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Abstract

The establishment of functional neuronal connectivity is dependent on the neuronal migration and the accurate
positioning of neurons in the developing brain. Abnormal neuronal migration can trigger neuronal maturation defects
and apoptosis. However, many genetic bases remain unclear in neuronal migration disorders during brain
development. In this study, we reported that MARVELD1-defected mice displayed motor and cognitive dysfunction
resulting from aberrant neuronal migration during brain development. The laminar organization of the cerebral cortex
and cerebellum in MARVELD1 knockout (KO) mice is disrupted, indicating impaired radial neuronal migration.
Furthermore, we used the cerebellum as a model to explore the radial neuronal migration processes, and the results
demonstrated that the proper neuronal migration depended on MARVELD1 expression in glial cells of the developing
brain. MARVELD1 suppressed the expression of ITGB1 and FAK Tyr397 phosphorylation in glia-dependent manner. The
inhibition of the MARVELD1/ITGB1/FAK signalling pathway in MARVELD1 KO mice could reverse the defects in
neuronal migration in vitro. Our findings revealed that MARVELD1 regulated neuronal migration by mediating the
formation of glial fibres and ITGB1/FAK signalling pathway. The depletion of MARVELD1 during mouse brain
development led to the abnormity of motor and cognition functions.

Introduction

The emergence of mature neurons and the functional
neuronal connectivity depends on neuronal migration in
the developing brain'~®. Glia-guided radial migration
ensures accurate positioning of major neurons as the most
common migration pattern®, Newborn projection neu-
rons in the cerebral cortex and granule cells in the cere-

bellum arrived at their target locations via this migrating
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pattern™*®’. It is found that membrane-related signal
events play crucial roles in the control of neuronal radial
migration®®’. Some transduction paradigms of these
signal molecules, such as interactions of cell adhesion
molecules, have been illustrated as critical mechanisms
underlying radial migration"®®. It is reported that
ITGB1"'%", Astn 1/2"'%, N-cadherin®® and con-
nexins"** can ensure the adhesion of the neuron to glial
fibres during the process of neuronal radial migration.
Moreover, the alternation of genes related to the radial
migration could cause abnormal development and beha-
vioural defects>'®. Thus, it is crucial to elucidate how
neuronal radial migration is precisely regulated and which
genes are involved in this process.
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Fig. 1 MARVELD1 KO mice displayed motor abnormalities. a Rotarod test was performed with 10-month-old mice. For WT mice n =10, and for
MARVELD1 KO mice n=9. b Treadmill test: electrical stimulation frequency was analyzed using 10-month-old mice. For male mice: WT mice n =10,
and MARVELD1 KO mice n=9; for female mice: WT mice n=11, and MARVELD1 KO mice n=9. One-way ANOVA was used in this study. ¢ Gait
experiment was tested using 10-month-old mice. Base of support and stride length were analyzed. For WT mice n = 12, and MARVELD1 KO mice n =
10. d Rotarod test was performed with 6-8-week-old mice. For WT and MARVELD1 KO mice, n = 13. e Treadmill test: electrical stimulation frequency
was analyzed using 6-8-week-old mice. For male mice: WT and MARVELD1 KO mice n = 10, respectively; for female mice: WT and MARVELD1 KO
mice n = 9, respectively. One-way ANOVA was used. f Gait test was tested using 6-8-week-old mice. Base of support and stride length were analyzed.
For WT mice n=11, and MARVELD1 KO mice n=9. g The nociceptive response was assessed by the radiant heat paw withdrawal test using 10-
month-old mice. For male mice: for WT mice n =11 and for MARVELD1 KO mice n = 9; for female mice: for WT mice n = 10, and for MARVELD1 KO
mice n = 9. One-way ANOVA was used. h The nociceptive response was assessed by the radiant heat paw withdrawal test using 6-8-week-old mice.
For male mice: for WT mice n =24 and MARVELD1 KO mice n = 27 for female mice: for WT mice n = 18 and MARVELD1 KO mice n = 23. One-way
ANOVA was used. *p < 0.05; **p < 0.01; ***p < 0.001
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Fig. 2 MARVELD1 KO mice displayed cognitive function abnormalities. a Morris water maze test was performed with 10-month-old mice.
Training was conducted during 5 days with training two times per day and latency to the platform is analyzed. The platform was marked by a white
pointed circle in the first quadrant. b A probe trial was assessed and the platform location crossing times were analyzed using 10-month-old mice.
¢ The swimming velocity in Morris water maze test was analyzed using 10-month-old mice. The WT group and MARVELD1 KO group n=11,
respectively, in a, b and ¢. d Morris water maze test with 6-8-week-old mice and latency to the platform was analyzed. e A probe trial was assessed
and the platform location crossing times were analyzed using 6-8-week-old mice. f The swimming velocity in Morris water maze test was analyzed
using 6-8-week-old mice. For WT mice n =13 and MARVELD1 KO mice n=14in d, e and f, respectively. *p < 0.05; **p < 0.01

ITGB1 is a cell adhesion receptor, which is highly
expressed in developmental brain of the mouse, and has
been reported to regulate the rate of neuronal migra-
tion'>'"1®, The cerebral cortical hemispheres and the
cerebellum are reduced in size, and external foliation of
the cerebellum is lacked in ITGB1 KO mice'’. Moreover,
glial fibres in ITGB1 KO mice are irregular and there is no
anchorage at the cerebellar outer surface. Some research
showed that conditional deletion of ITGB1 in astroglia
might cause partial reactive gliosis'®>. Changing ECM
elasticity with different ITGB1 content profoundly
impacts on the ability of neuronal stem cells to undergo
differentiation'”. Meanwhile, ITGB1 binds to their
ligands, which could induce alternation in the signals
related to cellular migration and proliferation'®"*2°,

MARVELD1 is a member of MARVEL domain-
containing proteins, which is expressed in the cellular
nucleus®’. Previous studies showed that MARVELD1
expression is lower in tumour cells, and MARVELD1
regulates the balance of ITGB1 and ITGB4 expression in
cancer cells* %, It is known that MARVELDI is barely
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expressed in normal adult human brain®'. Ye Zhang also
clarified that MARVELDI1 was rarely expressed in the
cerebral cortex of 7-day-old mice in both neurons and
astrocytes®®. But the expression and the function of
MARVELD1 during brain development have not yet been
fully identified. In this study, MARVELD1 KO mice and
Nestin-cre/MARVELD1"? mice were utilized as the
models to study the role of MARVELD1 during brain
development. And it was found that MARVELDI ablation
led to mice behavioural and cognitive abnormity resulting
from abnormal radial migration during brain develop-
ment. Remarkably, the studies of GFAP-cre/MAR-
VELD1"® mice show that MARVELD1 controlled precise
positioning of neurons in the manner of glia-dependent
by regulating the ITGB1/FAK signalling pathway.

Results
MARVELD1 KO mice displayed motor and cognitive
function abnormalities

To examine MARVELDI1 function in the brain, a series
of motor behavioural tests were performed on 10-month-
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Fig. 3 The depletion of MARVELD1 led to neurodegeneration in mouse brain. a The cerebral cortex HE staining of 10-month-old mice. Neurons
with a diameter greater than 10 pm were counted (per mm?). b Immunohistochemistry staining was performed with Calb antibodies in 10-month-
old mice cerebellum. ¢ Transmission electron microscopy: neural synapses were observed in 10-month-old mice cerebral cortex. The arrowheads
indicated neural synapses. d The number of TUNEL stained neurons/mm? were counted in the cerebral cortex of 10-month-old mice.
e Immunohistochemistry staining was performed with Calb antibodies in 4-week-old mice cerebella. f Golgi-Cox staining was performed to observe
synapses of Purkinje cells in 4-week-old mice cerebellum. g Transmission electron microscopy: apoptotic neurons were observed in 4-week-old mice
cerebral cortex and cerebellum. Above all investigations, n = 3 for each genotype. *p < 0.05; ***p < 0.001

old mice lacking MARVELD1 gene. For an initial mea- KO mice displayed a shorter latency to fall off the rod
surement, rotarod test was carried out to estimate the  with 43.67 + 6.82 s compared with 146.70 + 15.35 s wild-
balance and movement ability of the mice. MARVELD1  type (WT) mice (p<0.001) (Fig. la). In addition, the
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mouse treadmill assay exhibited a swing posture and a
slower running speed in MARVELD1 KO mice, illus-
trating abnormal movement and balance ability (Fig. 1b).
Then, in the gait experiment, it was observed that
MARVELD1 KO mice with abnormal walking posture
had a larger base of support and a closer stride length than
the WT controls (Fig. 1c).

Moreover, to determine whether the abnormal motor
phenotypes appeared in youthful MARVELD1 KO mice,
the experiments were performed in 6—8-week-old mice.
Consistent with results from the rotarod test, treadmill
assay and gait analysis, it showed an impaired ability of
balance, kinetism and movement in both 10-month-old
and 6-8-week MARVELD1 KO mice (Fig. 1d—f). Mean-
while, the radiant paw withdrawal test showed that sen-
sory behavioural dysfunctions were also found in both 10-
month-old and 6-8-week-old MARVELD1 KO mice
(Fig. 1g, h).

Furthermore, the Morris water maze task was
employed to evaluate abnormal spatial learning and
memory abilities in 10-month-old MARVELD1 KO
mice. The data showed that abilities of spatial learning
and memory were significantly impaired in MARVELD1
KO mice compared with WT controls. The latency to
arrive at the hidden platform was 56.04 + 14.93 s in WT
mice and 111.00 = 6.04s in MARVELD1 KO mice (p <
0.01) (Fig. 2a). Moreover, MARVELD1 KO mice dis-
played less times of crossing platform (p< 0.05)
(Fig. 2b). The swimming velocity of MARVELD1 KO
mice was slower than WT controls (Fig. 2c). The cog-
nitive disorder was found in 6-8-week-old MARVELD1
KO mice as well (Fig. 2d—f). The results suggested that
the motor and cognitive abnormity may occur in pre-
mature adults.

The depletion of MARVELD1 led to neurodegeneration in
mouse brain

Given the behavioural abnormality phenotype of old
MARVELD1 KO mice, the tissue and cells of the cere-
brum and the cerebellum were investigated. HE staining
showed that there were numerous degenerating neurons
in 10-month-old MARVELD1 KO mice (Fig. 3a). Statis-
tical analysis indicated that there were fewer neurons in
MARVELD1 KO mice with a diameter greater than 10
um, especially in layer II, IV and V. In addition, the
Purkinje cells in the cerebellum displayed notable atrophy
in MARVELD1 KO mice (Fig. 3b), although no obvious
morphological changes could be observed (Supplemen-
tary Fig. 1A). The results of transmission electron
microscopy (TEM) further showed that the number of
neural synapses was less and the structure was irregular in
the cerebral cortex of MARVELD1 KO old mice (Fig. 3c).
The TUNEL assay showed an increased number of
apoptotic cerebral cortical cells in MARVELD1 KO mice
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(14.33+1.20 in WT and 34.67 + 1.45 in MARVELD1 KO
mice per 1 mm?) (Fig. 3d).

Previous studies found that Purkinje cells completed
their development process mainly in the 4th week of
postnatal development®~’. However, immature Pur-
kinje cells were observed in 4-week-old MARVELD1 KO
mice (Fig. 3e). In the Golgi—Cox staining experiments,
the results showed that the dendrites of Purkinje cells
were notably sparse and shorter than WT controls
(Fig. 3f). The dendrites in the MARVELD1 KO cerebral
cortex were slender and disorderly compared with
dendrites of WT mice as well (Supplementary Fig. 1B).
Moreover, an early apoptosis in cerebral cortical neu-
rons and cerebellar granule cells in 4-week-old MAR-
VELD1 KO mice was also found (Fig. 3g). Also, there
was an early apoptotic phenomenon in basket cells, a
cell type that could form inhibitory synapses with Pur-
kinje cells in the cerebellum®® (Supplementary Fig. 1C).
To sum up, these abnormal phenotypes of MARVELD1
KO mice in the adult could trace back to brain devel-
opmental processes.

Mice with MARVELD1 lack showed a laminar layer disorder
in the cerebral cortex and cerebellum

Based on the above results, MARVELDI1 expression was
examined in the embryo of WT mice. MARVELD1 was
detected abundantly in embryonic brain, and its expres-
sion was obviously reduced after birth (Supplementary
Fig. 2A, B). By in situ hybridization, MARVELD1 emerged
in the brain of E 9.5 and E 10.5 mice (Supplementary
Fig. 2C), and its expression was high in forebrain and
midbrain in the E12.5~E15.5 mice (Supplementary
Fig. 2D). Moreover, immunohistochemistry results also
showed that MARVELDI could be specifically detected in
the brain (Fig. 4a). Meanwhile, immunofluorescence
staining for a glial marker GFAP and a neuronal marker
NeuN indicated that MARVELD1 was expressed in both
glial cells and neurons in the cerebellum (Fig. 4b, c).
These data suggested that MARVELD1 was highly
expressed during the development of the cerebral cortex
and the cerebellum.

The extrinsic feature and weight of the brain displayed
no significant changes in the adult MARVELD1-deficient
mice (Supplementary Fig. 2E). However, the cerebral
cortex layers of MARVELD1 KO mice were disorganized
and could not be defined accurately (Fig. 4d). In the
MARVELD1 KO mice, the cerebral cortex neuroendo-
crine cells (marked by calbindin (Calb)) were arranged in
a disorderly manner, indicating abnormal positioning of
cerebral cortical neurons (Fig. 4e, f). HE staining experi-
ment demonstrated an abundance of cellular accumula-
tion throughout the molecular layer in 15-day-old
MARVELD1 KO mice (Fig. 4g). Furthermore, dislocated
cells could be granule cells, which were stained by NeuN
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cerebellum. d-i: n =3 for each genotype. ***p < 0.001

Fig. 4 Mice with MARVELD1 lack showed a disorder of the laminar layers in the cerebral cortex and cerebellum. a Immunohistochemistry
was observed for MARVELD1 protein from WT E15.5 mice. b Immunofluorescence was performed with antibodies of MARVELD1 (green) and a
neuronal marker NeuN (red) in 0-day-old mice cerebellum. ¢ Immunofluorescence was observed with antibodies of MARVELD1 (green) and glial cells
maker GFAP (red) in 6-day-old mice cerebellum. d Sagittal sections through the cerebral cortex were analyzed by HE staining in 0-day-old mice.
e-f Immunofluorescence of Calb (red) in 0-day-old and 6-day-old mice cerebral cortex. In control mice, Calb™ cells were present largely in laminall/Ill
and in MARVELD1 KO mice cerebral cortex they were distributed in superficial lamina or arranged in a disorderly manner. g Sagittal sections of 15-
day-old mice cerebellum stained with HE. The whole cerebellum with low magnification shows the overall situation of abnormal cells location in the
molecular layer. h Sagittal sections of 15-day-old mice cerebellum stained with immunohistochemistry of NeuN, a granule cell marker in the
cerebellum. i Sagittal sections of 15-day-old mice cerebellum stained with immunofluorescence of DAPI and NeuN, a granule cell marker in the

N

(Fig. 4h, i). The neuronal dislocations in MARVELD1 KO
mice represented an aberrant neuronal migration and
maturation process.

Based on the consideration that the cerebellum is a
good model to study the origin of migration deficits****°,
we focused on the cerebellum to explore the migrating
process. In the cerebellum of 4-week-old Nestin-cre/
MARVELD1"? mice, lots of cells were presented in the
EGL as similar to MARVELD1 KO mice (Supplementary
Fig. 3A). These abnormally located cells could be labelled
with NeuN, which indicated that they were granule cells
(Supplementary Fig. 3B, C). Meanwhile, glial scaffolds
were severely disorganized and the fibre density was
obviously reduced in Nestin-cre/MARVELD1"" mice. It
was further found that the fibres were tiny and disar-
ranged without connection or anchorage with the base-
ment membrane (Supplementary Fig. 3D). Consistent
with MARVELDI1 KO mice, the shrinking cell bodies and
a dramatic reduction of the apical dendritic arbour were
observed in Purkinje cells (Supplementary Fig. 3E). Taken
together, the results indicated the cerebellum abnormal-
ities in both MARVELD1 KO and Nestin-cre/MAR-
VELD1"" mice.

MARVELD1 affected granule cell migration instead of
proliferation

There was no clear boundary between the external
granular layer and the Purkinje cell layer in the cere-
bellum of neonatal MARVELD1 KO mice (Fig. 5a). The
width of the EGL also revealed a significant reduction in
6-day MARVELD1 KO mice (Fig. 5a, b). Consistent with
an impaired inward radial migration in 0-day MARVELD1
KO mice, there were numerous migrating granule cells
with characteristics of polarized and elongated shape in 6-
day MARVELD1 KO mice.

Moreover, a notably increased number of BrdU™ cells in
the internal granule cell layer (IGL) of MARVELD1 KO
mice were found after a 30-h BrdU labelling, demon-
strating the excessive cell migration in MARVELD1 KO
mice. However, for proliferation, there were an approxi-
mately equal number of BrdU"' cells in the EGL of
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MARVELD1 KO mice compared with the WT controls
after 1.5 h of BrdU labelling (Fig. 5¢).

Sonic hedgehog (Shh) is the major mitogen that pro-
motes granule cell proliferation during the development
of the cerebellum® ™, RT-PCR analysis of cerebellar
tissue lysates showed that Shh was slightly decreased in 7-
day MARVELD1 KO mice. But the expression of the
downstream genes, including Ptchl, N-myc and Glil/2,
was unaltered opposed to WT mice (Supplementary
Fig. 4A—E). The data coincided with the equivalent
number of BrdU™ neurons in the EGL of the MARVELD1
KO mice. Furthermore, genes related to neuronal
migration were analyzed by RT-PCR. The neuronal
adhesion molecule TAG1** and neuronal protein astro-
tactin (Astnl)'” were unaltered (Supplementary Fig. 4F,
G), but microtubule-associated protein DCX was
increased in MARVELD1 KO mice (Supplementary
Fig. 4H), which was highly expressed in migrating neu-
rons®”. The results verified that MARVELDI ablation
impaired granule cellular migration rather than
proliferation.

Abnormal migration of Bergmann glial cells restricted
Purkinje cell maturation in MARVELD1 KO mice

Cerebellum developmental defects are followed by
abnormality of Purkinje cell maturation’>?'. In the
cerebellum of 0-day-old MARVELD1 KO mice, the
boundaries between the Purkinje cell layer and granule
cell layer did not exist (Supplementary Fig. 5A). In the
cerebellum of 6-day MARVELD1 KO mice, some Pur-
kinje cells were disorganized in the Purkinje cell layer
and aligned to the IGL (Supplementary Fig. 5B).
Meanwhile, the width of the Purkinje cell layer was
altered (Supplementary Fig. 5C). In 15-day-old MAR-
VELD1 KO mice, abnormal Purkinje cells were also
observed (Supplementary Fig. 5D).

Morphologically, glial cells in the cerebellum are mainly
classified into three types: (i) bushy or velate protoplasmic
astrocytes; (ii) smooth protoplasmic astrocytes and (iii)
Bergmann glial cells***”. Bergmann glial cells are highly
polarized astrocytes extending massive radial fibres in the
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Fig. 5 MARVELD1 affected granule cell migration but not proliferation. a Sagittal paraffin-embedded tissue sections of 0- and 6-day-old mice
stained with HE. The whole cerebellum with low magnification showed the overall situation of abnormal cells. The arrowheads indicated migrating
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migration were evaluated after a short 1.5-h and a long 30-h chase following BrdU administration in 6-day-old mice in control and MARVELD1 KO
animals. The relative cell number was counted. a—c: n = 3 for each genotype. **p < 0.01; ***p < 0.001

\.

cerebellum® ~*°, The radial fibres of Bergmann glia serve
as scaffolds for granule cell migration during postnatal
development®*°~*>, Furthermore, we observed the loca-
tion of the Bergmann glial cells. The typical glial cell layer
could be found in 0-day and 6-day WT mice. However,
Bergmann glial cells were interspersed among the
Purkinje cells and granule cells in MARVELD1 KO
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mice (Supplementary Fig. 5E—G). In addition, the
results of immunohistochemical staining revealed that
the glial fibres were sparse in 4-week-old MARVELD1
KO mice (Supplementary Fig. 5H). Together, the
dislocated granule cells and stunted Purkinje cells
were closely correlated with dislocation of Bergmann
glial cells.
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week-old mice. n = 3 for each genotype. a and b are different areas from GFAP-cre/MARVELD1™" cerebellum. g Sagittal sections of 6-day-old mice
cerebellum immunostained with anti-GFAP. GFAP-cre/MARVELD1"" mice had no obvious glial fibres. n = 3 for each genotype. a and b were different
areas from GFAP-cre/MARVELD1™ cerebellum. h Immunofluorescence of Calb (red) in 6-day-old mice cerebellum. ***p < 0.001

Official journal of the Cell Death Differentiation Association



Liu et al. Cell Death and Disease (2018)9:999 Page 10 of 17

‘
J

a b WT
o ITGB1 KO
T ° W7 ITGB1 | e ewu[130KD T107 —
2 = ® g O Ko
< g 08 P397-FAK [= = ——mll19KD < .
Z 3 2 06+
EQO4| = FAK [~ <|nekp B
00 el
£ 802 j ITGB4 | - [202kD £, ] I Iﬂ
9 g
© ol . , GAPDH | == | 40KD & o LHR , ,
0 days 7 days o m—— . ITGB1 FAK p-FAK ITGB4

Merge

20 40 60 80 100(min)
’U':\L’U'\Q ReSpe)) ‘\'4 A

6 day cerebellum

NeuN DAPI

B A 5
S RCH L w)
KO+Inhibitor14 & 2eth

o) Rajdiendio)

Sum(: QB O Em (B ( gum 1

6 day cerebellum

e K%}
WT KO KO+Inhibitor14 g 150 L e -
2 =R
S 100 s KO+inhibitor
2
IS
; G 50-
5 Q X
,200umy o v, e S 0 A
z Zone1 Zone2

Fig. 7 MARVELD1/ITGB1/FAK signalling suppressed neuronal cell migration via glia-dependent manner. a Quantitative analysis indicated
increased levels of ITGB1 in 0- and 7-day-old mice. n =3 for each genotype. One-way ANOVA was used in this study. b ITGB1 and FAK Tyr397
phosphorylation were detected by western blot in 7-day-old WT and MARVELD1 KO cerebellum whole lysates. Quantitative analysis indicates
elevated ITGB1 and FAK Tyr397 phosphorylation levels in MARVELD1 KO mice. n = 3 for each genotype. ¢ Immunofluorescence of ITGB1 (red) and
NeuN (green) in 6-day-old mice cerebellum. d Immunofluorescence of p397-FAK (red) and NeuN (green) in 6-day-old mice cerebellum. e Neuron
migration from 5-day-old mice microexplants of the cerebellum after 30 h was analyzed. DAPI staining revealed that there were more migrating
granule cells in MARVELD1 KO mice and there was a reversion after adding an inhibiter (20 uM). The number of granule cells which had migrated to
specified distances (zonel: 0-100 pm from the microexplants; zone2: 100 um beyond) was analyzed. One-way ANOVA was used. f Time-lapse
imaging series of migrating granule cells from 5-day-old explants cultured for 30 h before imaging. (Interval time between pictures is 20 min).

*p < 0.05; **p < 0.01; **p <0.001
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MARVELD1 regulated accurate radial migration by
affecting the formation of glial fibres

To further determine whether the abnormal neuronal
migration was interpreted by a neuronal intrinsic factor or
by glial cells in MARVELD1 KO mice, GFAP-cre/MAR-
VELD1"" mice were generated and there was no MAR-
VELDI1 expression in most of the glial cells in these mice
(Fig. 6a). The results of HE staining showed that granule
cells were accumulated in the molecular layer of the
cerebellum and the result was the same with MARVELD1
KO mice and Nestin-cre/MARVELD1"" mice (Fig. 6b). In
6-day GFAP-cre/MARVELD1"" mice, granule cells were
presented with an obvious disruption (Fig. 6¢). The BrdU-
labelling demonstrated an increased number of granule
cells in the IGL in GFAP-cre/MARVELD1"? mice, which
was similar to the migration defects in MARVELD1 KO
mice (Fig. 6d).

In addition, the disorganized glial scaffold emerged in
GFAP-cre/MARVELD1"! mice (Fig. 6e). It was found
that maldevelopment of Purkinje cell apical dendritic
arbours could not anchor into the basement membrane
(Fig. 6f). On 6 day after birth, the GFAP-cre/MAR-
VELD1" mice had no strong glial fibres (Fig. 6g).
Meanwhile, the Purkinje cell layer of GFAP-cre/MAR-
VELD1"® mice was notably irregular (Fig. 6h). The results
revealed that the dislocation of granule cells and the
defects of Purkinje cells were derived from abnormity of
Bergmann glial fibres instead of neurons.

The principal features of MARVELD1 KO mice and
region-specific = MARVELD1-deficient — mice  used
throughout this study are summarized in Supplementary
Table 1.

MARVELD1/ITGB1/FAK signalling suppressed neuronal cell
migration via glia-dependent manner

Our previous investigation found that MARVELDI1
regulated the expression of ITGB1 and ITGB4 in cancer
cells***?, As shown in Fig. 7a and Supplementary Fig. 6A,
ITGB1 mRNA notably increased in the cerebellar tissues
of both 0- and 7-day MARVELD1 KO mice, whereas
ITGB4 transcript levels remained unchanged. Further-
more, the results of western blot verified that ITGB1
protein level was increased in cerebellar tissues of
MARVELD1 KO mice, but ITGB4 protein level was
unchanged (Fig. 7b). This meant that MARVELD1 spe-
cially regulated ITGB1 rather than both ITGB1 and
ITGB4 during brain development. Moreover, FAK, a
downstream molecule of ITGB1*3, was activated with
MARVELDI depletion. The elevated level of ITGB1 and
FAK Tyr397 phosphorylation in neurons of MARVELD1
KO cerebellum was further identified by immuno-
fluorescence staining (Fig. 7c, d).

Following exposure to the FAK inhibitor (20 uM), FAK
Tyr397 phosphorylation decreased in primary neurons
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(Supplementary Fig. 6B). The cerebellum microexplants
were performed, which included radial modes of neuronal
migration***®, The time-lapse results showed that the
number and the distance of migrating cells after 30h
significantly increased in microexplants of MARVELD1
KO mice. After treatment with the FAK inhibitor, a
reversion of both the migrating cell number and the
migrating distance was observed in MARVELD1 KO
neurons (Fig. 7e). As shown in Fig. 7f and the video, there
were more migrating cells in MARVELD1 KO explants
than WT controls. Meanwhile, the migrating distance of
the MARVELDI1 KO neuronal nucleus was longer. These
migrating neuronal cells had less orientation compared
with the WT migrating neuronal cells. The migrating
distance and the number of cells were significantly
reduced in FAK inhibitor-treated cells.

Using the immunofluorescence experiments, the
increase of ITGB1 and FAK Tyr397 phosphorylation
levels was further confirmed in the cerebellar neurons of
GFAP-cre/MARVELD1"" mice, which suggested that the
changes could be induced by MARVELD1 loss in glial
cells (Supplementary Fig. 6C, D). To sum up, MARVELD1
regulated radial migration via ITGB1/FAK signalling
pathway during brain development in a glia-dependent
manner.

Discussion

During ageing, some expressional changes were estab-
lished reflecting regulatory patterns in the brain devel-
opment. Recent studies in C. elegans had identified several
developmental regulatory patterns that persisted into
ageing and effectively limited the lifespan”*®, Interest-
ingly, researchers proved that embryonic mutations of the
BRAF gene in erythro-myeloid progenitors could cause
the neurodegenerative disease after birth and induced the
up-regulation of neurodegenerative markers in
mouse™”°. Therefore, the link between developmental
programmes and neurodegenerative disease has an
objective existence. Despite the molecular bases about the
relationship between brain development and neurode-
generation, there are still needs to be explored.

Initially, MARVELD1 was recognized for its role in cell
proliferation and cell migration in tumour cells*'~**. But
the role of MARVELDI1 in mouse brain development
remains elusive. In this study, our results showed that
MARVELDI was essential for the radial neuronal migra-
tion during the brain development, and it played a sig-
nificant role in motor and cognitive functions of the
mouse. Cognitive abnormalities emerged in 6—8 weeks of
MARVELD1 KO mice and neurons in both the cerebral
cortex and the cerebellum of these mice showed apop-
tosis. Motor and cognitive abnormalities with MAR-
VELD1 deletion could be continued from young to aged
mice, so neurodegeneration and behavioural dysfunctions
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in aged MARVELD1 KO mice could be traced back to
developmental stages. Thus, the study provided the link-
age between brain development and neurodegeneration.

Integrins are a large family of cell adhesion receptors.
ITGB1 is highly expressed during the brain development
of mouse, and has a fundamental role in neuronal pro-
liferation and radial migration'®"'®2, Previous studies
showed that MARVELD1 mediated the balance between
ITGB1 and ITGB4 in cancer cells through down-
regulating the expression of ITGB1 in mRNA processing
and up-regulating ITGB4 by binding its promoter”' >,
Another study showed that MARVELDI specifically
modulated ITGB4 during placental development®?. In this
research, it was found that MARVELD1 mediated neuro-
nal migration via regulating ITGB1 rather than ITGB4
during brain development in mice. These results demon-
strated that MARVELDI1 regulated ITGB1 with tissue-
specific pattern. The neuronal improper location was
induced by overexpression of ITGB1 with MARVELD1
deletion, and led to neurodegeneration and behavioural
abnormalities in MARVELD1 KO adults. These results
support a linkage between the events during the brain
development and the fate of a neuronal cell in ageing, and
offer a new perspective to elucidate neurodegenerative
diseases.

In the cerebral cortex, radial glia progenitor cells give
rise to neurons and glia cells. Also they act as a scaffold
for neuronal radial migration. So it is difficult to differ-
entiate between potential glial and neuronal-specific
defects. It is also difficult to determine either the dis-
organized laminar organization results from neurogenesis
abnormalities or impaired migration. However, in the
cerebellum, granule cells originated in the EGL and
migrated inward to IGL along radial processes of Berg-
mann glia. Granule and glial cells originated from differ-
ent precursors, which made it easier to establish the origin
of migration deficits*?*%°, Based on these considerations,
we focused on the cerebellum and used it as a model to
research the migrating process.

Radially neuronal migration is the most common
migration pattern in the neurons. This process not only
participated in delivering the neurons to the appropriate
place but was also involved in generating the laminar
structure through successive neurogenesis and differ-
entiation®*°. Radial migration in neurons is based upon
glial fibres, so the defects in the glial cells could have a
critical impact on accurate neuronal migration®*~*%, The
results in GFAP-cre/MARVELD1"" mice demonstrated
that MARVELD1 was specifically required in glial cells
during cerebellar development. The data indicated that
MARVELD1 had a non-cell autonomous role in granule
cellular migration during the cerebellar development.
MARVELDI regulated radial migration via ITGB1/FAK
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signalling pathway in the brain development in a glia-
dependent manner.

During cerebellar development, Purkinje cells secrete
Shh to induce granule cell precursor proliferation® =33, In
MARVELD1 KO mice, Purkinje cells have obvious defects
in both the cell bodies and synapses, and their ability to
secrete Shh was altered. In addition, we did not observe
significant defects in granule cell precursor proliferation
in MARVELD1 KO mice. The results suggested that
MARVELDL1 is not necessary for Shh signalling pathway
in granule cell proliferation. Thus, it is proved that
MARVELD1 precisely regulated the granule cellular
migration, but not proliferation.

Our study revealed that MARVELD1 deletion in glial
cells induced the abnormality of glial fibres. Meanwhile,
the expression of ITGB1 was increased and ITGB1/FAK
signalling was activated in neurons. The changes in
molecular level led to abnormal neuronal radial migration
during the brain development in mice. The improper
location and dysfunction of neurons in MARVELD1 KO
mice might result in neurodegeneration and behavioural
abnormalities in adults (Fig. 8).

Materials and methods
Animals

The whole body MARVELD1 KO mice and conditional
KO mice (MARVELD1"" were generated by Biocytogen
(China) in the C57BL/6] strain. For the whole-body
MARVELD1 KO mice, the heterozygous mice were mated
with WT C57BL/6] mice to cross out the cre allele, and
the progeny was further backcrossed with C57BL/6] mice
for at least eight generations. For the morphological
experiments, all mice were littermate progeny from the
heterozygous mice matings. For the conditional KO mice,
the Nestin-cre”’"/MARVELD1"" or GFAP-cre”"/MAR-
VELD1"" littermate progeny animals served as controls.
The transgenic mouse strain expressing the cre recom-
binase under the control of the glial fibrillary acidic pro-
tein promoter (GFAP-cre mice) was purchased from
Shanghai Biomodel Organism Science & Technology
Development Co. Ltd (FVB-Tg (GFAP-cre) 25Mes/],
Stock Number: 004600). In these mice, cre recombinase
activity (as defined by expression of a floxed-STOP
reporter gene) is targeted to most astrocytes throughout
healthy brain and spinal cord tissues®®~®". The transgenic
mouse strain expressing the cre recombinase under the
control of the Nestin promoter (Nestin-cre mice) was
obtained from the Jackson Laboratory (B6.Cg-Tg (Nes-
cre) 1KIn/J, Stock Number: 003771). Animals were
housed in an animal room and room temperature was
maintained at 24 + 1°C with a 12-h light and 12-h dark
cycle. Food and water were available ad libitum. All ani-
mals were well cared and experiments were carried out in
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accordance with the principles and guidelines of the
Ethics Committee of Harbin Institute of Technology.

Behavioural experiment

Experiments for rotarod test, treadmill test and gait
test were performed for WT and MARVELD1 KO mice
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(6—8-week and 10-month-old mice). The littermate pro-
geny or non-littermate progeny were all used because of
mice quantity requirements.

Rotarod test was performed as described in a previous
investigation®” with some modification in this study. The
animals were assessed in three habituation trials in 30-
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min intervals to stay on the rotating rod (ZB-200,
Chengdu Taimeng Technology & Market Corporation,
China) and a cut-off time of 300s. The last time was
utilized as the latency to fall off the rod. For 10-month-old
mice: WT mice, # =10 (including 6 males and 4 females);
MARVELD1 KO mice, n=9 (including 5 males and 4
females). For 6—8-week-old mice: WT mice, n=13
(including 7 males and 6 females); MARVELD1 KO mice,
n =13 (including 6 males and 7 females).

In a treadmill test performed according to re with
additional modification, the speed of the transmission
bands was 12 m/min. The mice with lower speed received
electrical stimulation and the electrical stimulation fre-
quency was analyzed. For 10-month-old mice: WT males,
n=10; MARVELDI1 KO males, n =9; WT females, n =
11; MARVELDI1 KO females, # =9. In a treadmill test in
6—8-week-old mice, for male mice: WT and KO mice n =
10, respectively; for female mice: WT and KO mice n =9.

In gait test, mice were trained until they were able to go
through the passageway without any pause. Training was
conducted for 3 days twice a day. After finishing the
training, the stride length and base of support of mice
were analyzed®®. For 10-month-old mice: WT mice, n =
12 (including 8 males and 4 females); MARVELD1 KO
mice, # =10 (including 5 males and 5 females). For 6-8-
week-old mice: WT mice, n =11 (including 5 males and 6
females); MARVELD1 KO mice, n =9 (including 4 males
and 5 females).

The nociceptive response was assessed by the radiant
heat paw withdrawal test using a PL-200 radiant heat
apparatus (Chengdu Taimeng Technology & Market
Corporation, China), as described in a previous study65.
The intensity of the radiant heat was defined as 60%, and
the latency for paw withdrawal response against radiant
heat stimulation was measured. In this experiment, for
10-month-old mice: WT males, n =11; MARVELD1 KO
males, n=9; WT females, n=10; MARVELD1 KO
females, n = 9. For 6-8-week-old mice: WT males, n = 24;
MARVELD1 KO males, n=27; WT females, n=18;
MARVELD1 KO females, n = 23.

f, ©3

Morris water maze

In total, 6—8-week and 10-month-old mice were used in
this experiment. The Morris water maze test was per-
formed as mentioned in Xie et al.®® with some modifica-
tion. There were not <10 mice in each group. Briefly, a
white, circular pool (1.2m in diameter) was filled with
water (22 °C) made opaque with nontoxicity, and a cir-
cular platform (10 cm in diameter) was submerged 1 cm
beneath the surface of the water. The testing room was
well lighted, and training was conducted for 5 days twice a
day. The mice were placed randomly into the three
starting quadrants except the quadrant on the platform.
In each trial, the mice swam until they found the hidden
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platform or were guided to it, if they cannot find the
hidden platform within 120 s. The mice remained on the
platform for 10 s before being moved to the home cage. A
probe trial was conducted on the 6th day. The hidden
platform was removed, and mice were placed in the pool
and allowed to swim for 120s. For 10-month-old mice:
WT mice, n=11 (including 5 males and 6 females);
MARVELD1 KO mice, n =11 (including 6 males and 5
females). For 6—8-week-old mice: WT mice, n=13
(including 8 males and 5 females); MARVELD1 KO mice,
n =14 (including 9 males and 5 females).

Histology, immunohistochemistry and
immunofluorescence

Tissues were fixed in 4% paraformaldehyde (PFA).
Brains were either embedded in paraffin and sectioned to
4—-5- um sections or incubated with a high concentration
of sucrose (30%) and rapidly frozen and sectioned at 8
pm. For immunohistochemistry and immuno-
fluorescence, the following primary antibodies were used:
anti-Calb (1:200, Sigma, no.sab4200543), anti-Blbp (1:100,
Abcam, no.ab32423), anti-GFAP (1:200, Abcam, no.
ab7260 or ab10062), anti-ITGB1 (1:100, Abcam, no.
ab183666 or ab95623), anti-FAK (1:100, Abcam, no.
ab40794), anti-p397-FAK (1:100, Abcam, no.ab81298),
anti-BrdU (1:100, Sigma, no.b2531), anti-MARVELD1
(1:100, Abcam, no.ab91640 or no.ab169184) and anti-
NeuN (1:200, Abcam, no.ab104224).

In immunohistochemistry study, paraffin-embedded
sections were incubated in 3% H,O, after microwave
antigen retrieval. The sections were incubated with pri-
mary antibodies overnight at 4°C. Then sections were
incubated with biotinylated secondary antibodies for 1h,
followed by signal amplification and visualization with the
avidin—biotin complex (ABC) system and DAB substrate
(ZSGB Origene, Beijing, China). Zeiss microscope (Zeiss,
Axio Zoom. V16) was used to detect the immunohis-
tochemistry staining for sections in this study.

For immunofluorescence, the sections were incubated
with primary antibodies overnight at 4 °C after microwave
antigen retrieval and blocking in 3% bovine serum. Then
sections were incubated with donkey anti-mouse IgG
AlexaFluor-488 or donkey anti-mouse IgG AlexaFluor-
568 (Invitrogen, Carlsbad, CA) for 1 h. All sections were
counterstained with the nuclear marker DAPI (Burlin-
game, CA) for 15 min. A Zeiss fluorescence microscope
(Zeiss, Axio Zoom. V16) was used to detect the fluores-
cence for sections in this study. The coverslips in Sup-
plementary Fig. 7B were visualized by using Zeiss LSM
510 META confocal microscope.

TUNEL assay
The TUNEL assay was performed as the protocol in
TUNEL Assay kit (C10618, Invitrogen).
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Golgi-Cox staining

The Golgi staining was completed in accordance with
the protocol provided by the neuron Golgi staining Kit
(GenMed Scientifics Inc., USA). Briefly, the brain in 4- or
6-week-old mice was fixed and stained according to the
manufacturer’s instructions. Tissues were sectioned at
30-80 um and mounted on polylysine-coated slides.
There were not less than 30 neurons analyzed for each

genotype.

Transmission electron microscopy

The cerebral cortex and the cerebellum were collected
and cut into sections of 1-2-mm thickness. The tissues
were fixed with glutaraldehyde for 12 h and osmic acid for
3 h at 4°C. After washing, the specimens were dehydrated
in 30-50-70-85-95% of ethanol, each for 20 min and
twice in 100% ethanol for 30 min. The tissues were
embedded in embedding agent including Epon812,
DDSA, MNA and DMP-30. Then, the tissues were sec-
tioned and stained. Neurons in the cerebral cortex and
cerebellum were observed under the transmission elec-
tron microscope.

BrdU pulse chase assays

Experiments were performed as described in a previous
study®®. BrdU was administered into neonatal mice
intraperitoneally at a dosage of 200 mg per gram of body
weight. Multiple BrdU pulses were performed at 12-h
intervals. For analysis of cell proliferation, P6 mice were
sacrificed 1.5 h after a single BrdU pulse. For the analysis
of neuronal migration, animals were pulsed twice at P6
and sacrificed 30 h after the initial pulse. The sections
were subjected to anti-BrdU fluorescence
immunohistochemistry.

Real-time PCR and Western blotting

Total RNA was extracted with the Trizol reagent
(Invitrogen, Carlsbad, CA), and RNA was used for reverse
transcription into complementary DNA (cDNA), using
the PrimeScript TM RT-PCR Kit (Takara Biotechnology,
Tokyo, Japan). Real-time PCR was performed on
ViiATM7 Real-Time PCR System (Applied Biosystems,
Foster City, CA), using the SYBR Premix Ex Taq II kit
(Takara, Dalian, China). The primer sequences are listed
in Supplementary Table S2.

For Western blotting, briefly, the cells were washed with
ice-cold PBS and lysed with RIPA buffer (150 mM NaCl,
1% NP-40, 1% sodium deoxycholate, 0.1% SDS and 25
mM Tris-HCl, pH 7.6) containing protease inhibitors.
The whole-cell lysates were electrophoresed in 12% SDS-
PAGE and the protein was detected by an antibody. The
following primary antibodies were used: anti-ITGB1
(1:1000, Abcam, no.ab183666), anti-ITGB4 (1:1000,
Abcam, no.ab182120), anti-FAK (1:1000, Abcam, no.
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ab40794), anti-p397-FAK (1:800, Abcam, no.ab81298),
anti-MARVELDI1 (1:1000, Abcam, no.ab91640) and anti-
GAPDH (1:2000, ZSGB, no.TA08).

Microexplants culture, inhibitor and time-lapse
experiments

Experiments were performed as described in the study*®
and modified. Cerebellar microexplants were dissected
from 5-day-old mice. Cerebella was aseptically dissected
out and manually sliced into small tissue pieces. The
sliced pieces were then manually transferred to pre-coated
(100 g/ml poly-1-lysine) coverslips and placed in tissue
culture dishes. The microexplants were cultured in
medium containing 25 mM KCl and 10% calf serum in
Basal Medium  Eagle (BME, Gibco)  plus
penicillin—streptomycin—glutamine. The cultures were
exposed to FAK inhibitor 14, a phosphorylation-specific
inhibitor (20 uM, Sigma) for 24 h. In time-lapse experi-
ments, neuronal cells around the microexplants were
observed after being cultured for 30h, and the interval
time between pictures was 20 min.

Statistical analysis

All quantitative variables were expressed as the mean +
SD. The statistical analyses were carried out using one-
way ANOVA with Tukey’s multiple comparisons test or
Student’s ¢ test. One-way ANOVA was used in Fig. 1b,
Fig. le, Fig. 1g, Fig. 1h, Fig. 7a, Fig. 7e, Supplementary
Fig. 2A, Supplementary Fig. 4A-H, Supplementary Fig. 5C
and Supplementary Fig. 6A. Student’s ¢ test was used for
others. All of the reported p values were two tailed, and
p<0.05 were considered statistically significant. The
software Prism 7 (Graph Pad) was used for all statistical
analyses.
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