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1  | INTRODUC TION

HIV, the causative agent of AIDS, infects nearly 40 million people 
worldwide1 and represents one of the highest overall global burdens 
of disease.2 After an estimated entry into the human population in 
the early 20th century,3 it spread unnoticed until 1981 when a syn-
drome of opportunistic infections in previously healthy gay men4 led 
to the eventual characterization of the disease AIDS and identifica-
tion of the virus responsible.5 Since then, HIV has become one of the 
most intensively studied infections. These studies have addressed 
how it leads to massive reductions in CD4+ T-cell populations due 
to a combination of direct infection and generalized dysregulation 
of the immune system, and how it evolves rapidly to evade antivi-
ral immune defenses. Massive drug development efforts starting 
soon after identification of the virus have resulted in 27 different 
approved antiretroviral drugs,6 which can halt viral replication and 

prevent transmission and progression to AIDS. Yet despite these ad-
vances, we still do not have a clear explanation for the pathogenesis 
of infection nor therapies that can permanently cure the infection.

The rapid pace of HIV research has been made possible by two 
very convenient aspects of the infection: first, the CD4+ T cells that 
the virus infects continually circulate through the body, allowing 
them to be sampled in the peripheral blood, and second, virions are 
released by infected cells in sufficient amounts that they can also 
easily be measured in blood samples and tracked over time. Genomic 
viral RNA in virions can be readily quantified with RT-PCR, providing 
a convenient, reliable, and quantitative biomarker of infection status. 
Measurement of plasma HIV RNA (often referred to as “viral load”) 
led to the observation of complex yet repeatable patterns in individ-
ual patients over time (Figure 1). After initial infection (through sexual 
transmission, contaminated blood products, intravenous drug use, or 
perinatal events), viral levels increase exponentially with a doubling 
time of ~.65 days,7 reaching peak “viral loads” as high as 108 copies of 
viral RNA per mL of plasma (c/mL).8 Viral loads then decrease over the 
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period of a few weeks to a “setpoint” typically between 103 and 106 
c/mL, where they can remain relatively stable for many years.9 During 
this time, viral populations diversify and diverge from the strains that 
founded infection,10 often displaying population genetic signs of 
strong selection.11,12 CD4+ T cells slowly decrease over the course of 
chronic infection and eventually become so low (<200 cells/uL blood) 
that opportunistic infections occur and the individual classified as hav-
ing AIDS. Early in the epidemic, these characteristic trends inspired 
the use of mathematical models to understand these dynamics and 
help generate ideas about how to treat the infection.

Mathematical models are sets of equations or rules that describe 
how different entities in a system interact and change over time.15 
Different models may consider dynamics at very different scales — from 
individual molecules to cells to people to countries. Most commonly, 
models are formulated as systems of nonlinear differential equations or 
as sets of stochastic reactions constituting a Markov process. Roughly 
speaking, the use of models in biology can be divided into two cases. 
In one scenario, models may be constructed with the goal of explaining 
patterns that are observed in existing data, perhaps for generating and 
comparing hypotheses about the mechanisms that lead to the observed 
data or to estimate values of particular model parameters. While this 
approach has the advantage of allowing direct comparison of models 
with data, it has the downside that it is generally always possible to cre-
ate a model that reproduces observed data, but this does not mean that 
model is correct or useful. Alternatively, models may be constructed in 
the absence of directly related data, by starting from a basic mechanistic 
understanding of the biological processes involved and choosing only 
the processes considered most critical to the outcome. Values for re-
action rates can ideally be taken from direct measurement of individual 
steps in the process. Constructing such a model is a formal way of inte-
grating often disparate data into a single framework, and can be used to 
predict the outcomes of studies that have not yet been conducted based 
on the optimal use of prior information. Ideally, models can be devel-
oped and refined by iterating between these two approaches.

In this paper, we will review some examples of how mathematical 
models have improved our understanding of HIV treatment, including 
both successes and failures. The models we will discuss are commonly 

called “viral dynamics” models and track levels of virus and immune 
cells over time within individual infected people or animals (and thus 
are often referred to as “within-host” models). A huge amount of other 
work that will not be discussed here uses “between-host” models to 
describe how HIV spreads between individuals in a population (eg, 
References 16–18). The first half of the paper will focus on antiretrovi-
ral drugs, which are still the only approved drugs for treating HIV. The 
second half of the paper will discuss investigational therapies being 
tested with the hope that they may one day replace combination an-
tiretroviral therapy (ART) by permanently curing the infection. Many 
other excellent reviews of viral dynamic modeling of HIV exist in the 
literature (eg, References 19–21). Here, we do not attempt to cover the 
entire field but rather to detail some topics we personally have studied 
or feel are illustrative examples of these methods.

1.1 | Basic viral dynamics model

The backbone of most mathematical modeling work describing HIV 
infection within individual patients is the basic viral dynamics model. 
In its simplest form, this model tracks levels of the virus (V) and the 
CD4+ T cells that it infects (Figure 2a). Uninfected target cells (T) are 
assumed to enter the system at a constant rate λ, and die with rate 
constant dT (equivalent to an average lifespan of 1/dT). Infected cells 
(I) are produced with a rate proportion to levels of both virus and 
target cells and the infectivity parameter β. Infected cells produce 
free virus at a rate k and die with rate dI (which is assumed to be 
higher than dT). Free virus is cleared at rate c. These reactions can be 
described with the set of ordinary differential equations.

This model reproduces many of the qualitative features of acute 
and chronic HIV infection (Figure 2B,C). Following transmission of a 

Ṫ=𝜆−𝛽TV−dTT

İ=𝛽TV−dII

(1)V̇=kI−cV

F IGURE  1 Some features of the natural history of HIV infection. (A) Approximate time-course of HIV infection, with estimates of kinetics 
of viral load and CD4 count taken from longitudinal studies of acute or chronic infection.8,10,13 (B) Typical time-course of diversity (average 
pairwise distance between sequences) and divergence (percent genetic distance from first detected virus) of viral populations over the 
course of infection, with rates taken from Shankarappa et al.10 (C) Maximum likelihood phylogenetic tree for viral sequences sampled over 6 
years of infection (image taken from14 under CCBY license, created with data from Patient 6 in10).
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small number of founder virions, viral loads initially grow exponen-
tially, then peak before declining to eventually reach a stable set-
point level. Formulas can be derived from the model relating these 
features of viral load to the underlying parameter values.19 An im-
portant early insight provided by this model was that the decline 
from peak viremia could be explained without any specific later-
onset immune response. It is a natural consequence of the slower 
turnover of uninfected cells relative to infected ones.22 Because of 
the nonlinear infection rate that appears in Equation (1), the model 
displays a type of thresholding behavior in which the infection can 
only spread and persist if a parameter combination called the “basic 
reproductive number” is large enough. Otherwise, the virus will be 
cleared from the body. The basic reproductive number is given by 
the formula19,23

Mathematically, R0 = 1 is a “transcritical bifurcation” in the sys-
tem, and only for R0 > 1 is the extent of infection nonzero in the long 
run. R0 has an intuitive meaning: It is the average number of sec-
ondary infections caused by virions released from a single infected 
cell over its lifetime in a population of otherwise uninfected target 
cells. This phenomenon is exactly analogous to the concept of the 
basic reproductive number in population-level epidemic models,24 
with people or animals replaced by cells. The goal of treatment for 
any infection, in an individual or population, is to alter one of the 
parameter values such that R0 < 1.

The rate parameters for this model can be estimated in a number 
of different ways. Lifespans of immune cells can be estimated from 
in vivo heavy-water labeling experiments,25 and clearance rates of 
virus have been estimated from plasma apheresis.26 Before infec-
tion, CD4+ T cell levels are stable at measurable levels, and once 

the death rate is known, the production rate can be estimated as 
the quantity needed to achieve an equilibrium. In vitro infections, 
measurements of infected cell and virus levels in vivo, and ex vivo 
tissue imaging studies have been used to estimate the number of 
virions produced per infected cell.27 While it is generally impossible 
to measure the infection rate β directly, the observed rate of expo-
nential increase or the value of the viral load setpoint can be used to 
estimate it when other parameters are known. Another technique is 
to attempt to jointly estimate all parameters by fitting the model to 
longitudinal data, though in general all parameters of the model are 
not uniquely identifiable this way.28 Estimates of the basic reproduc-
tive number suggest values anywhere between 2 and 25 (median 
~8),7 implying that treatments must inhibit at least 95% of infections 
to lead to clearance (need, where is the treatment efficacy).

2  | MODELING ANTIRETROVIR AL 
THER APY

2.1 | What does viral load decay during ART tell us 
about the underlying dynamics of infection?

Perhaps the most influential use of this model has been in inter-
preting changes in viral load when antiretroviral drugs are admin-
istered.29,30 When ART is given, the viral load almost immediately 
begins to decay exponentially with a slope of ~1/d. Combination ART 
prevents successful infection of new cells, and if therapy is 100% 
effective, β → 0 and the viral dynamics equations have an analytic 
solution for viral load over time.29

(2)R0=
��k

dTdIc

(3)V(t)=V0

(

ce−dIt−dIe
−ct

)

c−dI

F IGURE  2 The basic viral dynamics model for HIV. (A) Diagram of the variables and reactions tracked by the model, as described in 
the text. B-C) Example time-course of viral loads (B) and CD4 counts (C) from the model, starting from initial infection, for 30 days before 
10 days of antiretroviral therapy. We assume that therapy changes β. As long as therapy leads to R0 < 1, the decay slope is not very sensitive 
to the treatment efficacy. Parameters for the model were: λ = 100 cells/uL/d, β = 3× 10−7/(virus/mL)/d, dT = .1/d, dI = 1/d, k = 250 virus/
cell/d, c = 25/d. For these parameter values R0 = 3. With treatment, where is the treatment efficacy. The initial condition for was T(0) = λ /dT, 
I(0) = 10−3 cell/uL/d, V(0) = 0.
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where V0 is the viral load at the time of therapy initiation. Thus, the 
decay dynamics only depend on the lifespans of free virus and in-
fected cells: viral load will decay with the slower of these two values 
after a shoulder phase approximately equal to the length of shorter 
lifespan. Since the lifespan of free virus is estimated to be around 
1/c ~ 1 h,26 but the observed decay rate is around 1/d, we must have 
dI > c and dI ~ 1/d.

When this decay was first observed and interpreted in the con-
text of this model,29–31 it was very surprising that virus-producing 
cells had such a short lifespan. This lifespan implies that many new 
cells must be infected each day to maintain setpoint viremia (esti-
mates of dII at setpoint from the model in Figure 2 scaled up to full 
body cell numbers are around 109). This meant that the long period 
of asymptomatic infection and constant viral levels prior to the de-
velopment of AIDS was not due to a latent or slow moving infec-
tion, but instead a highly dynamic balance between new rounds of 
infection and the death of infected cells. Since HIV generates a new 
mutation approximately every three infection events (mutation rate 
per base pair per replication cycle of 3× 10−5 and genome length of 
~10 kb19), these numbers allow for a tremendous amount of diversity 
to be generated, explaining the rapid rates of evolution observed.

Despite these and many other insights into HIV infection that 
have come from the viral dynamics model, it is important to note 
that the model does make a number of unrealistic assumptions. For 
example, this model assumes that cells start producing virus im-
mediately upon being infected, whereas in reality a cell must pass 
through multiple stages of the viral lifecycle before infectious viri-
ons are released. Additions to this model include this time delay,32–34 
which has many interesting effects, but most importantly, changes 
the relationship between the early viral growth rate and estimates of 
R0.7 CD4+ T cells obey very simplified dynamics in these equations, 
but are actually governed by more complicated homeostatic mech-
anisms that increase cell proliferation when numbers get low.35,36 
While CD4 +  T cell levels can decline dramatically during chronic 
infection, generally only activated cells are highly susceptible to in-
fection, and only a very small fraction of them are infected at any 
given time (around 1/1000).37,38 Including more of these details can 
improve the agreement between model predictions and observed 
CD4 counts but still cannot explain the entire progression to AIDS.39

Infected cells and free virus are not generally cleared at a con-
stant rate throughout infection because they are targeted and 
cleared by adaptive immune responses that expand in response to 
infection. Many models of antiviral immunity have been developed 
to explain different features of infection.12,19,40,41 Inclusion of im-
mune system effects is needed to reproduce the large drops from 
peak viremia to setpoint42,43 and explain patterns of viral evolution 
(eg, References 40,44,45). When treatment reduces R0 < 1 in this 
model, the simplest forms of the model predict that infection will 
eventually be completely cleared. However, early studies demon-
strated that no matter how long antiretroviral therapy is given and 
plasma viral levels remain undetectable by standard clinical assays, 
the infection always returns once therapy is stopped.46,47 This was 
found to be due to the presence of a “latent reservoir” of integrated 

proviral genomes in resting memory CD4+ T. These latent genomes 
are not transcribed into mRNA and translated in protein to com-
plete the viral lifecycle due to the quiescent state of these cells.48 
However, upon cellular activation, transcription and translation can 
resume. Latently infected cells can persist despite decades of ther-
apy,49,50 and reactivate later to restart infection.51–53 Consequently, 
antiretroviral therapy is not curative and currently must be taken for 
life. Models that include viral latency are now common in studies of 
both antiretroviral therapy and new curative strategies (Reference 
54 and discussed in later section).

Interestingly, many of these more complicated facets of infec-
tion can actually be inferred from looking more closely at viral load 
decay curves under different types of treatments. For example, 
after the first weeks of treatment with combination ART, the rate 
of viral load decay slows down, from a half-life of less than a day to 
a half-life of around 2 weeks. Then, after 3–6 months of treatment, 
the viral load becomes undetectable by standard clinical assays (limit 
of detection 50 c/mL), but ultrasensitive assays can reveal continual 
low-level viremia which decays extremely slowly, if at all (Figure 1B). 
Mathematical models have been used to interpret this decay, and 
in general the multiple phases are believed to reflect distinct pop-
ulations of infected cells (eg, Reference 55–58). The final phase of 
decay is now understood to be release of virus following reactivation 
of cells from long-lived latent reservoirs, and the decay reflects the 
very slow decline in the number of latently infected cells.49,59 The 
identity of the cells responsible for the second phase of decay is not 
yet clear. Another cell type that HIV can infect, macrophages, was 
suspected, but has now been ruled out,60 while other possibilities 
include partially resting CD4+ T cells in a lower state of activation, 
cells with a type of preintegration latency, release of virus from fol-
licular dendritic cells, or simply a decreased death rate of actively 
infected cells due to waning immunity.58,61,62

Further insight has been gained by comparing viral load decay 
curves in treatment with and without the integrase inhibitor (II) class 
of drug. Early on after this class was introduced, it was noticed that 
viral loads became suppressed faster than with reverse-transcriptase 
(RTI) or protease inhibitor therapy (PI). This was initially taken as 
evidence that these drugs were more efficacious, but for the rea-
sons detailed above (Figure 2, lack of dependence of decay curves 
on drug efficacy), modelers cautioned against this interpretation 
and hypothesized that the altered kinetics may be due to the later 
stage in the lifecycle at which the integrase inhibitor class acts.63–65 
Recent work by Cardozo et al.58 used densely longitudinally sampled 
viral load data66 during treatment with either (a) 3 RTIs + 1 PI, (b) 
1 II, or (c) 2 RTIs + 1 II to compare various models to fit the decay 
curves. Based on the various alterations in kinetics seen with the 
II (first phase viral decay separating into two phases, (1a) and (1b), 
second phase decay occurring later and slower), they identified the 
model that fit the data best without unnecessary complexity. They 
concluded that the virus infects two distinct cell subsets, one with a 
fast rate of integration and another with a slow rate of integration, 
but that once integration occurs, production of virions occurs with 
similar rates in each subset. Additionally, their results suggest that 
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the decay curves can only be explained if integrase inhibitors are 
not 100% effective even at the high concentrations administered, 
so that some integration proceeds slowly even in the presence of 
the drug. This agrees with direct measurements of drug efficacy 
in ex vivo assays (discussed in next section),67 and could be due to 
the ability of HIV genes to be expressed at low levels from uninte-
grated viral DNA. In Figure 3, we show the infection model that has 
emerged from these combined studies and the decay curves that are 
produced under different treatment regimes.

2.2 | How efficacious are antiretroviral drugs?

HIV drugs rapidly reduce viral loads, but they do not eliminate all of 
the problems associated with HIV infection. Older regimes included 
drugs with unpleasant or even toxic side effects, making it diffi-
cult for patients to consistently adhere to therapy, or necessitating 
treatment changes. If there are problems with adherence, the drugs 
can fail to keep viral load suppressed indefinitely, often due to the 

development of drug-resistant virus that can replicate despite the 
presence of therapy. Treatment success depends critically on choos-
ing a drug dose that minimizes adverse effects while preserving effi-
cacy, and on choosing drug combinations that inhibit viral replication 
and slow down the evolution of drug resistance. Since the number 
of possible drug combinations and doses is simply too high to test 
each in clinical trials, it is imperative to have models for drug efficacy 
that can be used to make informed decisions about administering 
therapy. In particular, these predictions require an understanding of 
the relationship between the concentration of a drug in the blood-
stream and the reduction in the new infection events.

The previous sections emphasized that the slope of viral load 
decay during therapy reflects of an important timescale in infec-
tion: the lifespan of virus-producing cells. However, analyzing these 
curves tells us very little about drug efficacy itself; that is, what per-
cent of new infections are blocked in the presence of drug? Viral 
dynamics models show that as long as therapy reduces viral repli-
cation below a critical threshold needed to push infection toward 

F IGURE  3 Multiphasic viral load decay under antiretroviral therapy suggests more complex infection dynamics. (A) A schematic of an 
augmented viral dynamics model that has emerged from various studies of viral load dynamics during therapy.55–59,66,68 Most drugs inhibit 
the ability of virus to infect new cells (red X). Two separate populations of target cells are hypothesized to exist, with the second type (T2, 
I2) being longer lived and proceeding to integrate virus more slowly. Infected cells of either type can be divided up into those who have not 
yet completed the phase of the viral lifecycle where integration occurs (“Immature”, Ii), and those who have (“Mature”, M), which allows 
investigation of different dynamics in the presence and absence of integrase inhibitor drugs (green X). Some infected cells transition to 
an extremely long-lived latent state (L). (B) Viral load decay with and without integrase inhibitors (II) (commonly used alternative drugs are 
protease inhibitors (PI) and nonnucleoside reverse-transcriptase inhibitors (NNRTI)). Labels above phases of decay show the parameter 
combinations responsible for each phase. (C) Dynamics of the different infected cell combinations predicted by the model. Dotted vs dashed 
lines have same meaning as in B. The model was created by combining conclusions from various papers. Values for parameters are also 
taken approximately from these studies: λ 1 = 100 cells/uL/d, β = 3× 10−7/(virus/mL)/d, dT1 = .1∕d, dI1 = .36/d, m1 = 2.6/d, λ 2 = 1 cells/uL/d,  
dT2

= .1∕d, dT2 = .02/d, m1 = .02/d, f = 10−2, a = 4× 10−4/d, dL = 10−4/d, dm= 1/d, k = 250 virus/cell/d, c = 25/d. With treatment with NNRTI or PI, 
β → 0, and for treatment with II, m → m(1 − ω) and the treatment efficacy where ω = .95.
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elimination (R0 < 1), the slope of viral load decay is relatively insen-
sitive to the exact drug efficacy (Figure 2B). For example, drugs that 
stop 90% vs 99% vs 99.99% of new infections when R0 ~ 4 are nearly 
impossible to distinguish. However, the differences in residual rep-
lication under these different hypothetical regimens could be very 
important in determining the risk of developing resistance, or the 
risk of losing suppression if a few drug doses are missed. Even if viral 
load kinetics were more sensitive to drug inhibition, it would still 
be difficult to use it to reconstruct a dose-response curve for drug 
efficacy vs concentration, since drug levels fluctuate significantly 
between doses due to the physiologic processes of absorption, dis-
tribution, metabolism, and elimination (Figure 4).

In vitro assays, which allow virus to spread in cell culture sys-
tems with fixed drug levels, can avoid these problems, but their 
physiological relevance could be minimal, since cell lines in culture 
media may respond to infection and treatment very differently than 
cells in vivo. Additionally, the relationship between the amount of 
infection after a certain time of spreading in culture and the actual 
reduction in per contact probability of infection could be highly 
nonlinear and dependent on other parameters in the system which 
are hard to control. Many of these problems can be overcome with 
a unique infection assay introduced by the Siliciano laboratory70 
and responsible for the most quantitative description of antiret-
roviral efficacy that we currently have. The assay is conducted in 
primary CD4+ T cells isolated from healthy donors and cultured in 
human blood serum, and uses virus that is capable of only a single 
round of infection and that labels productively infected cells by ex-
pressing a fluorescent protein along with viral genes. By comparing 
the fraction of cells infected in the presence vs absence of drug 
using flow cytometry, the inhibition of the drug can be quantified 
over many orders of magnitude.

Using this assay, Shen et al.67 generated dose-response curves 
describing the relationship between drug concentration (D) and the 
fraction of infections inhibited (compared to the absence of drug) for 

all approved antiretroviral drugs. These curves could be described 
extremely well by a simple two-parameter “Hill”-function71:

Here, fu is the fraction of infections that are unaffected by the 
drug (equivalent to one minus the drug efficacy). The IC50 describes 
the concentration of drug that reduces infections to one half the 
drug-free level, while the slope, m, describes how quickly inhibition 
changes as drug levels move away from the IC50.

Drugs differ substantially in their IC50 values, and there is overall 
no relationship between the drug class (determined by the phase of 
the viral lifecycle the drug inhibits) and the IC50. In contrast, strik-
ing differences between drug classes were observed in the slope 
of the dose-response curves (m). Nucleoside reverse-transcriptase 
inhibitors (NRTIs) and integrase inhibitors (IIs) all had slopes very 
close to 1, while values were near 1.7 for nonnucleoside reverse-
transcriptase inhibitors (NNRTIs) and fusion inhibitors (FI). Slopes for 
protease inhibitors ranged from ~2 to ~4.5 (Figure 4).

These results were surprising for a few reasons. First, HIV 
drug efficacy (as measured by older assays), was previously only 
reported in terms of the IC50, but inhibition at the higher concentra-
tions which are required clinically is highly dependent on the slope 
as well (Figure 4). The total viral inhibition at clinical drug levels 
calculated from these assays is higher in drug combinations rec-
ommended for first-line treatment and in those that outperform 
others in head-to-head randomized clinical trials.67 Second, the 
functional form for the Hill curve comes from considering a general 
mechanistic model of enzyme-substrate kinetics, and in this model 
the slope is directly related to cooperatively, which in this case 
would describe how many drug molecules must be bound to a tar-
get to inhibit it.72 However, for HIV drugs of most classes, there is 
only a single drug-binding site on each target, making slope values 
>1 very puzzling. A solution to this dilemma was proposed by in a 

(4)
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(
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F IGURE  4 Effects of antiretroviral drugs on viral infectivity. (A) Dose-response curves measured in single-round ex vivo assays for 
the integrase inhibitor raltegravir (RAL, IC50 = .015 uM, m = 1) and the protease inhibitor atazanavir (ATV, IC50 = .015 uM, m = 2.9). The 
assay measures fu (Equation 4), the fraction of uninhibited infections compared to the absence of drug, and we scale this up to effective 
basic reproductive number by multiplying by drug-free R0 = 10. Below R0 = 1 infection be controlled. (B) Same as A but plotted on log-log 
scale to highlight differences in suppression between drugs at clinically relevant concentrations. The thicker regions on the lines are drug 
levels between the typical peak and trough concentrations when drug is taken daily with perfect adherence. (C) Dose-response curves for 
wildtype (blue) and the K103N mutant (red) for the NNRTI nevirapine (NVP). Red shaded area is the “mutant selection window”, the range of 
drug concentrations where a resistant strain could outcompete wildtype and cause treatment failure. Parameters taken from.67,69
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follow-up paper by Shen et al.,67 using what they call a “critical sub-
set model”.73 They pointed out that for some targets of HIV drugs, 
there are multiple copies of the target in a single virion or infected 
cell. Although they are not covalently linked, these target mole-
cules work together to carry out the relevant reactions (eg, prote-
ase cleavage of HIV polyproteins) and complete the relevant step 
in the virus lifecycle. Inhibition of infection may require that some 
critical fraction of targets be bound to the inhibitor. Consequently, 
the dose-dependence of infection inhibition may act like the case 
of cooperative binding of a multivalent target. A mechanistic model 
of this kind produces dose-response curves that look very similar 
to Hill curves with slopes greater than 1. Interestingly, there are 
other situations in which only a single drug target per infected cell 
is relevant. For example, the integration of viral DNA into the host 
cell genome or the addition of a dNTP to a growing HIV cDNA chain 
during reverse transcription. In these cases, the measured slope 
values are close to 1.

In situations where drug levels are suboptimal, viral replication 
can occur and drug-resistant variants can arise.74 Resistance is not 
an all-or-nothing phenomenon, and most mutations only confer par-
tial resistance. To quantify the degree of resistance, viruses can be 
generated in the laboratory with specific suspected drug resistance 
mutations, and then subjected to the same dose-response curve 
measurements described above.75 Overall, the dose-response curve 
shifts in three possible ways for each resistant strain. In the absence 
of drug, mutant strains tended to have lower infection rates than 
wildtype strains. This “cost of resistance” is well-documented in 
many systems and occurs because of compromises in the function 
of viral proteins that occur when they undergo amino acid changes 
to avoid drug effects.76–80 Since this fitness cost shifts the entire 
dose-response curve down (Figure 4C), it also indirectly influences 
how much a resistant strain can replicate at any drug level. In the 
presence of drug, mutant strains in general have higher IC50 values 
as well as lower slope values. Single point mutations to NNRTIs tend 
to have larger effects on both parameters overall, and resistance to 
integrase inhibitors only significantly alters the IC50. Interestingly, 
resistance to PIs tends to change only the slope. Major public data-
bases that characterize the resistance levels of different mutations81 
as well as commercial testing services rely heavily on the IC50 to 
quantify resistance, but residual replication at clinical drug levels, 
especially to PIs, cannot be predicted without considering the three 
resistance parameters together.

Modern antiretroviral therapy typically involves combinations 
of three drugs, which makes it unlikely that viral strains containing 
resistance mutations to all three drugs will preexist at the time ther-
apy is started or emerge during treatment.68,82,83 Understanding the 
combined reduction in viral replication would be helpful for design-
ing optimal drug combinations. Early work in this field of pharmaco-
dynamics theorized that inhibition by drug combinations could be 
calculated depending on whether the drugs act on the same or dif-
ferent target molecules.84 Based on that idea and the known mech-
anisms of action of HIV drugs, Jilek et al.,85 studied the effect of 
combinations of two antiretroviral drugs and found that while some 

two-drug combinations behaved as expected, others interacted in 
surprising ways: sometimes the overall inhibition was much higher 
(“synergy”) or much lower (“antagonism”) than expected. Moreover, 
the combined inhibitory effect of drug combinations was highly 
correlated with treatment outcomes in clinical trials. Characterizing 
these relationships for all three drug combinations is logistically im-
possible ((25 drugs)3 * (10 doses)3 ~ 107) but Jilek et al. examined a 
subset, and found that three-drug efficacy could be predicted en-
tirely from two-drug data, meaning that all drug-drug pharmacody-
namic interactions were pairwise. Interestingly, similar results have 
been obtained for Escherichia coli and Staphylococcus aureus treated 
with antibiotics86 or cancer cell lines treated with chemotherapy 
drugs,87,88 despite the use of completely different biological sys-
tems, more complicated mechanisms of drug action, and different 
models to describe drug efficacy.

2.3 | How does antiretroviral efficacy and 
adherence influence treatment outcomes?

Dose-response curves tell us how much infection is instantaneously 
blocked at a given drug level, but they do not directly tell us what 
the long-term outcome of treatment will be. Drug levels fluctuate 
over time as drug is absorbed after a dose is taken and then cleared, 
and the individual pill-taking behavior of each person, including 
their potentially suboptimal adherence, can lead to more extreme 
peaks and troughs in drug levels. The pretreatment viral popula-
tion size, the mutation rate, and the residual replication of wildtype 
virus despite therapy determine the likelihood of generating resist-
ant strains, while the drug level and the way the mutation shifts the 
dose-response curve determine the likelihood that a resistant strain 
is selected and grows in the body. Understanding the complex inter-
action between all these factors and how they combine to determine 
therapy outcomes is impossible without mathematical models.

The viral dynamics models described in the first section can be 
modified to consider drug treatment in more detail.69,89–92 Although 
different drug classes act on different stages of the viral lifecy-
cle (which are not explicitly considered in the basic viral dynamics 
model), their effects can be approximated by a dose-dependent re-
duction in the rate at which virus infects cells (β → β (D), where β 
(D) is simply the drug-free value β 0 multiplied by the drug effect 
(Equation 4). Since drug concentrations are time-dependent, D can 
be replaced by D(t). Therefore, viral population dynamics proceed 
under a time-dependent infection rate (Figure 5).

To include the possibility of the evolution of drug resistance, the 
basic model can be augmented to include multiple strains of virus 
(wildtype/drug-susceptible, mutant/drug-resistant) which compete 
for target cells and can be produced by other strains via mutation 
(Figure 5A). It is important that models for long-term therapy out-
comes include a compartment of latently infected cells, which are 
seeded by active infection and can reactivate to produce actively 
infected cells, since otherwise temporary admistration of fully 
suppressive therapy would falsely be predicted to cure infection. 
Overall, this results in a multistrain, multicell type model with 
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time-dependent parameters (Figure 5D), which can be described by 
the following set of equations:

where the new variable L is the level of latently infected cells, and 
the subscript i refers to the genotype of the viral strain. This formu-
lation assumes that strains differ only in their infection rates (β i). 

Actively infected cells transition into latent infection at rate γ, a is 
the rate at which latently infected cells reactivate, and dL is the death 
rate of latently infected cells. Q is a matrix that includes information 
both on the mutation rate and the genetic structure of the popu-
lation, ie, is the probability that a cell initially infected by a virion 
of genotype i ends up carrying genotype j due to mutation during 
the reverse transcription process is Qij. The rates governing latently 
infected cells tend to be much smaller than those for activated cells 
or virus (eg, dL, γ, a ≪ dI, dT).

Even without dynamically simulating such a model, important 
insight can be gained on potential treatment outcomes just from 
at the relative dose-dependence of mutant and wildtype viral fit-
ness69,89 (Figure 4D). An important mathematical feature of the 
viral dynamics model is that it displays competitive exclusion; that 
is, one strain will always dominate the population while the other 
is reduced to low levels sustained only by new mutations or re-
lease from latent reservoirs. The “winner” of such a competition 
is the strain with the highest R0. If all strains have R0 < 1, infection 
will be suppressed (reduced to a level sustained only by latent 
cells while they remain). Thus, when drug levels are constant, the 
strain with the highest beta value determines treatment outcome, 
since R0 is directly proportional to β. When drug levels are low, 
the fitness cost incurred by a resistant strain dominates, meaning 
that the wildtype strain has higher infectivity (Figure 4C, left of 
pink shading). Treatment can fail due to replication of wildtype 
virus. At slightly higher drug levels, if a resistant strain exists in 
the population, it will be selected and dominate the infection, 
causing treatment failure with resistance. However, if resistance 
does not arise, wildtype virus can still grow. At yet higher drug 
levels, wildtype virus is controlled by the drug, and failure can 
only occur if resistance is present (Figure 4C, pink shading). At 
very high drug levels (which may or may not be clinically achiev-
able without toxicity), both resistant and wildtype strains will be 
suppressed and infection will be controlled (Figure 4C, right of 
pink shading).

When drug levels fluctuate due to intrinsic pharmacokinetics 
and adherence patterns, drug levels can oscillate between dif-
ferent selection regimes (Figure 5). Treatment outcomes under 
time-dependent drug levels can be approximated by comparing 
time-averaged R0 values between wildtype and resistant strains89 
or by considering the fraction of time spent in each of the “selec-
tion windows”69 (Figure 4C). These proxies are significantly better 
than simply measuring time-averaged drug concentration, which 
misses the highly nonlinear relationship between drug levels and 
viral fitness. However, they still have limited predictive power, since 
they ignore the fact that resistant strains do not always exist but 
instead must be generated stochastically via mutation before being 
available to be selected, and can go extinct if outcompeted tempo-
rarily.69 Consequently, the specific time-course of drug levels can 
influence outcomes.

More predictive models of viral dynamics under drug treatment 
can be created by (a) moving from differential equations, which as-
sume populations can be arbitrarily small and all processes occur 

Ṫ=𝜆−T
∑

i

𝛽i(t)Vi−dTT

İl=T
∑

j

𝛽j(t)VjQij− (dI+𝛾)Ii−aLi

V̇l=kIi−cVi

(5)L̇l= 𝛾Ii− (a+dL)Li

F IGURE  5 An augmented viral dynamics model can be used 
to simulate antiretroviral therapy and the evolution of drug 
resistance. (A) Basic viral dynamics model with the addition of a 
population of latently infected cells. A separate strain of virus, 
and the cells it infects, can be tracked for each genotype (Vi, Ii, 
Li). (B) Drug levels over time for a pill taken daily, and assumed to 
increase to maximum concentration immediately afterwards then 
decay exponentially. Each dose is taken with a 70% probability. (C) 
Basic reproductive number over time as a function of drug levels. 
(D) Levels of wildtype and resistant virus over time. At time zero, 
there is no resistant strain, but it is produced via mutation from the 
wildtype at the point indicated by the red star. Drug parameters: 
IC50 = 1, Cmax = 100, m = 1, half-life=6 hours. The resistant mutant 
has a 10-fold increase in IC50 and a twofold decrease in baseline 
fitness. Baseline R0 = 10.
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continuously, to stochastic models of finite-sized population, and 
(b) including realistic parameters for drug levels over time and drug 
effects on different viral genotypes (Figure 5). Our HIV model incor-
porating the experimental measurements of drug efficacy described 
above, the identity of the most common resistant strains and the 
rates at which they are generated by mutation, drug levels measured 
from clinical trials, and a calibrated model of viral dynamics was used 
to examine the relationship between patient adherence and treat-
ment outcomes for a panel of antiretroviral drugs.69 We found that 
multiple clinically observed trends could be explained by the model, 
and understood based on the underlying mechanisms. For example, 
there is a large range of low to moderate adherence levels where 
NNRTI-based therapy is prone to resistance, due to the long half-
lives of these drugs and the shallow dose-response curves. In con-
trast, boosted protease inhibitor therapy is more likely to fail just 
due to the growth of wildtype virus. The short half-life and sharp 
dose-response curves for these drugs make the time spent in the 
selection window where resistant strains are favored small. Similar 
models have now been developed for many different infections, in-
cluding HCV,93,94 HSV,95 TB,96 and others have applied similar mod-
els to HIV97–100 to examine effects such as archiving of transmitted 
resistant strains in the latent reservoir, tissue compartments with 
lower drug concentrations, details of intracellular pharmacokinetics 
of drugs, and host immunity.

Beyond the overall adherence level, more detailed char-
acteristics of the drug time-course can influence treatment 

outcomes. Wahl and Nowak89 showed that resistant strains are 
more likely to flourish when drug doses are taken more evenly 
as opposed to in a more “clumped” fashion, even when the total 
fraction of doses taken is the same (assuming that resistant 
strains always exist). When drugs are given in combination, the 
overlap between missed doses, which can differ depending on 
whether the drugs are packaged together in a “combo-pill” or 
allowed to be taken separately, can determine whether or not a 
drug combination is “resistance-proof”.69 Long-acting therapy, 
which is taken much less frequently than current daily dosing 
due to extended half-life formulations, is currently under devel-
opment,101 and there are worries it may be more prone to resis-
tance development in the presence of missed doses. Models can 
be used to explore this possibility, and for preliminary investiga-
tion of a once-weekly formulation of the drugs dolutegravir and 
raltegravir, and suggest failure rates should be similar to daily 
pills with similar average drug concentrations.102 The periodic 
highs and lows of drug levels during regular therapy can also 
promote resistance in an unexpected way. For example, viral 
populations may be able to evolve the ability to “synchronize” 
their lifecycle with the drug period, so that they only undergo a 
particular lifecycle stage when drug level blocking it is at their 
lowest, and therefore avoid the drug effect.34 Whether this ef-
fect is responsible for any clinical resistance patterns for HIV is 
still unknown.

3  | MODELING NOVEL THER APIES TO 
PERTURB L ATENT INFEC TION OR BOOST 
IMMUNE RESPONSES

Antiretroviral drugs are currently the only therapies approved 
form of treatment specifically targeting HIV, and they have tre-
mendous potential to control the global epidemic. Currently, ap-
proximately 18 million of the 39 million estimated HIV+ individuals 
are receiving combination ART,103 a tremendous feat of basic sci-
ence, clinical medicine, public health, and political will. However, 
antiretroviral therapy is not curative, and must be taken daily, for 
life, to keep viral levels suppressed. Over the past decade, an am-
bitious new research agenda has developed for HIV, with the goal 
of finding therapies that can permanently cure the infection.104 
There are two basic ideas for how this could be accomplished. One 
approach, often called a “sterilizing cure”, is to purge the body of 
enough residual latently infected cells that the chance that infec-
tion will be rekindled when treatment is stopped is extremely low. 
Another approach, often called a “functional cure”, is to equip 
the body with the ability to control the infection, rendering small 
amounts of virus released from reservoirs inconsequential.105 As 
was the case for antiretroviral therapy, mathematical models are 
being used to predict how and when these therapies would work, 
interpret their outcomes in trials, and help guide drug develop-
ment efforts (see related reviews 54,106) (Figure 6).

F IGURE  6 Schematic of the barriers to HIV cure and conceptual 
approaches to cure. Combination ART rapidly suppresses viral 
loads (solid red) to below clinical detection limits, but low-level 
viremia released from long-lived latently infected cells continues. 
Whenever therapy is stopped, viral load rebounds (solid red). 
“Sterilizing cure” approaches aim to reduce or completely clear 
the latent reservoir, or render cells in it incapable of reactivating 
(possible infection scenario shown in bottom red dotted line). 
“Functional cure” approaches aim to equip the body with the ability 
to control reactivating infection before full-blown rebound occurs 
(effectively by reducing R0 < 1) (three possible control scenarios 
shown in red dotted lines).
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3.1 | What maintains the latent reservoir and how 
can we reduce or clear it?

One branch of HIV cure research is focusing on developing 
therapeutics that can perturb the latent reservoir, ideally reduc-
ing its size or activity such that the risk of latently infected cells 
reactivating and rekindling infection when ART is stopped is re-
moved.107 In imagining such therapies, researchers have sought 
to better understand the processes that maintain a nearly stable 
population of latent cells despite decades of treatment and ex-
tremely low levels of detectable virus. The latent reservoir per-
sists mainly as proviruses integrated into the genomes of infected 
resting memory CD4+ T cells. The frequency of these latently 
infected cells is around 1 per million cells53,108,109 (depending on 
the particular assay used and the requirement for virus function-
ality), and its size decays with a half-life of 44 months on aver-
age.49,50 The majority of evidence supports the fact this reservoir 
is maintained by the underlying dynamics of these cells, and not 
by ongoing viral replication, which could lead to continual reser-
voir seeding despite antiretroviral therapy (Reference 54,110,111). 
While it was originally believed by many that latently infected cells 
must be intrinsically long-lived, since cell division was expected 
to reactivate viral expression and lead to eventual cell death, a 

series of studies over the past few years have convincingly demon-
strated that cells in the reservoir can proliferate while remaining 
latently infected (Reference 110,112). These studies have identi-
fied multiple latently infected cells — even in small samples — with 
virus integrated into identical sites113–115 in the genome or with 
sequence-identical virus116–119 — two findings that would be ex-
ceedingly unlikely to occur in two independent infection events 
and likely reflect division of infected cells.

The first class of drugs to be investigated to target latent in-
fection was the so-called “latency-reversing agents”. The rationale 
for these drugs is to increase the rate at which HIV expression is 
restarted in latently infected cells. If these drugs are given along 
with antiretroviral therapy, then these reactivated cells will release 
virus but the released virus will not be able to spread infection 
to other cells. Eventually, the productively infected cells should 
die — either by viral cytopathic effects or cytotoxic immune re-
sponses.120 Now that the role of proliferation in maintaining the 
reservoir has been established, there is renewed interest in de-
veloping “antiproliferative” therapies for HIV, which would reduce 
the ability of latently infected cells to self-renew. Mathematical 
models have been developed to predict how effective these treat-
ment strategies are likely to be.121,122 Two recent papers used a 
similar approach which we will summarize here. If it is assumed 

F IGURE  7 Dynamics of the latent reservoir during antiretroviral therapy in response to hypothetical treatments. (A) Diagram of the three 
main processes thought to impact the population of latently infected cells during therapy: cell proliferation (p), reactivation (a), and death 
(d). (B/C). Changes in the half-life of the latent reservoir when therapies are administered that perturb one of the parameters. Calculated 
using Equation (6), where half-life = log(2)/ δ, δ = d + a − p. Baseline parameter values, taken from Reeves et al., are a* = 5.7× 10−5/d, 
p* = .015/d, and d* = .0155/d, δ = 5.2e − 4/d, half-life = 44 months or 3.7 years (yellow lines). Red and blue lines are for alternate parameter 
sets. B) Hypothetical therapy that increases the activation rate (a) of latently infected cells during ART. When pretherapy a is varied (to 
10a* or a*/10), p is kept constant at p* but d is adjusted to keep δ the same. (C) Hypothetical therapy that decreases the proliferation rate 
(p) of latently infected cells during ART. When pretherapy p is varied (to 10p* or p*/10), a is kept constant at a* but d is adjusted to keep δ. 
the same. (D/E) Comparison of the relative magnitude of dynamic rates for the corresponding scenarios in the figure above. The height of 
the bar is proportional to the log10 of the value of the rate. The bar above the horizontal axis represents the process that contributes to 
reservoir increase (“gain rate”, p) whereas bars below are processes that contribute to reservoir decay (“loss rate”, a, d).
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that antiretroviral therapy is 100% effective, then the viral dynam-
ics equations (eg, Equations 1, 5) become linear and much simpler, 
as the dynamics of the latent reservoir become uncoupled from 
other variables. The dynamics of the expected number of latent 
cells (L) over time can be described by

where as before, a is the rate of latent cell reactivation, dL is the rate 
of latent cell death, and now we have added a term p for prolifer-
ation (division) of these cells. To be complete, we could also track 
activated cells produced when latently infected cells reactivate, and 
the possibility for these cells to revert to latency (as in Equation 5), 
but adding these dynamics just changes the effective value of the 
rate a. This equation describes simple exponential decay of the la-
tent pool, where the observed decay rate δ is determined by the sum 
of these rates (δ = dL + a − p). This model can be used to examine how 
increases in either a (the target of latency-reversing agents) or p (the 
target of antiproliferative therapy) alter the net decay rate. However, 
the effect of interventions on these parameters strongly depends 
on their underlying values, and while the observed half-life of the 
reservoir tells us about δ (=log(2)/44 mo = .2/y), it is extremely dif-
ficult to estimate the relative contribution of each process. Petravic 
et al.,122 examined how these uncertainties effect estimates of effi-
cacy for interventions on a, while Reeves et al.,121 explored similar 
questions for p. In Figure 7, we show examples of some output from 
their models.

Values for the baseline rate of reactivation of latent cells 
can be estimated from the timing of viral rebound,28,121,123 and 
in vivo cell proliferation rates can be estimated from stable iso-
tope infusion experiments that label cells and track label decay 
over time.25,121 With these estimates, p and dL are around two or-
ders of magnitude larger than a, and so large increases in a by a 
hypothetical latency-reversing drug are predicted to be needed 
to significantly decrease the half-life of the reservoir (Figure 7B, 
yellow line). If estimates of a are off and it is actually 10-times 
larger, therapy outcomes are more optimistic (Figure 7B, red line). 
For antiproliferative therapy, even very small reductions in the la-
tent cell division rate could dramatically increase reservoir decay 
(Figure 7C, yellow line), though the benefit is more modest if latent 
cell turnover is lower than the values measured in all central mem-
ory T cells (eg, Figure 7C, blue line).

These results highlight the difficulty of predicting therapy 
outcomes from models, even qualitatively, when the underlying 
parameters are difficult to measure. There are many reasons why 
cells latently infected with HIV may not have the same turnover 
rates as typical resting memory CD4+ T cells. For example, provi-
ral integration may occur in host genes responsible for cell division 
or survival and impact their rates, a subpopulation of cells may 
be more susceptible to latent infection, immune killing of infected 
cells expressing viral proteins may select over time for cells in a 

“deeper” latency, or cells with particular antigen specificities may 
be preferentially infected and maintained over time. Preliminary 
trials of reservoir-targeted drugs have had their own challenges. 
Latency-reversing agents have had some success in increasing 
HIV gene expression but have not impacted reservoir size,124–126 
perhaps because of their lack of specificity for the HIV promo-
tor, posttranscriptional blocks, and lack of recognition of cells by 
cytotoxic immune responses. Antiproliferative therapies are still 
at an early stage, but it will likely be difficult to find compounds 
that substantially reduce division of infected cells without being 
overtly immune suppressive or triggering compensatory mecha-
nisms to maintain cell population sizes.

The differential equation-based model above can give esti-
mates for the expected decay rate of the latent reservoir, but to 
achieve cure, the probability that at least one cell remaining in 
the reservoir reactivates and restarts high-level infection before 
dying must be zero. To estimate these odds, a stochastic model 
is needed. An example of this type of calculation is given in Hill 
et al.,123 Like the above calculation, the exact relationship between 
reservoir size and probability of cure predicted from the stochastic 
model is highly dependent on estimates of the underlying param-
eter values.

3.2 | What can viral dynamics tell us about the 
mechanism of action of new immunotherapies?

Another approach to treat and ideally cure HIV infection involves 
immunotherapies, which perturb the immune response to infec-
tion, either by boosting antiviral immune responses or reversing 
infection-induced immune suppression.127 There are many types of 
immunotherapeutic agents, ranging from small-molecules that act 
on immune signaling pathways, to biologics like broadly neutralizing 
antibodies, checkpoint inhibitors, or vaccines, to cell therapies in-
cluding chimeric antigen receptor T cells. These drugs are being ex-
amined alone or in combination with ART for their ability to promote 
either sterilizing or functional cures for HIV. Even in the few trials 
that have already been conducted, mathematical models are helping 
to understand the mechanism of these therapies.

In recent studies by Caskey et al.,128 and Lu et al.,129 the broadly 
neutralizing antibody (“bNAb”) 3BNC117 was administered to pre-
viously untreated HIV+ individuals. Broadly neutralizing antibodies 
bind and inhibit infection by a wide range of HIV strains with high 
potency. Similar to trials of antiretroviral therapy, the kinetics of 
viral decay can be examined in the context of viral dynamics mod-
els. However, unlike antiretroviral therapy, bNAbs may alter the 
clearance rate of virus or the lifespan of infected cells in addition 
to blocking new infection events. Therefore, decay curves may be 
more sensitive to the efficacy of the therapy and not just the un-
derlying pretreatment dynamics of infection. These studies found 
that viral load decay during 3BNC117 treatment was faster than 
that seen during ART, but much slower than the model predicted 
if the effect of the antibody was only to clear virus.129 However, if 
the model was augmented to include the ability of the antibody to 

L̇=pL−aL−dLL

(6)L(t)=L0e
−(dL+a−p)t
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mediate killing of infected cells, it could reproduce the observed ki-
netics. (Certain antibodies are capable of “antibody-dependent cell-
mediated cytotoxicity” or ADCC, whereby cells bound with antibody 
are lysed by cytotoxic immune cells). After this novel mechanism was 
suggested by modeling, detailed experiments were done in human 
cells in culture and in humanized mice to show that indeed 3BNC117 
could lead to killing of infected cells. This preliminary study only ad-
ministered a single infusion of antibody, which reduced viral load by 
~1.5 log before antibody washed out and infection levels increased 
toward baseline. It remains to be seen whether repeated long-term 
treatment could lead to eventual control or whether viral rebound 
will always occur when the therapy is withdrawn.

Another way of administering immunotherapy for HIV is to give 
it in conjunction with antiretroviral therapy. The idea is that immuno-
therapy could help facilitate the clearance of latently infected cells 
that are stochastically or that immunotherapy could help prime the 
immune system in the presence of low-level antigen due to residual 
release from reservoirs. To test the efficacy of this strategy, all ther-
apies are stopped, and viral load is monitored over time. When and 

if rebound occurs, the timing and kinetics can be used to understand 
the effect of treatment. Models suggest that different hypothetical 
treatment effects should lead to different alterations in rebound ki-
netics compared to the ART only case (Figure 8).

A few earlier studies conducted this type of “structured” or “an-
alytic” treatment interruption and have provided proof-of-principle 
for using rebound as a measure of preinterruption infection status. 
In the AUTOVAC study, individuals on long-term suppressive ART 
underwent a series of consecutive treatment interruptions.46 During 
each interruption, viral loads rebounded, and once levels passed a 
threshold therapy was restarted for three months before another 
interruption. This study found that in the second and third interrup-
tions, the rate of exponential increase in viral load was decreased 
compared to the first interruption (doubling time increased from 
1.4 to 1.9 days), whereas the inferred initial level of viremia from 
which rebound started — which is directly related to the “reser-
voir” size and exit rate — was higher (by ~10-fold). These findings 
suggest that during later interruptions, the immune response may 
have been boosted compared to the first, which would be expected 

F IGURE  8 Modeling viral rebound following ART and immunotherapy. (A) Design of a study in which two novel immunotherapies, a 
TLR7-agonist and a therapeutic vaccine (Ad26/MVA), where administered during ART treatment of SIV-infected rhesus macaques, followed 
by a treatment interruption.130 The time-course of viral loads for one example animal is shown. (B) A mathematical model of viral dynamics 
augmented to include an antiviral immune response that is stimulated in a viral load-dependent way. (C) Example time-courses of viral 
load for one animal from each treatment group, along with fits to the model. Each animal was fit to the model individually in a Bayesian 
framework (with six estimated parameters), and maximum a posteriori values for each parameter were used to plot the results. (D) Group 
mean values (for 8–9 animals per group) and standard deviations of two parameters that displayed significant variation between groups.
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if the time between interruptions was short enough that some of 
the shorter lived antiviral immune response stimulated by the earlier 
interruptions persisted (long-lived memory cells from pretreatment 
exist at all interruptions). They additionally suggest that the pool 
of cells contributing to rebound is increased at later interruptions. 
Although rebound after long-term ART is generally assumed to arise 
from reactivated latently infected cells, it is unlikely that these short 
interruptions substantially increased the reservoir size compared 
to everything that was seeded before initial therapy.131,132 Instead, 
it is more likely that the three months of treatment between inter-
ruptions was insufficient to clear intermediate-lifespan-infected 
cells.133 These modeling findings agree with follow-up experimental 
work, which showed an increase in HIV-specific CD8 T cells during 
later interruptions.134

A study conducted in SIV-infected rhesus macaques, a highly 
representative animal model for infection that uses a virus closely 
related to HIV,135 examined the impact of the time of starting ART 
on later rebound.136 Therapy was started at a range of times be-
tween 3 days and 2 weeks after infection, and then after 6 months 
treatment was withdrawn. All animals experienced viral rebound, 
but the kinetics differed between groups. We would expect that an-
imals starting treatment earlier would have smaller latent reservoir 
sizes (less opportunity for seeding) and weaker antiviral immune re-
sponses. Both experimental assays and fitting viral dynamics mod-
els to rebound trajectories supported these hypotheses: very early 
initiation of therapy lead to the steepest increase in viremia during 
rebound but the longest delay until the first detectable viral load, 
which are the predicted effects of lower rates of reservoir exit and 
decreased effective viral fitness (eg, Figure 8).

Neither very early therapy initiation or repeated treatment in-
terruptions are effective or scalable interventions, but these stud-
ies do provide a proof-of-concept that viral rebound kinetics are 
reflective of preinterruption interventions and they have informed 
the analysis of two recent preclinical immunotherapy studies. The 
main drug of interest in these studies was an agonist of Toll-like re-
ceptor 7 (TLR7), which is involved in the innate immune system re-
sponse to viral infections. In the first study, the TLR7-agonist was 
given to SIV-infected macaques during suppressive ART, and later 
all treatments were stopped.137 Most animals rebounded in both 
treatment (TLR7 + ART) and control (ART only) groups, and math-
ematical modeling of rebound kinetics showed that rebound trajec-
tories were altered slightly in groups receiving the TLR7 agonist in a 
way that suggested a partial reduction in the latent reservoir along 
with alterations to target cell levels and viral immune responses.137 
Consistent with these suggestions, many animals experienced 
transient increases in viral load during TLR7-agonist administra-
tion, despite ART, suggesting that this therapy had an unexpected 
latency-reversing effect, and two of the thirteen animals in the inter-
vention group never had detectable viremia after therapy cessation.

In a follow-up study,130 the TLR7 agonist was tested along with 
a therapeutic vaccine product (both given during ART). In some ani-
mals treated with the vaccine, with or without the TLR7-agonist, vire-
mia rebounded rapidly to high levels but was then controlled to very 

low or completely undetectable levels. These dynamics are never 
produced by the basic viral dynamics model, which always leads to 
chronic infection. Alternative models were explored to explain the 
observations. A model that includes a population of cells belonging 
to the adaptive immune response which expand in response to viral 
antigen and act to reduce infection could explain the kinetics, and 
allowed for estimates of the relative contribution of reductions in 
the latent reservoir vs enhanced immunity in the altered kinetics.130 
Overall, the modeling analysis suggested that the role of the vac-
cine was not in boosting clearance of latently infected cells prior to 
therapy interruption, but in creating an effective primed population 
of immune cells that do not exist in animals treated only with ART.

While these models have provided insight into treatment inter-
ruption trials was a way to evaluate HIV cure studies, there is signif-
icant room for improvement in future studies. A major limitation is 
the lack of detailed longitudinal data on levels and functionality of 
a panel of components of the immune response, which would allow 
modelers to conduct more formal hypothesis testing about potential 
mechanisms. The models used to explain these data are completely 
deterministic, whereas reactivation from latency, especially follow-
ing reservoir-reducing interventions, may be highly stochastic.123,138 
They also only track a single strain of virus, but it is possible that fit-
ness differences between multiple strains that exit the reservoir and 
contribute to rebound, or that new strains that arise via mutation 
early in rebound contribute to viral and immunologic dynamics. For 
example, the number of antigenically distinct strains that reactivate 
may impact the chance of immune control. Another limitation is the 
uncertainty about the time it takes antiretroviral therapy to effec-
tively “wash out” of the system after the last dose is taken. Hence, 
the relative contribute of drug washout, waiting time to latent cell 
reactivation, and time for infection to grow to the detection limit are 
hard to separate, which limits the quantitative interpretation of res-
ervoir reactivation rates estimated from models. Closer connections 
between modelers and experimentalists in the early-stage design of 
HIV cure trials will help ensure that mathematical model can be as 
informative as possible.

4  | CONCLUSIONS

Mathematical models have been used to understand the dynamics 
of HIV within individual patients ever since the infection was first 
identified. These “viral dynamics” models have provided many im-
portant insights into infection and have been extensively used to 
characterize the response of HIV to antiretroviral therapy. They 
have elucidated the rapid turnover rate of virus-producing cells 
during infection, suggested the presence of long-lived latent cells 
that occasionally reactivate, and predict risks of the emergence of 
drug resistance during treatment. Now that research efforts are 
underway to find curative therapies for HIV, new models are being 
developed to help guide the development of these drugs, such as 
latency-reversing agents, antiproliferative therapies, and immuno-
therapies. Models are being used to interpret the kinetics of viral 
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rebound when antiretroviral therapy is stopped and to predict the 
likelihood of cure under different investigational therapies.

Despite the many successes of viral dynamics models for HIV, 
there are still aspects of infection that cannot be reproduced with 
mechanistic mathematical models, highlighting the gaps in our under-
standing of HIV pathogenesis. For example, a unifying explanation 
for the long-term progression of infection and the development of 
AIDS is still lacking. HIV is a rapidly evolving infection and the popu-
lation genetics of infection have been extensively characterized, but 
there is a general disconnect in the literature between viral dynam-
ics models that incorporate evolution and analysis of viral sequence 
data. HIV dynamics are intricately connected to the population dy-
namics of lymphocytes, which can act as both prey and predators of 
the virus. However, most models of these populations are relatively 
heuristic and longitudinal functional data on these cell populations 
with which to compare models are rare. Much work remains to be 
done in the field of viral dynamics modeling of HIV. The development 
of next-generation methods to connect mechanistic models to high-
throughput biological data, and the rapid expansion in the classes of 
drugs that can be used to perturb infection, have the potential to close 
some of these gaps in our understanding of host-pathogen interac-
tions for HIV.
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