sequencing in 150 bp paired-end (PE) reads. Trinity was used for clean reads de novo assembly and BlastX was

used searching against GO, KEGG and NR databases.
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Sample No Accession SRA BioSample

1 Ftea-CK rep1 SRR6189369 SAMN07811449

2 Ftea-CK rep2 SRR6189370 SAMN07811450

3 Ftea-S5-1 rep1 SRR6189371 SAMN07811451

4 Ftea-S5-1 rep2 SRR6189372 SAMN07811452

5 Ftea-S5-3 rep1 SRR6189365 SAMN07811453

6 Ftea-S5-3 rep2 SRR6189366 SAMN07811454

7 Ftea-S20-1 rep1 SRR6189367 SAMN07811455

8 Ftea-S20-1 rep2 SRR6189368 SAMN07811456

9 Ftea-S20-3 rep1 SRR6189373 SAMN07811457

10 Ftea-S20-3 rep2 SRR6189374 SAMN07811458

Table 3. Summary of samples submitted to NCBI Sequence Read Archive. Ftea-CK: sampling before F
treatment from 0mg/L group and used as control; Ftea-S5-1: 5 mg/L F treatment for 1 day; Ftea-S5-3: 5 mg/L F
treatment for 3 days; Ftea-S20-1: 20 mg/L F treatment for 1 day; Ftea-S20-3: 20 mg/L F treatment for 3 days.
Rep 1 and rep 2 means biological replicates.

Sample Raw Reads Clean Reads Clean Reads%

Ftea-CK rep1 22,498,116 22,353,496 99.36%

Ftea-CK rep2 28,105,672 27,917,452 99.33%

Ftea-S5-1 rep1 23,992,856 23,827,212 99.31%

Ftea-S5-1 rep2 31,759,734 31,547,722 99.33%

Ftea-S5-3 rep1 25,744,530 25,570,978 99.33%

Ftea-S5-3 rep2 27,129,926 26,954,244 99.35%

Ftea-S20-1 rep1 25,418,168 25,249,726 99.34%

Ftea-S20-1 rep2 31,876,778 31,667,652 99.34%

Ftea-S20-3 rep1 26,754,336 26,564,954 99.29%

Ftea-S20-3 rep2 27,293,256 27,113,294 99.34%

Total 270,573,372 268,766,730 99.33%

Table 4. Raw data and clean reads for each accession. Raw Reads: reads from next-generation sequencer.
Clean Reads: high quality reads after eliminating contaminations and adaptors. Clean Reads%: the percentage
of clean reads.

Figure 3. Distribution of NR e-value and species.
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Data Records
The raw data (Data Citation 1 and Table 3) was deposited in the NCBI Sequence Read Archive. Each
accession has two replicates. The assembled unigenes have been deposited at GenBank (Data Citation 2).

Technical Validation
To first control the sequencing quality, we compared total reads and total bases of each sample to ensure
the amounts stood the same magnitude. The Q20, base content, GC content and sequence base quality
were then determined using FastQC (http://www.bioinformatics.babraham.ac.uk/projects/fastqc). In
order to comprehensively cover the transcriptome of Camellia sinensis, ten libraries of control and
experimental groups were sequenced and assembled. A total of 270 573 372 raw reads were generated.
268 766 730 clean reads were obtained for de novo assembly after filtration, with clean reads rate being up
to 99.33% (Table 4). 219 018 contigs and 69 488 unigenes were obtained (Table 2).
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Figure 4. GO functional annotations of Camellia sinensis transcriptome. Bars represent the numbers of

unigenes assigned into GO sub-categories of three main categories: biological process, cellular component and

molecular function. Within the biological process category, “cellular process”, “metabolic process”, and “single-

organism process” were the most abundant sub-categories. In cellular component category, the predominant

portion of unigenes represented “membrane”, “cell” and “cell part” followed by “membrane part” and

“organelle”. Under the molecular function category, “catalytic activity” and “binding” sub-categories were the

major proportions of unigenes.
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Functional annotations were obtained by sequence based alignments performed by blast search
(BLASTx) against the non-redundant protein database (Nr). The Nr species distribution and e-value
distribution (Fig. 3) revealed that 55.24% of unigenes with hits had a strong homology with the sequences
available in the Nr protein database (e-value o e −45). The distribution of Nr species was revealed that
the majority of Camellia sinensis unigenes showed the highest homology with Actinidia chinensis var.
chinensis (52.05%), then Vitis vinifera (5.49%), Quercus suber (4.10%), Camellia sinensis (2.69%), Juglans
regia (1.47%), Olea europaea var. sylvestris (1.24%), Coffea canephora (1.19%), Nelumbo nucifera (1.02%),
Hevea brasiliensis (0.98%), Theobroma cacao (0.94%), Sesamum indicum (0.77%), and others (28.05%).
Because of limited Nr annotations of Camellia sinensis, only 2.69% of the unigenes had Nr annotations
against Camellia sinensis. However, 93.19% (64 756 out of 69 488) of all unigenes could mapped on newly
published tea genome database using tophit software. Unigenes unable to mapped on tea genome
database and predicted fusion genes information were offered in appendix (Supplementary Table 1 and
Supplementary Table 2). The major distribution of GO annotations was listed in Fig. 4, based on the
Blast2GO software analysis. GO database includes three main categories: biological process, cellular

Database Number Percentage%

NR 40,894 58.85

GO 23,260 33.47

KEGG 6,212 8.94

Table 5. Summary of annotations on different databases.
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Figure 5. KEGG pathway annotations of Camellia sinensis transcriptome. Bars represent the numbers of

unigenes clustered into KEGG Orthology (KO) hierarchies. “Signal transduction”, “translation” and

“carbohydrate metabolism” were the most abundant categories in KO hierarchies. Certain category as

“transport and catabolism” was highly related to experimental conditions.

www.nature.com/sdata/

SCIENTIFIC DATA | 5:180194 | DOI: 10.1038/sdata.2018.194 7



component and molecular function. Within the biological process category, “cellular process”, “metabolic
process”, and “single-organism process” were the most abundant sub-categories. In cellular component
category, the predominant portion of unigenes represented “membrane”, “cell” and “cell part” followed
by “membrane part” and “organelle”. Under the molecular function category, “catalytic activity” and
“binding” sub-categories were the major proportions of unigenes. The distribution of KEGG pathways
annotations was shown in Fig. 5. Sub-categories as “signal transduction”, “translation” and “carbohydrate
metabolism” were the most abundant categories in KO hierarchies. Besides, certain category as “transport
and catabolism” was highly related to experimental conditions. The summary of databases annotation
was listed in Table 5.
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