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Hierarchical and stage-specific regulation of murine
cardiomyocyte maturation by serum response
factor
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After birth, cardiomyocytes (CM) acquire numerous adaptations in order to efficiently pump
blood throughout an animal’s lifespan. How this maturation process is regulated and coor-
dinated is poorly understood. Here, we perform a CRISPR/Cas9 screen in mice and identify
serum response factor (SRF) as a key regulator of CM maturation. Mosaic SRF depletion in
neonatal CMs disrupts many aspects of their maturation, including sarcomere expansion,
mitochondrial biogenesis, transverse-tubule formation, and cellular hypertrophy. Main-
tenance of maturity in adult CMs is less dependent on SRF. This stage-specific activity is
associated with developmentally regulated SRF chromatin occupancy and transcriptional
regulation. SRF directly activates genes that regulate sarcomere assembly and mitochondrial
dynamics. Perturbation of sarcomere assembly but not mitochondrial dynamics recapitulates
SRF knockout phenotypes. SRF overexpression also perturbs CM maturation. Together, these
data indicate that carefully balanced SRF activity is essential to promote CM maturation
through a hierarchy of cellular processes orchestrated by sarcomere assembly.
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dult cardiomyocytes (CMs) generate forceful contractions

billions of times during the lifespan of an adult human.

Specialized features that adapt CMs for this unique
activity include their large rod-like shape, nearly crystalline sar-
comere organization, robust oxidative metabolic capacity,
expression of mature sarcomere gene isoforms, exit from the cell
cycle, and an extensive network of transverse tubules (T-tubules),
which are plasma membrane invaginations that facilitate syn-
chronized calcium release!2. In contrast to adult CMs, these
specialized features are absent or underdeveloped in fetal and
neonatal CMs, which are smaller, proliferative, glycolytic cells
with less organized sarcomeres, fewer and smaller mitochondria,
and no T-tubules. The dramatic transition between fetal and adult
phenotypes, termed CM maturation, occurs in the first few weeks
following birth (approximately PO-P21) in mice. Little is known
about the signals and transcriptional machineries that coordinate
CM maturation. Likewise, it is unclear if the maintenance of
maturity is regulated by the same or distinct mechanisms.

Understanding CM maturation is critical to answering many
major questions in cardiac biology. Because CM maturation is
essential to establish proper heart functions in adults, aberrations
in CM maturation could result in or exacerbate cardiomyo-
pathies. Maturation may also be disturbed by abnormal hemo-
dynamic loads due to congenital heart malformation, which may
impact outcomes in congenital heart disease patients. CM
maturation is associated with the loss of CM regeneration capa-
city, which occurs in the first week after birth in mice’. CM de-
maturation, often referred as CM dedifferentiation, is likely to be
important for CM regeneration>=. Finally, improved under-
standing of normal CM maturation mechanisms is required for
us to better harness the therapeutic potential of stem cell-derived
CMs, which is currently limited by our inability to mature them!.

CM maturation studies have been held back by technical
challenges. Because fully mature CMs cannot be induced or
maintained in in vitro cell culture systems, these approaches are
not ideal to study CM maturation. Progress using in vivo models
has been slow and expensive, due to the time required to produce
and mate genetically modified mouse models for each candidate
gene. Moreover, studies in mice with organ-wide gene mod-
ifications have been confounded by secondary effects, such as the
de-maturation-like phenotypes of heart failure®. We recently
established an adeno-associated virus (AAV)-mediated CRISPR/
Cas9-based somatic mutagenesis system (CASAAV) that pro-
vided a robust platform to study CM maturation in vivo®’
(Supplementary Fig. la). CASAAV allows quick generation of
loss-of-function mutations of a given gene specifically in neonatal
CMs. Importantly, through AAV titration, this method can easily
generate genetic mosaics®®, which allows cell-autonomous gene
functions to be probed while circumventing the confounding
secondary effects of organ-wide dysfunction.

In this study, we perform a CASAAV-based screen and iden-
tified serum response factor (Srf) as a key regulator of CM
maturation. Genetic mosaic analysis of SRF depletion and over-
expression show that SRF is a stage-specific, dosage-sensitive
regulator of CM maturation. Furthermore, we identify a hierarchy
of maturation processes, in which sarcomere maturation was
required for morphological maturation but mitochondrial bio-
genesis was not.

Results

CASAAYV-based screen for T-tubule maturation factors in vivo.
Reasoning that CM maturation may be regulated by factors that
also regulate CM differentiation, we studied nine transcriptional
regulators of CM differentiation (Gata4, Gata6, Mef2a, Mef2c,
Teadl, Srf, Tbx5, Nkx2.5, and Teadl) as candidate maturation

factors (Supplementary Fig. 1b). We performed CASAAV-based
mutagenesis of each factor in postnatal day 1 (P1) CMs and
assessed the impact on T-tubule formation in 1-month-old
hearts. In situ T-tubule imaging and quantitative analysis by
AutoTT?, a software that objectively quantifies T-tubule contents
by normalizing T-tubule patterns to cell morphology®®10,
revealed that AAV directed against Srf was the only treatment
that caused T-tubule defects (Supplementary Fig. 1c, d). Among
the remaining candidates, we had previously validated effective
GATA4, NKX2-5, and TEAD1 CASAAV-mediated depletion®”.
Here we also validated successful depletion of SRF and GATA6
by CASAAV (Supplementary Fig. le, f), and we confirmed the
dispensable role of TBX5 in T-tubule formation using a well-
established Tbx5-floxed allele!! (Supplementary Fig. 1g). Toge-
ther, these data demonstrate a unique role of Srf in CM
maturation.

Genetic mosaic SRF depletion in CMs. Ablation of Srf by con-
ventional conditional knockout (KO) technologies causes lethal
dilated cardiomyopathy!?-14, which generates secondary effects
of heart stress that confound analysis of SRF functions in phy-
siological conditions, such as CM maturation. To solve this
problem, we used an AAV vector (AAV-cTNT-Cre, or AAV-Cre)
615 to specifically deliver Cre recombinase into CMs in mice with
well-characterized floxed Srf alleles (Srf*/F)!2. Injection of a high
(1x101%ygg~1) or intermediate (5x 10°vgg~!) dose of AAV-
Cre into P1 Srft/F mice triggered lethality and acute cardiomyo-
pathy characterized by heart failure, ventricular dilatation,
fibrosis, and the up-regulation of cardiac stress markers Nppa and
Nppb (Fig. 1a-d). This is consistent with previous findings that
Srf is essential for proper heart function!®1617, We next titrated
down the dose of AAV-Cre to 5x 108 vgg~!, which generated
mosaic Srf inactivation in <15% CMs while maintaining normal
heart morphology and function (Fig. la-d). This mosaic KO
strategy opens the door to study the cell-autonomous role of Srf
in CM maturation while minimizing confounding effects of heart
dysfunction.

We generated Srft’F;RosatP’/FP (KO) and Srf/*;RosafP/FP
(control (CTRL)) mice that harbored Cre-inducible fluorescent
protein (FP) reporters (either Cas9GFP, tdTomato, or mTmG, see
Fig. le), which were essential to identify and purify Cre-activated
CMs in the mosaics. Comparison of SRF immunostaining to FP
expression in Srf7/F;RosafP/FP mice indicated that 85-90% of FP-+
CMs lacked SRF, compared to only 10% of FP— CMs (Fig. le).
Quantitative reverse transcription-polymerase-chain reaction
(RT-qPCR) and RNA-sequencing (RNA-seq) analyses of FP+
CMs that were purified by flow cytometry (fluorescence-activated
cell sorting (FACS)) indicated ~60% Srf depletion in Srf/F CMs
as compared to Srff/+ CMs (Fig. 1f). This efficiency was slightly
lower than the anticipated 85-90% accuracy of the FP reporters as
determined by immunostaining (Fig. le), which likely reflects
imperfect FACS performance in sorting large CMs. These data
indicated that FP reporters were useful surrogate markers to
identify and enrich AAV-Cre-infected CMs.

Stage-specific role of SRF in CM maturation. We first analyzed
the impact of SRF depletion on key morphological hallmarks of
maturation in actively maturing CMs by injecting AAV-Cre into
P1 mice (neonatal KO) and analyzing 1 month later. Consistent
with the CASAAV-based loss-of-function screen (Supplementary
Fig. 1d, e), neonatal Srf KO caused dramatic T-tubule loss in FP+
Srf/F CMs as compared to FP— CTRLs (Fig. 2a). This result was
further validated by immunofluorescent staining of key T-tubule
markers JPH2 and CAV3 on isolated CMs (Supplementary
Fig. 2a). In situ imaging revealed decreased CM size (Fig. 2a) in

2 | (2018)9:3837 | DOI: 10.1038/541467-018-06347-2 | www.nature.com/naturecommunications


www.nature.com/naturecommunications

NATURE COMMUNICATIONS | DOI: 10.1038/s41467-018-06347-2

ARTICLE

a
SrffF-RosaPFP
100 T
n=20
80
= AAV Dose
X
=~ 60 Low (L)
g n=9 :
§ 40 Mid (M)
) _ — High(H)
20 =5
0 5 10 15 20 25 30
Postnatal day
C

Sn(F/»L,.RosaTom/Tam

SrfF/F’.HosaTom/Tom

b Lvips

Low Mid
7 . R

Fast Green

€  FP=Cas9GFP
= CcAG Caso(P2A) EGFP = ® CAG

FP =tdTomato

FP = Cas9GFP

FP = tdTomato

GFP-A

GFP-A
Tomato-A

SSC-A

SSC-A

Low Mid

FP =mTmG
(Tomato == ™8 CAG =3 mTomato m-GFP =

FP =mTmG

Tomato-A

LVID;d
(mm) (mm) FS (%)
5r wx B 60
*kk
5 - .
4 40+
3
2 20t o
1
0 0
LM LM
Fi+ FIF
d
Nppa Nppb
30 . 12 -
g 25 110
f
82 8
o
g 15 6
< 10 4
o
E 5 2
0 0
LM LM LM LM
F/+ F/F F/+ /F
100 W SRR
9 80
=
3 60
°
2 40
S
o
2 20
0
G- G+ T- T+ mT+ mG+

FP =Cas9GFP  FP =tdTomato FP =mTmG

FACS-RT-gPCR

1.0

0.8

0.6

047

0.2 I
ol = ®WP-

P1>P14 P60>P90

FACS-RNA-Seq
0

Sif fold change

Srfread counts (RPKM)

P1»P14 P60» P90

Fig. 1 Mosaic knockout of Srf circumvents disruption of global heart function. a Survival curve of Srf”f;Rosaff/fP mice treated with low, mid, and high doses
of AAV-Cre at P1. b Effect of AAV-Cre dosage on heart function and chamber size at P30. Left ventricle (LV) function and size were assessed
echocardiographically by measuring the LV fractional shortening (FS) and internal diameter at end systole (LVID;s) and diastole (LVID;d). n=5 per group.
c Effect of AAV-Cre doses on myocardial fibrosis. Fibrosis was measured from heart sections stained with sirus red (top) or wheat germ agglutinin (WGA,
bottom). The fraction of FP+ cells in heart sections was quantified and labeled in white. d RT-gPCR analysis of cardiac stress marker expression from heart
ventricles. n = 4 per group. e Representative images of SRF immunofluorescence in FP+ and FP— Srff/F;RosafP/fP CMs that were isolated from the same
heart. Arrows point to SRF-FP+ nuclei. Quantification was shown to the right. n = 3 hearts. f Representative FACS plots and gating to sort FP4+ CMs (left)
and measurement of Srf expression in FACS-sorted FP4+ CMs (right) by RT-gPCR and RNA-seq. AAV-Cre was injected at P1 and CMs analyzed at P14, or
AAV-Cre was injected at P60 and CMs analyzed at P90. n = 3 hearts. Bar plots show mean £ SD and are overlaid by dot plots of individual data. Two-tailed
Student's t test: *P< 0.05, ***P < 0.001. F/+: Srf/*+. F/F, SrfF/F. Scale bar, 20 um

neonatal Srf KO CMs, which was confirmed by measuring CM
cross-sectional area (Supplementary Fig. 2b). ACTN2, a sarco-
mere Z-line marker, retained a grossly normal, striated sarcomere
pattern in SRF-depleted CMs, although aberrant longitudinal
ACTN2 localization could be observed between some Z-lines (red
arrows in Fig. 2b). The distance between Z-lines also decreased in
mutant CMs (Fig. 2b). We next FACS-sorted FP+ CMs and

performed electron microscopy (EM; Supplementary Fig. 2c),
which confirmed grossly normal myofibrillar striations in FP+
Srft’F CMs and uncovered a significant reduction of myofibril
numbers as compared to FP+ Srff/t CMs (Supplementary
Fig. 2d). EM also revealed loss of the M-line, a hallmark of
maturation, and the formation of bulged Z-lines (Supplementary
Fig. 2e), which were consistent with the longitudinal

NATURE COMMUNICATIONS | (2018)9:3837 | DOI: 10.1038/541467-018-06347-2 | www.nature.com/naturecommunications 3


www.nature.com/naturecommunications
www.nature.com/naturecommunications

ARTICLE

NATURE COMMUNICATIONS | DOI: 10.1038/s41467-018-06347-2

AAV-Cre —>»P1 ——> P30 —> Analysis

a S”F/F.RosaaSQGFP , Total T-tubule

elements (%)

< 10
@ ” *kk
<
= 8
[T
6 -
4 -
< O
©
T 2 -
+3
=3
CEN®) 04 n=54 n=54
GFP - +
b actn2  Enlarge Regularity ~ Spacing (um)
1.0 2.5
(0.14)
+ *kk
o 0.8 2.0
i Qo
0.6 1.5
0.4 1.0
o 0.2 0.5
o
@ 0 {n=385n=35 0 {n=35n=35
SRF + - + -
C  Cellarea Cell length Cell width
(x10° pm?) (um) (um) Length:Width

3.0 1
2.5 1
2.0 1

35 30
1.5 1
1.0

*kKk
** | 30 25 ]
25 20 -
20

15

15_ Kk
104 ‘ 10
051 5 5 -

AAV-Cre —> P60 — > P120 —> Analysis

e SrfF/F;RosaCas?GFP Total T-tubule

elements (%)

gi 10 1 *kk
<
= 81
[T
6 4
4 4
<o
o LwE
30 2
=8
Lo 04 n=66 n=66
GFP - +
f Enlarge Regularity Spacing (um)
ey N 1.0 (093] 2.5
Lt : 0.8 2.0 (0.98)
[
%]
E 06 i 1-5 1
|
a 0.2 0.5
%]
0_n=I30n=l30 0_n=I30n=I30
SRF + - + -
Cell area Cell length Cell width
(x10%um?) (um) (um) Length:Width
5 250 50 15 4
(0.88) *
4+ « | 200 40
10 4
3 150 30
2 100 20
00 5
14 50 10 H
0-{n=54n=54 0 - n=54n=54 0 -{n=54n=54 0-{n=54n=54

04{n=53n=53 0-4n=53n=53|] Q{n=53n=53 Q0 -{n=53n=53
T T

SRF + - + - + - + -
d =

g 19

2

=

'g’ 1.8

kS

Iy

g 1.7

[*]

o

©

» 16!

0 1 2
Time (s)

Relaxed sarco. Contracted sarco.

Fractional

length (um) length (um) shortening (%)
2.0 H *x | 2.0 (0.47) | 25
a2 4 ®
1.5+ 1.5 4
*%*
15
1.0 - 1.0 H
10 1
0.5 | 0.5 5
00— n=27 n=30 0—{ n=27 n=30 04 n=27
FP - + - + Z +

ACTN2 staining observed in SRF-depleted CMs (Fig. 2b). Geo-
metric analysis of isolated CMs showed that Srf ablation dra-
matically decreased projected cell area and cell width, but cell
length was only slightly reduced, resulting in strikingly increased
length:width ratio (Fig. 2c). Thus, hypertrophic growth of
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maturing CMs is blocked in the absence of SRF. Terminal
deoxynucleotidyl ~ transferase =~ dUTP  nick-end labeling
(TUNEL) analyses did not label Srf KO CMs, suggesting that their
severe phenotypes are not due to cell death (Supplementary
Fig. 2f).
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Fig. 2 Srf plays a profound role in CM maturation but not the maintenance of CM maturity. a=d Mosaic depletion of Srf in neonatal CMs in vivo resulted in
dramatic defects in T-tubule organization (a), sarcomere organization (b), maturational hypertrophic growth (¢), and contraction (d). e=h Srf ablation in
adult CMs had a minor impact on T-tubule organization (e), sarcomere organization (f), maturational hypertrophic growth (g), and contraction (h). a, e
Representative in situ images of T-tubules that were labeled by membrane dye FM 4-64 and quantified by the AutoTT software®. Scale bar, 20 pm. b, f
Confocal images of ACTN2-immunostained isolated CMs, demonstrating organization of sarcomere z-lines. Red arrowheads point to abnormal

ACTN2 staining that extends between z-lines. Regularity was measured by AutoTT and Z-line spacing measured manually. ¢, g Quantification of the size
and morphology of isolated CMs. d, h Measurement of CM contractility. Isolated CMs were paced at 1Hz. Bright-field images were acquired and then
analyzed using SarcOptiM8. In violin plots, white circles show the medians, box limits indicate the 25th and 75th percentiles, whiskers extend 1.5 times the
interquartile range from the 25th and 75th percentiles, and polygons represent density estimates of data and extend to extreme values. Two-tailed
Student's t test: *P < 0.05, **P < 0.01, ***P <0.001. Non-significant P values are labeled within parentheses

To assess the role of Srf in the maturation of CM physiological
activity, we next assayed CM contractility and Ca?* transients
following neonatal SRF depletion. Bright-field live imaging of
electrically paced CMs was performed to measure sarcomere
contraction and relaxation'® (Supplementary Fig. 3a). In mutant
cells, we observed dramatically lower sarcomere fractional
shortening and relaxed sarcomere length (Fig. 2d), consistent
with sarcomere measurements made in fixed and relaxed CMs
(Fig. 2b). In contrast, contracted sarcomere length was preserved
in mutant CMs (Fig. 2d). We also tested Ca?t handling by
recording confocal line scans of electrically paced CMs loaded
with the Ca?*-sensitive dye Fluo-4 (when FP was tdTomato) or
Rhod-2 (when FP was Cas9GFP). The mutant cells displayed
reduced Ca?T transient amplitude and prolonged time to peak
Ca®* signal (Supplementary Fig. 3b), consistent with the T-tubule
defects (Fig. 2a). Together, these data show that Srf is essential for
functional maturation of CMs, in part through its role in
morphological maturation.

SRF depletion could trigger the above phenotypes through
either perturbation of a specific CM maturation program or
disruption of the maintenance (or homeostasis) of CM maturity.
To distinguish these two mechanisms, we next injected AAV-Cre
into adult (P60) animals to induce adult-specific Srf inactivation
in CMs (adult KO). RT-qPCR and RNA-seq revealed similar Srf
depletion efficiencies between neonatal and adult KO models
(Fig. 1f). Strikingly, adult-specific depletion of SRF in CMs
resulted in minor defects in T-tubule organization (Fig. 2e),
sarcomere organization (Fig. 2f), and CM area, length, width, and
length:width ratio (Fig. 2g). Adult KO did not change relaxed
sarcomere length (Fig. 2h) or time to peak Ca?t signal
(Supplementary Fig. 3b) in electrically paced CMs. However,
adult KO did reduce CM fractional shortening as a result of
increased contracted sarcomere length (Fig. 2h), and decreased
Ca®*t transient amplitude (Supplementary Fig. 3b). Together,
these data demonstrate a profound and stage-specific role of Srfin
CM maturation.

Stage-specific transcriptomic regulation by SRF. To determine
the mechanisms by which Srf regulates CM maturation, we
profiled transcriptome changes in both neonatal and adult SRF
KO models by RNA-seq. In the neonatal KO model, AAV-Cre
was delivered at P1, and CMs were analyzed at P14. In the adult
KO model, AAV-Cre delivery and CM analysis occurred at P60
and P90, respectively. In both models, Srf/F (KO) and Srff”
T(CTRL) FP+ CMs were FACS-purified before RNA extraction;
RNA-seq libraries were prepared using a protocol designed for
low RNA input (Fig. 3a)!%. Principal component analysis (PCA)
showed clear separation between CTRL and KO groups in both
neonatal and adult models (Supplementary Fig. 4a). We identified
999 down-regulated genes and 787 up-regulated genes in neo-
natal Srf KO (adjusted P value <0.05; Supplementary Fig. 4b). By
contrast, using the same statistical threshold, adult Srf KO only

caused down-regulation and up-regulation of 164 and 148 genes,
respectively (Supplementary Fig. 4b). PCA better separated CTRL
and KO in neonatal as compared to adult stage (Fig. 3b). The
differentially expressed genes were weakly correlated (r= 0.426;
Fig. 3c) between neonatal and adult stages. Only 6.2% of all
down-regulated genes (68 genes) were down-regulated in both
models (Fig. 3d). Thus, Srf regulates transcription in a
maturation-specific manner.

We performed gene set enrichment analysis (GSEA)? to
identify the major biological processes downstream of Srf. In the
neonatal KO model, the major gene ontology (GO) terms
enriched among down-regulated genes were related to oxidative
phosphorylation and mitochondria (Fig. 3e). Key regulators of
mitochondrial biogenesis (Ppargclb, Rxrg), mitochondria
dynamics (mitofusin 1 (Mfnl), mitofusin 2 (Mfn2), Opal), and
mitochondrial transcription (Tfam, Tfb1m) were down-regulated
upon neonatal KO (Fig. 3f). Upstream regulator analysis by
Ingenuity Pathway Analysis (IPA) also identified key mitochon-
drial biogenesis regulators Insr, Ppargcla, and Esrra (Supple-
mentary Fig. 4c). The profound role of SRF in mitochondria and
respiration in the neonatal KO model is striking, because this was
not noted in previously reported models where disrupting Srf
signaling mainly disrupts genes related to heart development and
the sarcomere/actin cytoskeleton!>1421-24 Indeed, heart devel-
opment and muscle cell differentiation were the major down-
regulated GO terms in adult Srf KO models (Supplementary
Fig. 4d); mitochondria-related and metabolism-related genes
were not enriched in adult Srf KO (Fig. 3e, f). These data indicate
a unique stage-specific role of Srfin mitochondrial and metabolic
maturation.

To further validate the role of Srf in mitochondrial
maturation, we performed EM on neonatal Srf KO and CTRL
CMs (Supplementary Fig. 5a, b). We observed a dramatic
reduction of mitochondrial size and number in the Srf KO cells.
Mitochondrial DNA, transcription, and protein components
were also decreased in FACS-sorted FP+ Srff/F CMs (Supple-
mentary Fig. 5c—e). However, in situ imaging of CMs that were
labeled by tetramethylrhodamine (TMRM), a mitochondrial
membrane potential indicator, was unperturbed in FP+ Srft’F
CMs, suggesting retained mitochondria quality in neonatal Srf
KO CMs (Supplementary Fig. 5f).

We next examined the expression of genes regulating
sarcomere assembly and Ca?T handling. Strikingly, in contrast
to an expected down-regulation of most sarcomere gene321, we
observed both up-regulation and down-regulation of sarcomere
genes (Fig. 3g). Down-regulation of core sarcomere components
such as Actcl, Myh6, and Myl3 explained the sarcomere assembly
defects in neonatal KO model (Fig. 2b). The up-regulation of Z-
line components Actn2, Tcap, and Csrp3 (Fig. 3g) was consistent
with the excessive Z-line patterns found in neonatal KO model
(Fig. 2b). These genes were also differentially expressed in the
adult KO model where there was no detectable sarcomere
disorganization (Fig. 2f), which suggested that the abundance of
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Fig. 3 Maturation-specific transcriptional regulation by SRF. a Experimental design. Mosaic SRF depletion was induced at neonatal or adult stages.
Transduced CMs were FACS-purified and analyzed by RNA-seq. b PCA plot of RNA-seq results (also see Supplementary Fig. 4a). ¢ Comparison of gene
expression changes in neonatal or adult Srf ablation. The fold changes (KO/CTRL) of differentially expressed genes (P value <0.05) in neonatal or adult KO
models were plotted. r=Pearson's correlation coefficient. Red arrow points to Srf, which was similarly depleted in both models. d Venn diagram of down-
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these sarcomere gene transcripts is not limiting for maintenance
of sarcomere organization in adult CMs. Notably, mature
myofibrillar isoforms, including Myh6, Tnni3, Myl2 and Myi3,
were down-regulated in neonatal Srf KO CMs, and the
corresponding immature isoforms, Myh7, Tnnil, Myl7, and

Myl4, were up-regulated (Fig. 3g, highlighted genes). This
strongly suggests a key role of Srf in myofibrillar isoform
switching, a critical transcriptional maturation hallmark!. We
also observed down-regulation of Atp2a2, Slc8al, Ryr2 and up-
regulation of Cacnalc (Fig. 3h), which likely contributed to Ca®*+
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handling defects in addition to the T-tubule phenotypes.
Interestingly, we observed up-regulation of Hcn4 (Fig. 3h), an
ion channel that is specifically expressed in immature CMs?°.

Selective chromatin binding by SRF in maturing CMs. In order
to map SRF chromatin occupancy, we generated a knock-in allele
of Srf that was fused to a biotin acceptor peptide (BIO tag) at the
carboxyl-terminus (Srf?"%; Supplementary Fig. 6a). BIO is speci-
fically biotinylated by the Escherichia coli biotin ligase BirA,

which was expressed from the Rosa2654 allele?®. In hearts
containing both alleles, SRF was biotinylated so that it could be
efficiently pulled down on immobilized streptavidin (Fig. 4a and
Supplementary Fig. 6b). This system allowed us to pull-down
SRF-associated chromatin in the heart in a highly sensitive and
specific manner, circumventing the caveats of antibody-based
chromatin  immunoprecipitation?’.  We performed next-
generation sequencing of SRF co-precipitated DNA (bioChIP-
seq) and identified SRF binding sites in the genome. At P14 and
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Fig. 4 Stage-specific SRF chromatin occupancy determines its maturation-specific regulation of gene expression. a SRF bioChIP-Seq at P14 and adult stages
identified chromatin regions bound by endogenous SRF in hearts. These regions were grouped into maturation-specific elements (MEs) uniquely present at
P14, and constitutive elements (CEs) found at both P14 and adult stages, and adult-only elements. b SRF bioChlIP-seq signal on CEs and MEs. Each row
shows SRF signal of a genomic region centered on a CE or ME and extending 1kb upstream and downstream. Plots below show average signal at these
regions. € GO term analysis of genes associated with CEs or MEs. d Distance of SRF-bound regions to the nearest transcriptional start site (TSS) for peaks
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adult stages, we obtained two biological replicates of SRF
bioChIP-Seq data. There was very high correlation (r>0.95)
between biological repeats (Fig. 4b and Supplementary Fig. 6¢, d).
The SRF DNA-binding motif (the CArG motif) was the top
sequence recovered by de novo motif finding (Supplementary
Fig. 7a), which further validated the efficacy of this method.

BioChlIP-seq identified 31,301 and 6792 high-confidence (P <
1x107°) peaks at P14 and adult stages, respectively (Supple-
mentary Fig. 6¢). Among all SRF-bound regions found at P14,
24,695 (78.9%) were uniquely identified at P14 and termed
maturation-specific SRF-bound elements (MEs) (Fig. 4a). By
contrast, 6606 (21.1%) of P14 regions were also identified in adult
CMs. These constitutive SRF-bound elements (CEs; Fig. 4a)
composed 97.3% of adult SRF-bound regions. Interestingly, SRF
elements with the highest occupancy signal were most likely to be
retained in adult heart at CEs, with 83% of the P14 regions in the
highest SRF occupancy signal decile being CEs (Fig. 4b and
Supplementary Fig. 7b). However, genes regulating major heart
functions such as heart development, myofibril assembly, and
metabolism were more enriched neighboring MEs compared to
CEs (Fig. 4c). Together, these data indicate that postnatal CM
maturation is accompanied by loss of developmental SRF binding
to chromatin, which likely explains SRF maturation-specific
transcriptional regulation (Fig. 3).

We further characterized the properties of MEs compared to
CEs. Analysis of the location of SRF sites with respect to
transcriptional start sites (TSSs) showed that more than 20% of
MEs and more than 60% of CEs are proximal to promoters.
Considering that promoters occupy <1% of the genome, these
data represent substantial enrichment of SRF occupancy near
promoters for both MEs and CEs. As compared to CEs, more
ME:s are distal to promoters (TSS + 1000 bp) (Fisher’s exact test:
P<10716 Fig. 4d). We also performed motif analysis on
proximal or distal CEs and MEs with the strongest SRF
occupancy signal (top 1000 per group; Fig. 4e). MEs and CEs
showed a similar overall motif enrichment pattern when
compared to randomly permuted background. However, different
sets of motifs were enriched in proximal vs. distal regions.
Enriched distal co-motifs included MEF2, GATA, and TEAD,
whereas enriched proximal co-motifs included MEF2, SP1, KLF,
and ETS (Fig. 4e). Consistent with these data, physical interaction
of SRF with GATA, TEAD, KLF, and ETS family proteins has
been reported previously?8-31, An analysis of differential motif
enrichment between MEs and CEs showed that both proximal
and distal CEs were more enriched for the SRF motif than MEs.
Distal MEs were significantly more enriched for MEF2 and
GATA motifs. Consistent with this observation, SRF binding sites
in P14 hearts overlapped with 35% GATA4 binding sites and 37%
MEF2A binding sites that were previously identified by ChIP-seq
in the HL1 cardiac muscle cell line?” (Supplementary Fig. 7c).
These findings imply that SRF collaboration with MEF2 and
GATA family members is a potential mechanism that regulates
CM maturation.

Next, we evaluated the relationship between P14 and adult
chromatin occupancy and differential gene expression. Genes
down-regulated in neonatal but not adult SRF KO were defined as
maturation-specific Srf-regulated genes (MGs), and genes down-
regulated in both models were defined as constitutively Srf-
regulated genes (CGs). A large majority of both MGs (657 of 931,
70.5%) and CGs (46 of 68, 67.6%) neighbored an SRF-bound
region, suggesting that they were directly activated by Srf. We
noted that mature sarcomere isoforms Myh6, Myl3, Myl2, and
Tnni3 were highly down-regulated in Srf KO, whereas their
immature counterparts (Myh7, Myl4, Myl7, and Tnnil) were not
(Fig. 3g). Interestingly, these four mature sarcomere isoform
genes, but not their immature paralogs, were associated with

strong SRF occupancy near their promoters (Fig. 4f). We
investigated more broadly the relationship of SRF occupancy
signal and TSS distance to differential gene expression. For MGs,
both SRF occupancy signal and proximity to TSS were associated
with the fraction of adjacent genes that were down-regulated with
Srf KO; indeed, 78.2% (514/657) of all SRF-regulated MGs had
SRF binding in the top six deciles and within 10kb of the TSS
(Fig. 4g). By contrast, this relationship was not observed for up-
regulated genes (Supplementary Fig. 7d). Together, these data
suggest that the widespread loss of SRF occupancy and reduction
of SRF binding strength during CM maturation directly
contribute to the maturation specificity of SRF-mediated
transcriptional regulation.

Hierarchical regulation of CM maturation by SRF. To connect
SRF-based transcriptional regulation with morphological and
functional phenotypes that were observed in SRF-depleted cells
(Fig. 2), we next studied the roles of direct SRF downstream genes
in CM maturation. Mitochondrial fusion regulators Mfnl1/2 are
essential for heart development at perinatal stages®2. SRF bound
to both proximal and distal regions near Mfn1/2 in a maturation-
specific manner (Fig. 5a). In the neonatal Srf KO model, Mfnl
and Mfn2 were down-regulated (Fig. 3f) and mitochondrial size
decreased (Supplementary Fig. 5a), a typical phenotype of
defective mitochondrial fusion. Therefore, we hypothesized that
Mfnl1/2 were direct SRF targets that played a key role in CM
maturation.

To probe the cell-autonomous contribution of Mfnl1/2 on
CM maturation, we inactivated Mfnl/2 in a small fraction
(~15%) of CMs by injecting low-dose AAV-Cre-P2A-GFP
(CRE) or AAV-GFP (CTRL) into P1 Mfn1¥/£;Mfn2F/F;Rosa™*
Dendra2 mjce (Fig. 5b), which harbored well-characterized floxed
alleles of Mfn1/233. FACS-sorted AAV-transduced Dendra/GFP
+ CMs exhibited depletion of MfnI and Mfn2 RNA and protein
in the CRE group compared to CTRL group (Fig. 5c).
Mitochondria fusion defects in the mutant CMs were further
validated by decreased mitochondria size through EM analysis
(Fig. 5d). Surprisingly, MFN1/MFN2-depleted CMs exhibited
very mild T-tubule disorganization and no detectable disrup-
tion of TMRM labeling, sarcomere organization, cell size, or
shape (Fig. 5e-h). To further confirm this result, we over-
expressed DRP1, a key activator of mitochondrial fission®4,
through AAV-based gene transfer in neonatal CMs (Supple-
mentary Fig. 8a, b). This approach up-regulated DRP1 by more
than 10-fold (Supplementary Fig. 8c) and decreased mitochon-
dria size (Supplementary Fig. 8d). Despite these strong
perturbations to mitochondrial dynamics and morphology, we
observed very mild effects on mitochondria membrane
potential, T-tubule formation, sarcomere organization, cell
size, and shape (Supplementary Fig. 8e-h). These findings are
consistent with our recent study of Tfam3>, a critical
mitochondrial transcription factor that was down-regulated
upon SRF depletion (Fig. 2f), as well as a recent DRP
overexpression study using transgenic mice3°. The striking
difference between our mosaic analyses and previous organ-
wide ablation of Mfn1/2 in CMs suggests that secondary effects
of heart failure confounded studies of organ-wide Mfnl/2
cardiac KO32. Together, our data indicate a minor role of
mitochondrial dynamics in other aspects of CM maturation.

Another key facet of CM maturation downstream of Srf was
sarcomere assembly. Therefore, we next probed the contribution
of sarcomere assembly to overall CM maturation. We inactivated
Myh6, a direct Srf target (Figs. 3g and 4f) that composed the
majority of myosin heavy chains in mature myofibrils, by
CASAAV. At P1, we delivered the CASAAV virus, containing
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Fig. 5 Mfn1 and Mfn2 play a minor role in CM maturation. a SRF bioChlIP-seq signal showed proximal and distal chromatin binding near Mfn1 and Mfn2
genes specifically in actively maturing CMs. b Experimental design of mosaic, neonatal depletion of both MFN1 and MFN2. ¢ Depletion of Mfn1 and Mfn2
mRNA (left) and protein (right) in FACS-sorted GFP/Dendra2+ CMs at P14. Mfn1 and Mfn2 mRNA expression was measured by RT-gPCR. MFN1 and

MEFN2 protein expression was measured by Western blotting. d FACS-EM analyses showed decreased mitochondria size upon Mfni1/2 depletion. e Effect of
MFN1/2 depletion on mitochondrial organization. In situ imaging of TMRM staining. f Effect of MFN1/2 depletion on T-tubule morphology. In situ T-tubule
imaging was quantified by AutoTT. g Effect of MFN1/2 depletion on sarcomere organization. h Effect of MFN1/2 depletion on cell size and geometry. Violin
plots are described in Fig. 2. Non-significant P values are shown within parentheses. Bar plots show mean = SD and are overlaid by dot plots. Scale bar, 20

pm. Two-tailed Student’s t test: *P < 0.05, ***P < 0.001

two CgRNAs targeting Mpyh6 sites separated by 79bp, to
RosaCas9GFP mjce (Fig. 6a). This resulted in detectable deletion
of the 79 bp fragment (Fig. 6a). We titrated the dose to achieve
mosaic MYH6 ablation without impacting heart contraction.
Depletion of Myh6 mRNA and protein was further validated by
FACS-RT-qPCR and immunostaining, respectively (Fig. 6b, c).
MYH6 ablation caused complete disassembly of sarcomeres
(Fig. 6d) as well as dramatic defects in maturational hypertrophy,
T-tubulation, and mitochondrial organization (Fig. 6e-g).
Together, these data show that sarcomeres are core organizers
of other aspects of CM maturation. The diverse CM maturation
events are orchestrated in a hierarchical manner that requires
myofibrillar maturation.

Balanced SRF activity is essential for CM maturation. Given the
profound impact of Srf on CM maturation, we wondered whether
activating Srf was sufficient to promote CM maturation. To
answer this, we overexpressed SRF in neonatal CMs through
mosaic AAV-mediated gene delivery (Fig. 7a). GFP over-
expression was used as CTRL. This approach up-regulated Srf by

~8-fold in transduced CMs, as measured by FACS-RT-qPCR.
Nuclear accumulation of SRF was validated by immuno-
fluorescence (Fig. 7b). Strikingly, SRF overexpression dramati-
cally disrupted T-tubule formation, maturational hypertrophy,
sarcomere  organization, and mitochondria  distribution
(Fig. 7c-f).

We next analyzed transcriptomic changes by administering a
mosaic dose of either AAV-SRF-P2A-GFP or AAV-GFP,
purifying transduced GFP+ CMs by FACS and then performing
RNA-seq. SRF overexpression up-regulated 1285 genes (Fig. 8a).
Interestingly, very few of these genes (1.7%) overlapped with
genes down-regulated by SRF KO (Fig. 8b). By GSEA analysis,
vasculature development and angiogenesis were the major up-
regulated GO terms in SRF overexpressing CMs (Fig. 8c).
Consistent with this observation, the up-regulated genes included
markers of endothelial cells, smooth muscle cells, and fibroblasts
(Fig. 8d). Through an independent IPA analysis, we also
identified the activation of inflammatory signaling pathways
involving transforming growth factor-f1, interferon-y, tumor
necrosis factor, and interleukin-6. (Fig. 8e). Thus, SRF over-
expression causes ectopic gene activation that should not be
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Fig. 6 Sarcomere assembly is essential for other aspects of CM maturation. a CASAAV ablation of Myhé. Dual gRNAs targeting the first coding exon of
Myh6 gene induced Cas9-mediated deletion of the intervening genomic region when delivered to P1 CMs using the CASAAV system. Deletion validation
and phenotypic analyses were performed at P14 and 1 month after injection, respectively. Deletion was monitored by RT-PCR. b Validation of Myh6
depletion. After CASAAV-based neonatal Myh6 mutagenesis, FACS-sorted GFP+ CMs at P14 were used to quantify Myh6é by RT-gqPCR. c Identification of
individual CMs with successful MYH6 depletion by myosin heavy chain (MYH) immunofluorescence staining (arrow). Cell boundaries were delineated by
dashed lines. The fraction of cells that were depleted of MYH was quantified to the right. d Sarcomere loss in CMs depleted of MYH6. After Myh6
CASAAYV, dissociated CMs were stained for ACTN2. Arrow points to a MYH-depleted CM. Boxed regions are enlarged to the right. @ MYH6 depletion
disrupted maturational hypertrophic growth of CMs. MYH6-depleted CMs were identified by immunostaining. f MYH6 depletion disrupted T-tubulation.
T-tubule organization was measured by in situ imaging and AutoTT quantification. Representative image shows defective T-tubules within a Cas9GFP+
cell. g MYH®6 depletion caused mitochondrial disorganization. Mitochondria were imaged in situ by TMRM staining. GFP— cells (no blue pseudocolor) had
highly organized arrays of mitochondria, unlike the mitochondrial staining pattern in GFP+ cells (arrow). Scale bars, 20 um in all images. Violin plots are
described in Fig. 2. Bar plots show mean +SD and are overlaid by dot plots. Numbers in bar indicate sample size. Two-tailed Student's t test: **P < 0.01,
***P<0.001

present in maturing CMs. Furthermore, SRF overexpression
caused dramatic down-regulation of metabolism and myofibril
genes (Fig. 8f, g), which explained the defects in morphological
maturation (Fig. 7). Together, these data indicate that SRF activity
must be carefully balanced for proper CM maturation.

Discussion

CM maturation is one of the least understood processes in heart
development. In this study, we performed a CRISPR/Cas9-based
screen in mice and identified SRF as a transcriptional regulator that
orchestrated almost every aspect of CM maturation. Using SRF as a
model molecule, we uncovered several critical principles that govern
CM maturation (Fig. 9): First, SRF regulated maturation only in
actively maturing, neonatal CMs through stage-specific chromatin

occupancy and transcriptional control. This implies the presence of a
unique, maturation-specific transcriptional regulation network that
was not recognized previously. Second, we showed that SRF sig-
naling needs to be tightly balanced for proper maturation. Both
hypo-activation and hyper-activation of SRF resulted in severe
transcriptional dysregulation that impacted sarcomere and mito-
chondria maturation. Third, the diverse maturation processes
downstream of SRF appear to be orchestrated in a hierarchical
manner. That sarcomere inactivation was sufficient to impair mul-
tiple facets of CM maturation suggests that myofibrillar maturation
is a dominant and essential process, and that sarcomeres are
core organizers of other aspects of CM maturation. However, our
data do not exclude additional direct roles of SRF in other
aspects of maturation, such as mitochondrial maturation.
Overall, this report provides direct demonstration of an essential
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and central role of sarcomeres in organizing the diverse programs of
CM maturation.

The new information acquired in this study provides potential
guidance to mature stem cell-derived CMs. For example, bio-
mechanical environments are known to influence the maturation
of CMs in vitro. Specifically, an intermediate stiffness of cell
culture matrix, mimicking the native mechanical environment,
was reported to be essential for CM maturation3”-38, SRF is a
well-established effector of mechanotransduction signaling in
response to matrix stiffness’>40; thus, an intermediate matrix
stiffness might promote CM maturation by establishing an
intermediate level of SRF activity. In addition, sarcomere disarray
is a common phenotype that is observed in CMs cultured in a
monolayer on an unpatterened substrate. Culture on micro-
patterned substrates*!~43 or within three-dimensional substrates
with directional tension**~47 improve sarcomere organization.
Our results demonstrate that organized sarcomere assembly is a
key organizer on top of the hierarchy of other CM maturation
processes. These results indicate that sarcomere organization
achieved by these engineered environments is essential to
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enhance all other aspects of CM maturation, and that optimiza-
tion of SRF signaling and sarcomere organization are likely to be
key mechanisms by which bioengineering approaches improve
maturation of stem cell-derived CMs. These insights promise to
allow us to use rationale approaches to further optimize the
maturation of stem cell-derived CMs.

SREF is a well-established cardiac TF that has been studied for
more than a decade in the heart. However, prior studies used
traditional conditional KO strategies that cause acute lethality and
cardiomyopathy!2-1416:48  Ag a result, the critical role of SRF in
CM maturation was overlooked. Here we establish AAV-based
genetic mosaic analyses as a key strategy to minimize con-
founding secondary effects of heart dysfunction. This generated
new information that significantly updated our prior under-
standing of the function of SRF in CMs. For example, although
we observed sarcomere defects that agreed with SRF’s previously
established function, neonatal and mosaic SRF KO exhibited
grossly normal striated myofibril patterns—a much milder phe-
notype than previously reported in SRF-depleted developing
hearts248, Prior studies found that SRF was required to activate
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Fig. 8 SRF overexpression perturbs the transcriptional program in maturing CMs. a SRF overexpression and control P14 CMs were FACS sorted and
analyzed by RNA-seq. MA plots showed dramatic transcriptional dysregulation. Significantly dysregulated genes (Padj < 0.05) were dots in red. b Up-
regulated genes upon SRF overexpression showed little overlap with genes down-regulated upon Srf KO at the same stage, as viewed by Venn diagram.
c Gene ontology terms enriched among genes up-regulated upon SRF overexpression. The GSEA normalized enrichment scores for the top 5 terms were
plotted. d Selected markers of endothelial cells (EC), smooth muscle cells (SMC), and fibroblasts (FB) that were up-regulated by SRF overexpression. e IPA
upstream regulator analysis showed up-regulation of inflammatory response pathways upon SRF overexpression. The color of the lines signifies the
expected direction of effect between two nodes. Blue represents predicted inhibition and orange represents predicted activation. Yellow signifies
inconsistency between the gene expression in the data set and the annotated relationship. Gray indicates no prediction. Solid and dashed lines indicate
direct and indirect interactions, respectively. f Gene ontology terms enriched among genes down-regulated upon SRF overexpression. g Statistical analyses

of the differential expression of major sarcomere genes. Fold changes and P values were plotted in blue-yellow and magenta-green color scales,
respectively. Differential expression analysis P values were calculated by DESeq2>°

transcription of both mature and immature sarcomere compo-
nents?!. However, here we demonstrated a selective role of SRF in
activating only mature, but not immature, sarcomere isoforms. In
addition, we found dramatic down-regulation of GO terms rela-
ted to mitochondria and metabolism, but not heart development
or muscle cell differentiation, in neonatal mosaic Srf KO. This
profound role of SRF in mitochondria and metabolism was not
observed in previous studies, likely due to both acute lethality that
precluded study of Srf at the neonatal stage and to obfuscating
effects of heart failure. Likewise, the mosaic strategy allowed us to
circumvent lethality caused by Myh6 disruption and thereby hone
in on the essential function of sarcomeres to promote CM
maturation.

Our genetic mosaic analysis also challenges the established
paradigm of mitochondrial dynamics in heart development. We
observed minimal morphological phenotypes upon mosaic
MFN1/2 depletion or DRP1 overexpression in neonatal CMs.
This finding contrasts sharply with the dramatic heart phenotypes
of conventional organ-wide Mfn1/2 double KOs3>#°. This is likely
due to secondary effects of heart dysfunction that amplified the
severity of the phenotypes in previous Mfnl/2 double KOs,
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although we cannot rule out the possibility that Mfnl/2 are
required for CM maturation at an earlier embryonic stage, or that
the kinetics of Mfn1/2 inactivation in our system missed a critical
time window necessary to observe the more dramatic effects that
were previously reported. This study, together with previous
studies of Tfam3> and Drp13%, indicates a relatively minor role of
normal mitochondria function in promoting CM maturation.

Methods

Mouse strains. All animal strains and procedures were approved by the Institu-
tional Animal Care and Use Committee of Boston Children’s Hospital.
RosaCas9GFP/CasIGFP(Jackson Lab Stock No.: 026175)°0, Rosaomato/Tomato
(Jackson Lab Stock No.: 007914)5!, RosamTmG/mTmG(jackson Lab Stock No.:
007576)°2, and RosaPi"A/BirA (Jackson Lab Stock No.: 010920)2¢ were imported
from the Jackson Laboratory. Srf/F12 (Jackson Lab Stock No.: 006658), Mfn1/F;
Mfn2F/F;RosamtDendra2 33,53 (Jackson Lab Stock No.: 026401, No.: 026525, and No.:
018385), and Tbx5F 11 mice were kind gifts from the labs of Joe Miano, David
Chan, and Ivan Moskowitz. All mice were on a mixed genetic background.
Srffbi® mice were generated by homologous recombination in ES cells (Extended
Data Fig. 6a). A targeting vector containing homology arms, the FLAG-BIO
epitope tag fused to the 3’ end of SRF, and an Frt-Neo-Frt selection cassette was
used to generate targeted ES cells. Blastocyst injection yielded chimeric mice.
Germline transmission through Actb-Flpe removed the Frt-Neo-Frt cassette. Actb-
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Fig. 9 Schematic summary of SRF regulation of CM maturation. A balanced
level of SRF activity is required in maturing CMs for the transcription of
major genes that are required for CM maturation. These genes include
those that regulate mitochondria and metabolism, sarcomere assembly,
and ion channels. Among these genes, sarcomere genes are particularly
critical for organizing not only myofibrils but also other aspects of
morphological maturation, such as mitochondria remodeling, maturational
hypertrophy, and T-tubule formation. These coordinated transcriptional and
morphological maturation events collectively establish the robust functions
of adult CMs, which is maintained throughout the animal's lifespan

Flpe was subsequently removed by breeding. The mice are available at MMRRC,
Stock No.: 37511.

Plasmids. AAV-cTNT-Cre, AAV-U6gRNA-U6gRNA-cTNT-Cre, and AAV-
cTNT-GFP plasmids®”!° are available at Addgene.

To generate AAV-cTNT-GFP-version2, a 63 bp multiple cloning site was
synthesized as single-stranded oligos, annealed, and inserted into AAV-cTNT-GFP
through Nhel and Ncol sites. Next, 3XHA-P2A sequence was synthesized (IDT)
and inserted into AAV-cTNT-GFP-version2 through Nhel and Ncol sites to
generate AAV-cTNT-3XHA-P2A-GFP. Cre coding sequence was PCR-amplified
from AAV-cTNT-Cre and inserted into AAV-cTNT-3XHA-P2A-GFP through
Nhel and Sacl sites to generate AAV-cTNT-Cre-P2A-GFP. To generate AAV-
c¢TNT-SRF-P2A-GFP, Srf cDNA was purchased from GE Healthcare Dharmacon
Inc. (# MMM1013-202798340), amplified by PCR, and inserted into AAV-cTNT-
GFP-version2 plasmid at Nhel and Spel sites. The new plasmids will be available at
Addgene.

For CASAAV-mediated gene depletion, we designed 1-2 gRNAs per target gene
using the GPP Web Portal (Broad Institute). The gRNA sequences were
synthesized as single-stranded oligos, annealed, and inserted into AAV-U6gRNA-
U6gRNA-cTNT-Cre plasmids® at Sapl and/or Aarl sites. gRNA sequences that
were used in this study are summarized in Supplementary Table 1.

AAYV production and injection. One hundred and forty micrograms of AAV-ITR,
140 ug AAV9-Rep/Cap, and 320 pg pHelper (pAd-deltaF6, Penn Vector Core)
plasmids were produced by Maxiprep (Invitrogen, K210017) and transfected into
10 15-cm plates of HEK293T cells using PEI transfection reagent (Polysciences,
23966-2). Sixty hours after transfection, cells were scraped off of plates, resus-
pended in lysis buffer (20 mM Tris, pH 8, 150 mM NaCl, 1 mM MgCl,, 50 pg/ml
benzonase) and lysed by three freeze-thaw cycles. AAV in cell culture medium was
precipitated by PEG 8000 (VWR, 97061-100), resuspended in lysis buffer, and
pooled with cell lysates. AAV was purified in a density gradient (Cosmo Bio USA,
AXS-1114542) by ultracentrifugation (Beckman, XL-90) with a VTi-50 rotor and
concentrated in phosphate-buffered saline (PBS) with 0.001% pluronic F68 (Invi-
trogen, 24040032) using a 100 kDa filter tube (Fisher Scientific, UFC910024). AAV
titer was quantified by qPCR (primer sequences in Supplementary Table 2) using a
fragment of the TNT promoter DNA to make a standard curve.

AAYV was injected into P1 pups subcutaneously. The P1 pups were anesthetized
in an isoflurane chamber before injection. Intraperitoneal injection was performed
to inject AAV into adult animals. AAV dosage was normalized based on body
weight at both neonatal and adult stages. In total, 5 x 108 viral genome per gram
body weight (vgg~!) was used in all mosaic analyses in this study. High and
intermediate doses corresponded to 1 x 101°vgg~! and 5x10%vgg~1,
respectively.

Echocardiography. Echocardiography was performed on a VisualSonics Vevo
2100 machine with the Vevostrain software. Animals were awake during this
procedure and held in a standard handgrip. The echocardiographer was blinded to
genotype and treatment.

Histology. After animals were euthanized by CO,. Hearts were harvested imme-
diately and fixed by 4% paraformaldehyde overnight at 4 °C. Fixed hearts were
cryoprotected by soaking in 15% sucrose followed by 30% sucrose at 4 °C. Hearts
were embedded in tissue freezing medium (General Data, TEM-5). Ten micro-
meters of cryo-sections were cut using a cryostat (Thermo Scientific, Microm HM
550).

For Fast Green and Sirus Red staining, the frozen sections were washed with
PBS for 5 min, fixed with pre-warmed Bouin’s solution (Sigma, HT10132) at 55 °C
for 1h, and washed in running water. The sections were next stained with 0.1%
Fast Green (Millipore, 1040220025) for 10 min, washed with 1% acetic acid for
2 min, and rinsed with running water for 1 min. The sections were next stained
with 0.1% Sirus Red (Sigma, 365548) for 30 min and washed with running water
for 1 min. The slides were treated with 95% ethanol once for 5 min, twice with
100% ethanol for 5 min, and twice in xylene for 5 min before being mounted with
Permount (Fisher Scientific, SP15-500). Bright-field images of stained tissue
sections were taken under a dissection microscope (Zeiss, SteREO Discovery V8).

In situ confocal imaging. In situ T-tubule imaging was performed as previously
described®!0. In brief, hearts were dissected from euthanized animals and can-
nulated on a Langendorff apparatus. FM 4-64 (2 ug/ml) (Invitrogen, 13320) was
diluted in perfusion buffer (10 mM HEPES (pH 7.4), 120.4 mM NaCl, 14.7 mM
KCl, 0.6 mM KH,PO,, 0.6 mM Na,HPO,, 1.2 mM MgSO,, 4.6 mM NaHCO3, 30
mM taurine, 10 mM 2,3-butanedione monoxime, 5.5 mM glucose) and loaded into
the heart by retrograde perfusion at room temperature for 10 min. The heart was
next removed from the perfusion system, positioned on a glass-bottom dish, and
immediately imaged on an inverted confocal microscope (Olympus FV1000).

In situ mitochondria imaging was performed by loading both 2 nM TMRM
(mitochondrial marker) and 2 pg/ml FM 4-64 (cell membrane marker) into the
heart by retrograde perfusion at room temperature for 10 min. The heart was
imaged on an inverted confocal microscope (Olympus FV1000).

CM isolation. CMs were isolated by retrograde collagenase perfusion using an
established protocol®*. In brief, heparin-injected mice were anesthetized in an
isoflurane chamber. Hearts were isolated and cannulated onto a Langendorff
perfusion apparatus. Perfusion buffer (at 37 °C) was first pumped into the heart to
flush out blood and equilibrate the heart. Collagenase II (Worthington, LS004177)
was next perfused into the heart for 10 min at 37 °C to dissociate CMs. Heart apex
was cut from the digested heart, gently dissociated into single CMs in 10% fetal
bovine serum (FBS)/perfusion buffer, and filtered through a 100 um cell strainer to
remove undigested tissues.

Immunofluorescence. To prepare cells for immunofluorescence, the isolated CMs
were concentrated by 20 x g centrifugation for 5 min and resuspended in the cell
culture medium (Dulbecco's modified Eagle's medium (Gibco), 10% FBS, pen/strep
(Gibco), 10 uM blebbistatin). CMs were cultured on laminin-coated coverslips for
~40 min at 37 °C with 5% CO, to allow cells to attach to the coverslips.

Next, immunofluorescence was performed following published
protocols®”>>°6, In brief, CMs were fixed on coverslips by 4% paraformaldehyde
for 10-20 min, permeabilized by 0.1% Triton-100/PBS for 10 min, and blocked in
4% bovine serum albumin/PBS (blocking buffer) at 4 °C overnight. Then, the cells
were incubated with primary antibodies diluted in blocking buffer overnight at
4°C. After washes with blocking bulffer, the cells were incubated with secondary
antibodies and dyes at room temperature for 2 h. The cells were next washed with
PBS and mounted with ProLong Diamond antifade mountant (Invitrogen, 36961)
before imaging. All antibodies and dyes are listed in Supplementary Tables 3 and 4.

TUNEL staining was performed using In Situ Cell Death Detection Kit (Roche
Diagnostics, #11684795910) following the manufacturer’s instruction.

Fluorescence imaging and analysis. Confocal fluorescence images were taken
using Olympus FV1000 inverted laser scanning confocal microscope equipped with
a x60/1.3 silicone-oil objective. Fluorescence intensity was measured using Image].
AutoTT? was used to quantify T-tubule and sarcomere organization. Total TT
elements refer to the sum of longitudinal and transverse T-tubule elements. Cell
size and shape was manually measured on maximally projected images.
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Contractility assay and calcium imaging. Before contractility and calcium ana-
lyses, calcium was re-introduced into isolated CMs by treating cells with a series
of 10 ml 2,3-butanedione monoxim-free perfusion buffers containing 100 uM,
400 puM, 900 uM, and 1.2 mM CaCl,. At each step, CMs were allowed to settle by
gravity for 10 min at room temperature before being transferred to the next buffer
with higher calcium concentration.

For contractility assay, CMs were first settled in laminin-coated 6-well dishes at
30°C for 10 min. FP— and FP+ cells were identified and imaged through
epifluorescence microscope. Next, CMs were electrically stimulated at 1 Hz and cell
contraction was recorded in the bright-field channel of a Keyence BZ-X700
microscope at 33 fps using a x40 objective. SarcOptiM were used to quantify
sarcomere shortening during contraction'$.

For calcium imaging, CMs were loaded with 5 uM Fluo-4 (when FP reporter is
Tomato) or Rhod-2 (when FP reporter is Cas9GFP) for 20 min. The cells were next
washed with normal Tyrode solution (140 mM NaCl, 4 mM KCI, 1 mM MgCl,,
1.8 mM CaCl,, 10 mM glucose, 5 mM HEPES, pH = 7.4, adjusted with NaOH) for
20 min. The cells were next settled in a laminin-coated glass-bottom flow chamber
at 30 °C for 10 min and electrically stimulated at 1 Hz to produce steady-state
conditions. Calcium signals were next acquired through confocal line scanning
using a x60 objective. Line scan was positioned along the long axis of the cell in the
cytosol, avoiding the nuclear area. Calcium signal was quantified manually using
Image].

EM analysis after FACS. EM analysis after FACS (FACS-EM) was performed as
follows. Isolated CMs in suspension were fixed with 4% paraformaldehyde for 30
min at room temperature. The fixed cells were next filtered by passing through a
100 pum cell strainer, pelleted by centrifugation at 20 x g for 5min at room tem-
perature, and resuspended in ~1 ml perfusion buffer. FACS was performed using a
BD Aria II SORP cell sorter with a 100 pum nozzle. After FACS, the cells were fixed
again in a mixture of 2% formaldehyde and 2.5% glutaraldehyde in 0.1 M sodium
cacodylate buffer, pH 7.4, overnight at 4 °C. The cell pellets were next processed
through a routine transmission EM (TEM) protocol at Harvard Medical School
EM core. Images were taken using a JEOL 1200EX-80 kV EM. Because of the cell
size and stiffness, fixed adult CMs easily clogged the FACS machine. Currently,
FACS-EM only works for CMs from P30 and younger mice.

Reverse transcription-quantitative PCR analysis. For regular RT-qPCR analysis,
total RNA was purified using PureLink RNA Mini Kit (Ambion, 12183025).
Genomic DNA removal and reverse transcription was performed using Quanti-
Tech Reverse Transcription Kit (Qiagen, 205311). Real-time PCR was performed
using an ABI 7500 thermocycler with Power SYBR Green PCR Kit (Thermo Fisher,
4368702). QPCR primers are listed in Supplementary Table 2.

For FACS-RT-qPCR, isolated CMs were filtered with a 100 um cell strainer,
pelleted by centrifugation at 20 X g for 5min and resuspended in ~1 ml cold
perfusion buffer. FACS were performed using a BD Aria IT SORP cell sorter with a
100 pm nozzle and a sample collection cooling device. Immediately after FACS,
cells were centrifuged at 13,000 rpm at 4 °C to remove supernatant. Total RNA was
purified using PureLink RNA Micro Kit (Thermo Fisher, 12183016) and genome
DNA removed by on-column DNase I digestion. RT was performed using
SuperScript III Kit (Thermo Fisher), or SMART-Seq v4 Ultra Low Input RNA Kit
(Clontech) if RNA yield was too low to be detected by regular RT-qPCR. Real-time
PCR was performed using an ABI 7500 thermocycler using Tagman probes listed
in Supplementary Table 5.

Western blot analysis after FACS. FACS-sorted CMs were lysed in 2x sodium
dodecyl sulfate sample buffer at 1000 cell/ul to normalize protein content. After
boiling for 5 min, 5 ul cell lysate of each sample was separated on a 4-12% gradient
gel (Invitrogen, Bolt gels, NW04122BOX), transferred to a polyvinylidene
difluoride membrane, and blocked by 4% milk/TBST (Tris-buffered saline, 0.1%
Tween-20). Primary antibodies were incubated with the membrane overnight at 4 °
C, followed by four 15 min TBST washes. Horse radish peroxidase (HRP)-con-
jugated secondary antibodies were probed for 1-2 h at room temperature, followed
by four 15 min TBST washes. After adding Immobilon Western Chemiluminescent
HRP Substrate (Millipore, WBKLS0500), chemiluminescence were detected by a
Li-Cor C-DiGit blot scanner. Antibodies used in this study are listed in Supple-
mentary Table 3. All uncropped western blots can be found in Supplementary
Fig. 9.

RNA-seq and data analysis. FACS-sorted CMs were centrifuged at 10,000 x g for 1
min and supernatant fluids were removed. Total RNA was extracted using PureLink
RNA Micro Kit (Thermo Fisher, 12183016) with genome DNA removed through on-
column DNase I digestion. Ten nanograms of total RNA was reverse transcribed and
full-length cDNA was specifically amplified by eight PCR cycles using SMART-Seq v4
Ultra Low Input RNA Kit (Clontech)!®. RNA-seq libraries were constructed using
Ilumina’s Nextera XT Kit and single-ended reads were sequenced using NextSeq
500 sequencer at Harvard Medical School biopolymers facility.

RNA-seq reads were aligned to mm10 by STAR> and reads counts were
calculated by FeatureCounts®S. DESeq2 was next used to perform statistical
analysis of differential gene expression®. An adjusted P value of 0.05 was used as

cutoff to identify differentially regulated genes. GSEA analysis with ranked gene
lists was used to perform GO term analysisGO. IPA (Qiagen Inc.) was used for
upstream regulator network analysis®!.

BioChIP-Seq and data analysis. For each biological replicate, four heart ventricles
were collected from two male and two female P14 SrffPio/+;Rosa26b"A/+ mice and
minced in 1% formaldehyde-containing PBS at room temperature by a motor-driven
homogenizer (IKA T10 basic). The tissue suspension was shaken for 15 min at room
temperature for crosslinking. Glycine was added to final concentration of 125 mM to
quench formaldehyde. Chromatin isolation was performed as previously described®?.
A microtip sonicator (QSONICA Q700) was used at 60% amplitude and a cycle of 5 s
on and 20's off for 96 cycles in total. Sheared chromatin was precleared by incubation
with 100 pl Dynabeads Protein A (Life Technologies, 10002D) for 1 h at 4 °C. The
precleaned chromatin was then incubated with 100 pl Dynabeads M-280 Streptavidin
(Life Technologies, 11206D) for 1 h at 4 °C. The streptavidin beads were washed and
bound DNA eluted®?. BioChIP DNA was purified with MinElute PCR Purification
Kit (Qiagen, 28006). ChIP-seq libraries were constructed using a ChIP-seq Library
Preparation Kit (KAPA Biosystems, KK8500). Fifty nanograms of sonicated chro-
matin without pull-down was used as input.

Single-end sequencing (75 nt) was performed on a NextSeq 500 sequencer.
Reads were aligned to mm10 using Bowtie 263 using default parameters. Peaks were
called with MACS2%* against input chromatin background. Murine blacklist
regions were masked out of peak lists. Homer (http://homer.ucsd.edu/homer/) was
used to annotate peaks to the nearest gene and to perform motif analysis®.
DeepTools was used to generate aggregation and heatmap plots®®. bioChIP-seq

signal was visualized in the Integrated Genome Viewer®”.

Data availability

The authors declare that all data supporting the findings of this study are available within
the article and its Supplementary information files or from the corresponding author
upon reasonable request. RNA-seq and ChIP-seq data have been deposited in the Gene
Expression Omnibus (GEO) database under the accession codes: GSE109425 (for the Srf
KO RNA-seq), GSE109504 (ChIP-seq), and GSE116030 (for the Srf OE RNA-seq). The
data are also available on the Cardiovascular Development Consortium server (https://
b2b.hci.utah.edu/gnomex) (sign in as guest).
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