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Background: The terrifying undiagnosed rate and high prevalence of diabetes have become a public emergency. A
high efficiency and cost-effective early recognitionmethod is urgently needed.We aimed to generate innovative,
user-friendly nomograms that can be applied for diabetes screening in different ethnic groups in China using the
non-lab or noninvasive semi-lab data.
Methods: This multicenter, multi-ethnic, population-based, cross-sectional study was conducted in eight sites in
China by enrolling subjects aged 20–70. Sociodemographic and anthropometric characteristics were collected.
Blood and urine samples were obtained 2 h following a standard 75 g glucose solution. In the final analysis,
10,794 participants were included and randomized into model development (n= 8096) and model validation
(n = 2698) group with a ratio of 3:1. Nomograms were developed by the stepwise binary logistic regression.
The nomograms were validated internally by a bootstrap sampling method in the model development set and
externally in the model validation set. The area under the receiver operating characteristic curve (AUC) was
used to assess the screening performance of the nomograms. Decision curve analysis was applied to calculate
the net benefit of the screening model.
Results: The overall prevalence of undiagnosed diabetes was 9.8% (1059/10794) according to ADA criteria. The
non-lab model revealed that gender, age, body mass index, waist circumference, hypertension, ethnicities,
vegetable daily consumption and family history of diabeteswere independent risk factors for diabetes. By adding
2 h postmeal glycosuria qualitative to the non-labmodel, the semi-labmodel showed an improved Akaike infor-
mation criterion (AIC: 4506 to 3580). The AUC of the semi-lab model was statistically larger than the non-lab
model (0.868 vs 0.763, P b 0.001). The optimal cutoff probability in semi-lab and non-lab nomograms were
0.088 and 0.098, respectively. The sensitivity and specificity were 76.3% and 81.6%, respectively in semi-lab
nomogram, and 72.1% and 67.3% in non-lab nomogram at the optimal cut off point. The decision curve analysis
also revealed a bigger decrease of avoidable OGTT test (52 per 100 subjects) in the semi-lab model compared
to the non-lab model (36 per 100 subjects) and the existed New Chinese Diabetes Risk Score (NCDRS, 35 per
100 subjects).
Conclusion: The non-lab and semi-lab nomograms appear to be reliable tools for diabetes screening, especially in
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developing countries. However, the semi-labmodel outperformed the non-labmodel and NCDRS prediction sys-
tems and might be worth being adopted as decision support in diabetes screening in China.
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1. Introduction

Diabetes becomes one of the largest health emergencies worldwide.
The number of people with this life-changing condition is increasing
dramatically year by year. It is estimated that one in 11 adults aged
20–79 have diabetes worldwide, among whom nearly 50% [1] are left
undiagnosed. This situation is even more terrifying in China. Nationally
representative surveys among adults in mainland China revealed that
the overall prevalence of diabetes in China ranged from 9.7% to 11.6%
and among all patients with diabetes 60.7–69.9% individuals are
unaware of their condition [2–4]. Moreover, evidence suggests that up
to 25% of peoplewith diabetes have developedmicrovascular complica-
tions at the time of diagnosis [5]. Thus, early detection of diabetes seems
to be extremely important for this proportion of patients.

Fasting plasma glucose (FPG), 2-h postprandial glucose (2-h PG)
after 75-g oral glucose tolerance tests (OGTT), or HbA1c level is recom-
mended for diabetes screening [6]. But their practicability has been
challenged by low efficacy [7], time-consuming, and high cost. Further-
more, these tests are invasive, whichmight compromise the compliance
or willingness of individuals to screen for diabetes. Therefore, a simple
and user-friendly assessment toolwith comparable or superior sensitiv-
ity and specificity is urgently in need.

There are severalmathematicalmodels designed to identify diabetes
[8–12],with the Finnish diabetes risk score [11] as themost feasible one.
However, its high efficacy might be largely attributed to the question:
“Have you ever been told by a health-care professional that you have di-
abetes or latent diabetes? No/Latent diabetes/Diabetes”. Moreover, this
tool might be not suitable for Chinese population because most people
in China may not have periodic health visits, let alone being informed
of diabetes. Although recently a New Chinese Diabetes Risk Score [8]
was developed by Zhou and colleagues in 2013 for detecting diabetes
in Chinese population, their algorithm was developed and validated in
low-income residents, and its accuracy remains unclear in Chinese
with different ethnic groups. Furthermore, no nomograms [13] which
can pictorially depict an individual probability of undiagnosed diabetes
have been developed in the mainland of China and no proper methods
for the assessment of the clinical utility for a risk model have been
reported.

The aims of this study was to generate innovative and user-friendly
nomograms for the screening of diabetes in different ethnic groups of
non-diabetic subjects in China by using the non-lab or semi-lab data
and to assess these algorithms by decision curve analysis [14, 15] for
their clinical utility at different threshold probabilities. In addition, this
study was also aimed to compare the performance of non-lab and
semi-labmodel developed in this study with the New Chinese Diabetes
Risk Score derived by Zhou in different ethnic groups to evaluate its
effectiveness.

2. Material and methods

2.1. Data for development of algorithms

This observational Study on Evaluation of iNnovated Screening tools
and determInation of optimal diagnostic cut-off points for type 2 diaBe-
tes in Chinese muLti-Ethnic (SENSIBLE study) was conducted in 8 cen-
ters including six ethnic groups in 7 provinces in China from
November 2016 to June 2017. Amulti-stage cluster and simple random-
ization method was applied to recruit subjects aged 20–70 years in 1–2
provinces that were randomly selected from different regions (north,
south, east, west, and central) across China, where Jilin and Hebei
provinces (north China), Yunnan and Guangxi provinces (south
China), Fujian provinces (east China), Xinjiang Uyghur autonomous re-
gion (west China), and Jiangxi provinces (central region) were finally
chosen. Afterwards, city names in each province were numbered,
which were chosen by simple random sampling method. Ten cities
were finally enrolled in the first stage of sampling. In the second stage,
10 neighborhood communities and 10 administrative villageswere ran-
domly selected. Finally, individuals who lived at least 5 years in their
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current residence were randomly sampled with stratifications on sex
and age distributions. However, the following featured individuals
were excluded: 1) refused to sign the informed consent; 2) pregnancy;
3) mental illness; 4) other physiological diseases unable to finish the
procedures of this survey. A total of 13,620 subjects were invited and
12,017 subjects participated in this study, which give a response rate
of 88.2%. After excluding 649 participants with self-reported diabetes,
538 with missing data on sociodemographic information (e.g. age,
gender, ethnicities, family history of diabetes), physical examination
characteristics (including waist circumference, height, weight, systolic
blood pressure, diastolic blood pressure), or laboratory indices (includ-
ing hemoglobin A1c, fasting plasma glucose, 2-h plasma glucose, post-
prandial 2-h period glycosuria qualitative, triglyceride, total
cholesterol, high-density lipoprotein, low-density lipoprotein), and 36
outliers with waist circumference N 99.9 percentile(120 cm) or b 0.1
percentile(54 cm) or with BMI N99.9 percentile(41.42 kg/m2) or b 0.1
percentile(15.60 kg/m2), a total of 10,794 participants(Fig. 1) were in-
cluded in the final data analysis.
Fig. 1. Flow chart o
This study protocol was approved by the Ethical Review Committees
of Zhongda Hospital, Southeast University, and other participating
institutes. Written informed consent was obtained from each partici-
pant before participation.

2.2. Procedures

The SENSIBLE study was conducted in each neighborhood commu-
nity or administrative village with the help from co-operating grade
IIIA hospital. All the research staff was trained by an experienced
executive director in order to guarantee a unified standard procedure.
All eligible participants were informed to maintain their usual lifestyle
for at least 3 days and were fasted at least 10 h before blood sample
withdrawn, which was used to measure HbA1c, FPG, postprandial 2-h
period glycosuria qualitative, triglyceride (TG), total cholesterol (TC),
high-density lipoprotein (HDL), low-density lipoprotein (LDL). Then
these participants were instructed to empty their bladder and
swallowed a standard 75 g glucose solution for an OGTT, with the
f the research.

Image of Fig. 1
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blood sample taken 2 h later for 2 h-PG measurement. Immediately
after the 2 h blood sample taken, participants were asked to empty
their bladder again, collecting the 2 h period urine for glycosuria
qualitative measurement which was conducted by an automatic urine
analyzer (Uritest-500B, URIT Corporation, China). The glycosuria results
were categorized as −, ±(trace), +, which represent the increasing
concentration of urine glucose.

A structured questionnaire administered by trained interviewers
was conducted to get information on sociodemographic characteristics,
lifestyle factors, and medical history. Body weight, height, and waist
circumference were measured with standardized protocols. Body mass
index (BMI) was calculated as body weight (kg) divided by squared
height (m). Blood pressure was measured 3 times at the non-
dominant arm after 5 min of rest at a seated position using an
automated device (YE680E, yuwell, China). All blood sampleswere cen-
trifuged on site within 30 min after collection. For the serum and the
whole blood samples, theywere shipped at 4 °C by air to the central lab-
oratory in Nanjing Adicon Clinical Laboratories. All the blood specimens
were measured immediately after arrival. FPG, 2 h-PG, TG, TC, HDL, LDL
were measured using an automatic chemistry analyzer (Synchron
LX-20, Beckman Coulter Inc., CA, USA). HbA1c was measured with
high-performance liquid chromatography (HPLC; D-10™ Hemoglobin
Analyzer, Bio-Rad Inc., CA, USA).

2.3. Definitions

Diabetes was defined according to ADA 2015 criteria as 1) FPG ≥
7.0 mmol/L, 2) 2 h-PG ≥ 11.1 mmol/L, 3) HbA1c concentration at a
level of 6.5% or more.

2.4. Development and assessment of recognition models

The finally enrolled 10,794 participants were divided into a training
set (N= 8096) and a validation set (N= 2698) at a ratio of 3:1 using a
simple random sampling method. Data in the training set were used to
develop the recognition models for undiagnosed diabetes. A multivari-
able binary logistic regression model using the backward stepwise
method was applied to develop the algorithm. The dependent variable
in the model was the undiagnosed diabetes, while the independent
variables including: (1) sociodemographic information such as gender,
age, ethnicities, family history of diabetes, education level, tea habit,
sleep quality, sleep time, diet habit, exercise, vegetable daily consump-
tion, and income; (2) physical examination characteristics such aswaist
circumference, BMI, uncontrolled blood pressure (SBP ≥ 140 mmHg and
or DBP ≥ 90mmHg). The stepwise process was evaluated by the Akaike
information criterion (AIC) and Bayesian information criterion (BIC)
statistics and only the model with the lowest AIC and BIC achieved
was considered as the final one. Factors such as gender, age, ethnicities,
BMI, waist circumference, hypertension, family history of diabetes, and
vegetable daily consumption were included in the final non-lab model.
The postprandial 2-h period glycosuria qualitative resultswere added to
the non-labmodel and the interaction between variableswere also con-
sidered for the construction of the semi-lab model. Nomograms were
constructed using the rms package in R software version 3.4.1 (http://
www.r-project.org) according to the methods reported previously
[16–19].

To achieve an unbiased estimate of ourmodels, a bootstrap sampling
method was used in the training set to validate the performance of our
non-lab and semi-lab models internally. Then external validation was
performed in the validation set (N= 2698) using the area under the re-
ceiver operating characteristic curve (AUC) and the differences between
different AUCswere compared using the DeLongmethod [20]. Youden's
index was used to find the optimal cut-off value for the detection of un-
diagnosed diabetes. The accuracy of ourmodelswas further verified and
compared with the previously published New Chinese Diabetes Risk
Score in different gender and ethnic groups using the ROC curve and
AUC. The clinical usefulness was evaluated using the net benefit
(The average profit of a prediction which derived from the true-
positive rate multiply the gain of doing a test or treatment minus the
false-positive rate multiply the loss of doing a test or treatment) calcu-
late by the following formula which was derived by

Net benefit ¼ true−positive count
n

−
false−positive count

n
pt

1−pt

� �

Andrew J. Vickers [14], where nmeans the sample size, pt means the
threshold probability which can categorize themodel derived probabil-
ity into positive or negative, in this formula the gain is represented as 1
and the loss is represented as pt/1- pt. The decision curves of the non-lab
and semi-lab model were plotted by the rmda package included in R
software version 3.4.1 (http://www.r-project.org) according to the pre-
viously published papers [21]. Finally, two simple and user-friendly
websites according to non-lab model (https://yunxuan.shinyapps.io/
nonlabmodel/) and semi-lab model (https://yunxuan.shinyapps.io/
semilabmodel/) were developed to estimate the individualized risk of
diabetes.

2.5. Statistical analyses

An estimated 260 subjects would be needed to provide 99% power
for a receiver operating characteristic study, assuming the area under
the ROC is 0.75 and the prevalence of undiagnosed diabetes is 10%,
with a two-sided α of 0.05.

All the statistical analysis was performed using the Empower Stats
(www.empowerstats.com, X&Y solutions, Inc. Boston MA) and R soft-
ware version 3.4.1 (http://www.r-project.org). The relevant packages
including rms, rmda, pROC, DynNom and shiny. Continuous variables
were described as means ± SD or median (25th–75th percentile) and
categorical data were presented as number and percentage. The differ-
ence between the model development group, model validation group
and total samples was compared using one-way analysis of variance
(ANOVA) for continuous data and Chi-squared tests for categorical var-
iables. Kruskal-Wallis test was applied for the variables with a skewed
distribution.

2.6. Role of the funding source

The sponsors had no role in the study design; collection, data analy-
sis, data interpretation or writing of the report. The corresponding au-
thor had full access to all the data and the final responsibility for the
decision to submit for publication.

3. Results

Therewere 1059 caseswith newly diagnosed diabetes based onADA
criteria (Table 1), accounting for 9.8% of the total population. Notably,
the prevalence of undiagnosed diabetes differed across populations
with different ethnicities. For example, the Han population had the
highest prevalence of newly diagnosed diabetes, which was 13.7%,
while the Kazak population had the lowest prevalence of 4.2%. The
Zhuang (11.5%) and the Korean populations (11.5%) had a similar prev-
alence. The Uyghur adults and the Dai participants had a relatively low
prevalence rate of 5.2% and 7.3%. There were no significant differences
in sociodemographic characteristics, physical examination characteris-
tics or laboratory characteristics between the model development and
model validation groups (Table 1).

The best non-lab model generated from the backwards stepwise re-
gression showed that gender (percentage of males), increased age, BMI,
waist circumference, hypertension, family history of diabetes and low
daily consumption of vegetables were potential risk factors for newly
diagnosed diabetes (Table 2). Among them, family history was the
strongest risk factor with an OR of 1.72 (95%CI 1.41–2.08). But

http://www.r-project.org
http://www.r-project.org
http://www.r-project.org
https://yunxuan.shinyapps.io/nonlabmodel
https://yunxuan.shinyapps.io/nonlabmodel
https://yunxuan.shinyapps.io/semilabmodel
https://yunxuan.shinyapps.io/semilabmodel
http://www.empowerstats.com
http://www.r-project.org


Table 1
Baseline characteristics of participants in different groups.

Total (n = 10,794) Training set (n = 8096) Validation set (n = 2698) P-Value

Age (years) 49.2 ± 12.5 49.1 ± 12.5 49.2 ± 12.4 0.960
Gender 0.970

Female 7398 (68.5%) 5554 (68.6%) 1844 (68.3%)
Male 3396 (31.4%) 2542 (31.4%) 854 (31.7%)

Ethnic Groups 0.967
Korean 1351 (12.5%) 999 (12.3%) 352 (13.0%)
Dai 1949 (18.1%) 1442 (17.8%) 507 (18.8%)
Han 3084 (28.6%) 2324 (28.7%) 760 (28.2%)
Kazak 853 (7.9%) 635 (7.8%) 218 (8.1%)
Uyghur 1682 (15.6%) 1271 (15.7%) 411 (15.2%)
Zhuang 1875 (17.4%) 1425 (17.6%) 450 (16.7%)

Vegetable daily consumption 0.990
Very low 39 (0.4%) 27 (0.3%) 12 (0.4%)
Low 555 (5.1%) 415 (5.1%) 140 (5.2%)
Normal 6975 (64.6%) 5242 (64.7%) 1733 (64.2%)
High 3225 (29.9%) 2412 (29.8%) 813 (30.1%)

Undiagnosed diabetes 1059 (9.8%) 779 (9.6%) 280 (10.4%) 0.520
Hypertension 3867 (35.8%) 2897 (35.8%) 970 (36.0%) 0.987
Family history of diabetes 1734 (16.1%) 1308 (16.2%) 426 (15.8%) 0.904
BMI(kg/m2) 24.8 ± 3.9 24.8 ± 3.9 24.9 ± 3.9 0.636
Waist circumference(cm) 82.6 ± 10.9 82.6 ± 10.9 82.7 ± 11.0 0.898
HbA1c(%) 5.5 ± 0.8 5.5 ± 0.8 5.5 ± 0.7 0.831
FPG(mmol/L) 5.5 ± 1.2 5.5 ± 1.2 5.5 ± 1.1 0.996
2 h-PG(mmol/L) 7.0 ± 3.1 7.0 ± 3.1 7.0 ± 3.2 0.979
Glycosuria qualitative 0.678

− 9445 (87.5%) 7097 (87.7%) 2348 (87.0%)
+− 232 (2.1%) 171 (2.1%) 61 (2.3%)
+ 1117 (10.4%) 828 (10.2%) 289 (10.7%)

TG(mmol/L) 1.2(0.8,1.8) 1.2(0.8,1.80) 1.2(0.8,1.80) 0.727
TC(mmol/L) 5.2 ± 1.1 5.2 ± 1.2 5.2 ± 1.1 0.984
LDL(mmol/L) 3.0 ± 0.9 3.0 ± 0.9 3.0 ± 0.8 0.980
HDL(mmol/L) 1.6 ± 0.4 1.6 ± 0.4 1.6 ± 0.4 0.948

Data are presented as n, n(%), mean± SD or median(IQR).
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considering the span of the factor (OR*[max(factor)-min(factor)]), age
was dominated as the strongest factor in the non-lab model (Fig. 2).
After adding postprandial 2-h period glycosuria qualitative to the non-
lab model to generate the semi-lab model, it is interesting that male
gender became a protective factor for newly diagnosed diabetes (OR
0.75, 95% CI 0.61–0.93). A subsequent logistic regression model involv-
ing the interaction of glycosuria and gender showed that there exists an
interaction between these two variables (Table 2, Glycosuria + interac-
tive with male gender, OR 0.61 and 95% CI 0.41–0.90, P = 0.01). The
non-lab model presented a c-index of 0.763 (95% CI 0.747–0.780),
while the final semi-lab model exhibited a bigger one (c-index 0.868,
95% CI 0.854–0.882).

The internal bootstrap validation demonstrated that at a probability
between 0 and 0.25, the non-lab nomogram derived curve fitted well
with the bias-corrected curve and the ideal curve. But when the proba-
bility was set to be higher than 0.25, the non-lab model may overesti-
mate the probability of undiagnosed diabetes (Fig. 3a). Our semi-lab
model resembled this tendency but the start point of overestimation
at the predicted probability was higher than the non-lab model
(Fig. 3b). Both our non-lab and semi-lab model showed a good fitting
and calibration, with the mean absolute error being 0.004 for the non-
lab model and 0.003 for the semi-lab model.

The non-lab and semi-lab nomograms were further validated using
ROC internally in the training set and externally in the validation set.
The AUC for the non-lab nomogram (Fig. 3c) in the training set was
0.763 (95%CI 0.747–0.780), yielding a sensitivity of 72.1% and a specific-
ity of 67.3% at the optimal cutoff value (P = 0.098, P means model
derived probability) that maximized the Youden's index. Yet in the val-
idation set the AUC was 0.753 (95% CI: 0.726–0.781), along with a sen-
sitivity of 84.3% and a specificity of 53.7% at the corresponding
threshold. However, the AUCs for the semi-lab nomogram (Fig. 3d) in
the training (0.868, 95% CI: 0.854–0.882) and validation sets (0.872,
95% CI: 0.848–0.897) were larger than those for the non-lab nomogram
(AUC= 0.763, and 0.753, respectively). At the optimal corresponding
cutoff values (P = 0.088, P means model derived probability), the no-
mogram yielded a sensitivity of 76.3% and a specificity of 81.6% for the
training set and a sensitivity of 70.7% and a specificity of 90.1% for the
validation set. Our semi-labmodel showed a 14.3%(81.6%–67.3%) incre-
ment in specificity without lowering the sensitivity at the optimal cut
off point in the training set.

The performances of the non-lab and semi-lab nomograms were
compared with the New Chinese Diabetes Risk Score [8] in the
whole populations (n = 10,794) as well as in those with different
gender and ethnicities. As shown in Fig. 4. Our non-lab nomogram
demonstrated similar accuracy, discriminability with the New Chinese
Diabetes Risk Score no matter in the subgroup of gender or ethnic
groups. Both the non-lab nomogram and the New Chinese Diabetes
Risk Score were inferior to the semi-lab nomogram in accuracy and
discrimination.

The decision curve analysis comparing the clinical usefulness of the
non-lab and semi-labmodels was shown in Fig. 5. The threshold proba-
bility for diabetes was plotted in x axis and the standard net benefit
using the model was plotted in y axis. The area among the model
curve, treat all line and treat none line represent the clinical usefulness
of each model. In this analysis, the New Chinese Diabetes Risk Score,
non-lab model, and semi-lab model all showed a better cost effective
than treat all and treat none, and the semi-lab model exhibited the
best performance. For example, at a threshold of 10%, the non-lab
model and the New Chinese Diabetes Risk Score would cause a reduc-
tion of 36 and 35 subjects per 100 participants from performing OGTT
while a big increase of 52 subjects per 100 participants (calculated
[14] by (net benefit of the model – net benefit of treat all)/(pt/(1 –
pt)) × 100) for semi-lab model, without increasing the number of
false-positive results. This means our semi-lab model will save 16–17
subjects per 100 people from the cost of OGTT and also the human re-
sources during the process of the test.



Table 2
Odds ratio (95% CI) and β-coefficient in non-lab model and semi-lab model estimated by logistic regression analysis using the data from the training set.

Factors Non-lab(n = 8096) Semi-lab(n = 8096)

β-Coefficient P-Value OR(95%CI) β-Coefficient P-Value OR(95%CI)

Age(years) 0.05 b0.01 1.05(1.04–1.06) 0.06 b0.01 1.06(1.05–1.07)

Gender
Female − − 1.00 − − 1.00
Male 0.28 b0.01 1.32(1.11–1.57) −0.07 0.01 0.94(0.72–1.21)

Ethnic groups
Han − − 1.00 − − 1.00
Korean 0.22 0.08 1.24(0.97–1.59) 0.15 0.31 1.16(0.87–1.53)
Dai −0.01 0.93 0.99(0.76–1.28) 0.17 0.32 1.19(0.86–1.56)
Kazak −1.42 b0.01 0.24(0.15–0.37) −1.44 b0.01 0.24(0.14–0.38)
Uyghur −0.83 b0.01 0.48(0.31–0.60) −0.54 b0.01 0.58(0.40–0.82)
Zhuang −0.03 0.78 0.97(0.78–1.20) −0.06 0.64 0.94(0.73–1.21)

Vegetable daily consumption
Very low − − 1.00 − − 1.00
Low −0.60 0.33 0.55(0.18–2.11) −0.98 0.15 0.37(0.11–1.68)
Normal −1.01 0.09 0.36(0.12–1.36) −1.39 0.04 0.25(0.07–1.08)
High −0.98 0.11 0.37(0.12–1.41) −1.27 0.06 0.28(0.08–1.23)

Hypertension
No − − 1.00 − − 1.00
Yes 0.47 b0.01 1.60(1.36–1.90) 0.28 b0.01 1.32(1.09–1.60)

Family history of DM
No − − 1.00 − − 1.00
Yes 0.54 b0.01 1.72(1.41–2.08) 0.37 b0.01 1.45(1.16–1.81)
BMI(kg/m2) 0.08 b0.01 1.08(1.04–1.12) 0.09 b0.01 1.10(1.06–1.14)
Waist circumference(cm) 0.03 b0.01 1.03(1.02–1.04) 0.02 0.01 1.02(1.01–1.04)

Glycosuria qualitative
− − − 1.00
+/− 1.62 b0.01 5.05(2.80–8.75)
+ 2.28 b0.01 24.96(19.15–32.63)

Interactive effect
Others − − 1.00
+/− *Gender =male −0.19 0.65 0.82(0.36–1.89)
+ *Gender =male −0.50 0.01 0.61(0.41–0.90)

AIC, Akaike information criterion; BIC, Bayesian information criterion; OR, odds ratio; BMI, bodymass index.+/−*Gender=malemeans glycosuria qualitative+/− interactivewithmale
gender, +*Gender=male means glycosuria qualitative + interactive with male gender.
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4. Discussion

This SENSIBLE study explored the rate of undiagnosed diabetes in six
different ethnic groups in China. According to this multicenter, multina-
tional data, two models were developed for predicting undiagnosed di-
abetes. The non-lab model based on eight variables including gender,
age, ethnicities, BMI, waist circumference, uncontrolled blood pressure,
family history of diabetes, and vegetable daily consumption. Postpran-
dial 2-h period glycosuria qualitative and interaction of genderwith gly-
cosuria was added to the non-lab model for the construction of the
semi-lab model. Both models showed good discriminability in training
set and validation set subjects. Comparisons of the two models with
the New Chinese Diabetes Risk Score in the subgroup of gender or eth-
nicities suggested that the semi-lab model exhibited the best perfor-
mance, while the non-lab model had a similar performance as the
New Chinese Diabetes Risk Score. The semi-lab model also provided
better clinical usefulness than the other two models as indicated by
the decision curve analyses. Besides, this comparison further proved
the practicability of the New Chinese Diabetes Risk Score in China. Of
note, our Non-lab model and the existed New Chinese Diabetes Risk
Score might be more suitable for individuals lacking medical resources,
or for subjects with urinary tract infection or taking drugs that may af-
fect the accuracy of glycosuria qualitative measurement, while our
semi-lab model seems to be more appropriate for individuals under
the guidance of community doctors or general practitioner and our
semi-lab model is also considerable for the epidemiologic study on dia-
betes screening.
It is reported that there might exist a racial difference for assessing
diabetes risk according to the multiethnic cohort study enrolling
59,824 nondiabetic adults from South Asian, Chinese, African, and Cau-
casian [22]. Partly in support of this and consistent with the published
data [23, 24], our study indicated that the rate of undiagnosed diabetes
was highest in Han population and lowest in Kazak people. Besides, this
rate was investigated in another two extra nationalities of Zhuang and
Dai which was not reported previously. However, there was no signifi-
cant improvement comparing our ethnic-based non-lab algorithms
with the New Chinese Diabetes Risk Score in different subgroups. This
may be probably attributable to the differences in BMI and waist cir-
cumference among the six ethnic groups. For example, both the Kazak
(undiagnosed diabetes rate 4.2%) and Uyghur population (undiagnosed
diabetes rate 5.2%) were top two ethnic groups with high BMI (27.6 ±
5.0 kg/m2 in Kazak and 25.6 ± 4.6 kg/m2 in Uyghur) and waist circum-
ference (90.1 ± 12.2 cm in Kazak and 88.5 ± 11.3 cm in Uyghur) while
the Zhuang population (undiagnosed diabetes rate 11.5%) ranked last in
BMI (23.7± 3.7 kg/m2) and the Dai people (undiagnosed diabetes rate
7.3%) in waist circumference (76.3 ± 8.5 cm). These indicate that the
multicollinearity may be occurred when the variables of ethnicities,
BMI and waist circumference were included in the model. This
multicollinearity may be responsible for the inaction of the non-lab
model when applied in the subgroup of nationalities.

Although a number of diabetes assessment algorithms [8–11, 25–31]
have been developed and some of them are especially designed for
Asian [26, 31] or Chinese [8, 10, 25, 28–30], the scoring systems in
most of the risk recognition models are based on the magnitude of



Fig. 2.Nomogram for the non-labmodel and semi-labmodel. HAS= TheKazak nationality.WEI= TheUyghur nationality. ZHUA= The Zhuangnationality. CX= TheKorean nationality.
HAN= The Han nationality. DAI= The Dai nationality. Vegetable daily consumption is a self-report variable provided from the investigated subjects. 0, 1, 2, 3 separately means very low,
low, normal and high daily consumption of vegetables.
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their regression coefficients [8, 11, 25, 29–31]. In this system, continu-
ous variables are often converted into categorical variables, thus, two
separate individuals with slight changes in the continuous variables
(still in the same category) will get the same risk score. Besides, this
scoring system generally relies on specific tables whichmight be incon-
venient when applied in self-assessment for high risk individuals. In all
the publishedmodels, only 3 used nomograms to assess the probability
of undiagnoseddiabetes. Yet one [25] still adopted the scoring systemas
mentioned above, while the other two [9, 26] employed the more ad-
vanced Bayesian model average method to construct the nomograms.
However, these two models are not fully calibrated or validated.
Namely, neither these two research compared the predicted probability
with the actual observed probability nor did they cut their samples into
training set and validation set and validate the result in the validation

Image of Fig. 2


Fig. 3.Validation of non-labmodel and semi-labmodel. Internal validation of non-lab nomogram(a) and semi-lab nomogram(b) using the bootstrap samplingmethod; External validation
using the receiver operating characteristic curve both in training set and validation set for non-lab nomogram(c) and semi-lab nomogram(d).
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set. In addition, none of the existing models was assessed by the deci-
sion curve analysis for their clinical usefulness. In our study, the no-
mograms were constructed using the method mentioned above, and
two websites were created with the algorithms, which would be
very convenient for clinicians or individuals to assess the probability
of diabetes with just a few clicks of the mouse. Both risk models
were validated internally using the bootstrap sampling method and
externally in the validation set. Besides, clinical usefulness was pre-
sented by the reduction in avoidable OGTT per 100 patients without
increasing the number of false-positive results using the decision
curve analysis method.

The non-lab model showed no significant improvement compared
with the previously published model [8] because of the control of sim-
ilar risk factors. However, after the introduction of the postprandial 2-
h period glycosuria qualitative to the non-lab model, a significantly in-
crement of C-index occurred. Urine glucose test for screening of diabe-
tes is not recommended by the World Health Organization (WHO)
[32] and some researchers [33] because of its low sensitivity, but
they highlighted the high specificity of urine glucose test. Besides, par-
ticipants in these studies were not asked to empty their bladder prior
to the examination of postprandial urine and the test was performed
either 1–2 h after a solid morning or evening meal. Meanwhile, in-
creasing evidence suggests comparable efficiencies of self-monitoring
of urine glucose with self-monitoring of blood glucose on glycemic
control in type 2 diabetes [34, 35]. However, repeatable application
should be developed. Therefore, postprandial glycosuria qualitative,
which can reflect the average level of a short time postprandial
blood glucose, was proposed and added as a factor to the non-lab
model by our group. On the one hand, it is quite cheap, non-
invasive and easy for the self-assessment of the instructed individuals.
On the other hand, the high specificity of urine glucose test can help
to compromise the relatively low specificity of the non-lab factors
thus bringing enormous economic benefits without lowering the
accuracy.

There are some limitations of this study. Firstly, both models were
not validated in a heterogeneous population. Hence, extra validation
in different studies should be performed primarily for the application
of our recognitionmodels. Secondly, the postprandial 2-h period glycos-
uria qualitativemay be influenced by renal threshold and somemedica-
tions [36]. Therefore, our semi-lab model might be not suitable for

Image of Fig. 3


Fig. 4. Comparisons among Semi-lab, Non-labmodel and The NewChinese Diabetes Risk Score in the subgroup of gender and nationality using the receiver operating characteristic curve.
NCDRS=New Chinese Diabetes Risk Score. HAN= The Han nationality. CX= The Korean nationality. ZHUA= The Zhuang nationality. DAI = The Dai nationality. WEI= The Uyghur
nationality. HAS= The Kazak nationality.
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subjects like children, pregnant women and those who are in use of
acetylsalicylic acid products or vitamin C. Thirdly, some questions and
some physical examinations which were included in other famous risk
scores such as “History of high blood glucose” [11], hip circumference
[26] were not asked or measured. These missing variables may have a
potential influence on the prediction of our models. Fourthly, there is
a small proportion of subjects who refused this study. This group of sub-
jects may have characteristics differ from the individuals who attend
this study. This potential difference might influence the variable selec-
tion process to some extent. Besides, there were more women than
men in this study and the sample size of the Kazak population was
much smaller than other ethnic groups. These factors may cause selec-
tion bias to some extent.

In conclusion, based on the full understanding of these limitations,
our non-lab and semi-lab model showed an adequate performance for
screening diabetes in different ethnic groups of China in a cost-
effective way.

Considering the strength and the limitations of this present study,
there is still room for improvements in the future studies. For example,
new indicators of anthropometric measurement such as body volume
indicator (BVI) which can reflect the volume of visceral fat measured
by an iPad app (base on a 3D image technology) may be a new optional

Image of Fig. 4


Fig. 5. Decision curve analysis for the Semi-lab, Non-lab and New Chinese Diabetes Risk
Score models.
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variable for the construction of the recognition model. Besides, new al-
gorithms including neural network are also worth being employed for
the detection of undiagnosed diabetes.
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