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Abstract

Recent studies have highlighted the importance of assessing the robustness of putative biomarkers 

identified from experimental data. This has given rise to the concept of stable biomarkers, which 

are ones that are consistently identified regardless of small perturbations to the data. Since stability 

is not by itself a useful objective, we present a number of strategies that combine assessments of 

stability and predictive performance in order to identify biomarkers that are both robust and 

diagnostically useful. Moreover, by wrapping these strategies around logistic regression classifiers 

regularised by the elastic net penalty, we are able to assess the effects of correlations between 

biomarkers upon their perceived stability.

We use a synthetic example to illustrate the properties of our proposed strategies. In this example, 

we find that: (i) assessments of stability can help to reduce the number of false positive 

biomarkers, although potentially at the cost of missing some true positives; (ii) combining 

assessments of stability with assessments of predictive performance can improve the true positive 

rate; and (iii) correlations between biomarkers can have adverse effects on their stability, and 

hence must be carefully taken into account when undertaking biomarker discovery. We then apply 

our strategies in a proteomics context, in order to identify a number of robust candidate biomarkers 

for the human disease HTLV1-associated myelopathy/tropical spastic paraparesis (HAM/TSP).

1 Introduction

Several recent articles have emphasised the importance of considering the stability of gene 

signatures and biomarkers of disease identified by feature selection algorithms (see, for 

example, Zucknick et al., 2008; Meinshausen and Bühlmann, 2010; Abeel et al., 2010; 

Alexander and Lange, 2011; Ahmed et al., 2011). The aim is to establish if the selected 

predictors are specific to the particular dataset that was observed, or if they are robust to the 

noise in the data. Although not a new concept (see, for example, Turney, 1995, for an early 

discussion), selection stability has received a renewed interest in biological contexts due to 

concerns over the irreproducibility of results (Ein-Dor et al., 2005, 2006). Assessments of 

stability usually proceed by: (i) subsampling the original dataset; (ii) applying a feature 

selection algorithm to each subsample; and then (iii) quantifying stability using a method for 

assessing the agreement among the resulting sets of selections (e.g. Kalousis et al., 2007; 
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Kuncheva, 2007; Jurman et al., 2008). There is an increasing body of literature on this 

subject, and we refer the reader to He and Yu (2010) for a comprehensive review.

One of the principal difficulties with stability is that it is not by itself a useful objective: a 

selection strategy that chooses an arbitrary fixed set of covariates regardless of the observed 

data will achieve perfect stability, but the predictive performance provided by the selected 

set is likely to be poor (Abeel et al., 2010). Since we ultimately seek biomarkers that are not 

only robust but which also allow us to discriminate between (for example) different disease 

states, it is desirable to try to optimise both stability and predictive performance 

simultaneously. The first contribution of this article is to present a number of strategies for 

doing this. We follow Meinshausen and Bühlmann (2010) in estimating selection 

probabilities for different sets of covariates, but diverge from their approach by combining 

these estimates with assessments of predictive performance. Given that our approach uses 

subsampling for both model structure estimation and performance assessment, it is 

somewhat related to double cross validation (see Stone, 1974, and also Smit et al., 2007 for 

an application similar to the one considered here); however, we do not employ a nested 

subsampling step.

Our second contribution is to provide a procedure for quantifying the effects of correlation 

upon selection stability. As discussed in Yu et al. (2008), correlations among covariates can 

have a serious impact upon stability. Since multivariate covariate selection strategies often 

seek a minimal set of covariates that yield the best predictive performance, a single 

representative from a group of correlated covariates is often selected in favour of the whole 

set. This can have a negative impact upon stability (Kirk et al., 2010), as the selected 

representative is liable to vary from dataset to dataset. We hence consider a covariate 

selection strategy based upon logistic regression with the elastic net likelihood penalty (see 

Zou and Hastie, 2005; Friedman et al., 2007, 2010, and Section 2.4), which allows us to 

control whether we tend to select single representatives or whole sets of correlated 

covariates. This allows us to investigate systematically how our treatment of correlation 

affects stability.

2 Methods

Let D be a dataset comprising observations taken on n individuals, D = xi, yi i = 1
n . Each xi 

= [xi1, … , xip]⊤ ∈ ℝp is a vector of measurements taken upon p covariates v1, … , vp, and yi 

∈ {0, 1} is a corresponding binary class label (e.g. case/control). A classification rule is a 

function, h, such that h(x) ∈ {0, 1} is the predicted class label for x ∈ ℝp. For the time 

being, we assume only that h was obtained by fitting some predictive model ℋθ to a training 

dataset (here, θ denotes the parameters of the model). We write ℋθ (D) to denote the fitted 

model obtained by training ℋθ on dataset D.

2.1 Assessing predictive performance

Given dataset D and classification rule h, we can calculate the correct classification rate 
when h is applied to D as the proportion of times the predicted and observed class labels are 

equal,
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c D; h = 1
n ∑

i = 1

n
𝕀 h xi = yi , (1)

where (Z) is the indicator function, which equals 1 if Z is true and 0 otherwise.

One approach for assessing the predictive performance of model ℋθ is random subsampling 

cross validation (Kohavi, 1995). We train our predictive model on a subsample, Dk, of the 

training dataset, and then calculate the correct classification rate, ck, when the resulting 

classifier is applied to the remaining (left-out) data, D\k = D\Dk. Repeating for k = 1, … , K, 

we may calculate the mean correct classification rate and take this as an estimate of the 

probability that our model classifies correctly,

ℙ classify correctly ℋθ = 1
K ∑

k = 1

K
ck . (2)

2.2 Assessing stability

We suppose that – as well as a classification rule – we also obtain a set of selected 

covariates, sk, when we train ℋθ on subsample Dk. More precisely, we assume that only the 

covariates in sk appear with non-zero coefficients in the fitted predictive model ℋθ (Dk) (for 

example, this will be the case if we fit logistic regression models with lasso or elastic net 

likelihood penalties). For any subset of the covariates, V ⊆ {v1, … , vp}, we may then 

estimate the probability that the covariates in V are among those selected,

ℙ select V ℋθ = 1
K ∑

k = 1

K
𝕀 V ⊆ sk . (3)

This quantifies the stability with which the covariate set V is selected (Meinshausen and 

Bühlmann, 2010).

2.3 Combining stability and predictive performance

Equation (2) provides an assessment of predictive performance, but gives no information 

regarding whether or not there is any agreement among the selected sets sk. On the other 

hand, Equation (3) allows us to assess the stability of a covariate set V, but does not tell us if 

the covariates in V are predictive. Since these assessments of stability and predictive 

performance both require us to subsample the training data, it seems natural to combine 

them in order to try to resolve their limitations. We here provide a method for doing this.

We shall henceforth assume that the parameters, θ, of ℋθ may be tuned in order to ensure 

that precisely m covariates are selected. We then write smk for the selected set of size m 
obtained when ℋθ is trained on Dk, and hmk for the corresponding classification rule. 

Similarly, we define cmk = c(D\k; hmk). Figure 1 provides a summary of this notation and the 

Kirk et al. Page 3

J Comput Biol. Author manuscript; available in PMC 2018 September 25.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



way in which we find smk and cmk. Having made these definitions, we may additionally 

condition on m in Equations (2) and (3) to obtain,

ℙ classify correctly ℋθ, m = 1
K ∑

k = 1

K
cmk, (4)

and

ℙ select V ℋθ, m = 1
K ∑

k = 1

K
𝕀 V ⊆ smk . (5)

Instead of estimating the probability of correct classification as in Equation (4), we may 

wish to restrict our attention to those subsamples for which a particular subset V of the 

covariates were among the selections. This allows us to quantify the predictive performance 

associated with a particular set of covariates, rather than averaging the predictive 

performance over all covariate selections. We therefore calculate the mean correct 

classification rate over the subsamples Dk for which V ⊆ smk, and identify this as an estimate 

of the conditional probability that our classifier classifies correctly given that it selects V,

ℙ classify correctly select V , ℋθ, m = 1
∑k = 1

K 𝕀 V ⊆ smk
∑

k = 1

K
cmk 𝕀 V ⊆ smk . (6)

By multiplying together Equations (5) and (6), we obtain an estimate of the joint probability 

of our classifier both selecting V and classifying correctly,

ℙ select V and classify correctly ℋθ, m = 1
K ∑

k = 1

K
cmk 𝕀 V ⊆ smk . (7)

Equation (7) provides a simple probabilistic score that combines assessments of predictive 

performance and stability.

2.3.1 Covariate selection strategies—Adopting the procedure described in Figure 1 

provides us with a collection, smk, cmk k = 1
K  of K covariate sets and corresponding correct 

classification rates. In general, the smk will not all be the same, so we must apply some 

strategy in order to decide which to return as our final set of putative biomarkers. We could, 

for example, return the set that is most frequently selected; i.e. choose the set V whose 

probability of selection (Equation (5)) is maximal. In Table 1, we present a number of 

probabilistic and heuristic strategies (S1 – S7) that exploit Equations (5) – (7) in order to 

optimise prediction performance, stability, or combinations of the two. All strategies are 

defined for a given model ℋθ and set size m.
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Strategies S1 – S4 of Table 1 are joint strategies, which consider the joint selection and 

correct classification probabilities associated with sets of covariates. The differences 

between these strategies are illustrated in Figure 2. In contrast, S5 and S6 make use of the 

marginal selection and correct classification probabilities associated with individual 
covariates. S7 is of a slightly different type, discussed further in Section 2.3.2.

2.3.2 Choosing between different m and ℋθ—Each of the strategies in Table 1 

returns a final selected set and an associated score (for each pair ℋθ, m). If we have a range 

of predictive models and values for m, then we can consider all of them and return as our 

final selected set the one that gives the highest score (over all m and ℋθ). Adopting this 

approach, strategy S7 can be viewed as finding the optimal pair ℋθ
∗, m∗  for which the 

estimated probability of correct classification (Equation (4)) is largest, and then returning the 

most predictive set of size m* selected by ℋθ
∗ . This is analogous to the common practice of 

using predictive performance to determine an appropriate level of regularisation.

2.4 Implementation

We focus on selection procedures that use logistic regression models with elastic net 

likelihood penalties (Zou and Hastie, 2005). The standard logistic regression model for the 

binary classification problem is as follows,

P y = 1 υ1 = x1, …, υp = xp = g β0 + βTx , (8)

where β0 ∈ ℝ, β = [β1, … , βp]⊤ ∈ ℝp, x= [x1, … , xp]⊤ ∈ ℝp, and g is the logistic function. 

Estimates for the coefficients β0, β1, … , βp can be found by maximisation of the (log) 

likelihood function.

The elastic net introduces a penalty term λQα(β) comprising a mixture of 1 and 2 

penalties, so that the estimates for the coefficients are given by,

β0
EN , β EN = argmax

β0, β

1
N ∑

i = 1

N
yilog f β0 + βTxi + 1 − yi log 1 − f β0 + βTxi

− λQα β ,

(9)

where

Qα β = ∑
j = 1

p 1
2 1 − α β j

2 + α β j . (10)

The estimated coefficients now depend upon the values taken by the parameters α and λ. 

When α = 1, we recover the lasso ( 1) penalty, and when α = 0 we recover the ridge ( 2) 
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penalty. As α is decreased from 1 toward 0, the elastic net becomes increasingly tolerant of 

the selection of groups of correlated covariates. In the following, we consider a grid of α 
values (α = 0.1, 0.2, … , 1), and consider the order in which covariates are selected (acquire 

a non-zero β coefficient) as λ is decreased from λcrit (the smallest value of λ such that 

β EN = 0, 0, …, 0 ⊤) toward 0. Each different value of α defines a different classification/

selection procedure, ℋα
1 , …, ℋα

10 , where ℋα
j  corresponds to α = j/10. Throughout, we use 

the glmnet package in R (Friedman et al., 2010) to fit our models.

Although we use the elastic net penalty to select covariates, we use an unpenalised logistic 

regression model when making predictions. This two-step procedure of using the elastic net 

for variable selection and then obtaining unpenalised estimates of the coefficients in the 

predictive model is similar to the LARS-OLS hybrid (Efron et al., 2004) or the relaxed lasso 

(Meinshausen, 2007).

3 Examples

3.1 Simulation example

Following a similar illustration from Meinshausen and Bühlmann (2010), we consider an 

example in which we have p = 500 predictors v1, … , v500 and n = 200 observations. The 

predictors v1, … , v500 are jointly distributed according to a multivariate normal whose mean 

µ is the zero vector and whose covariance matrix Σ is the identity, except that the elements 

Σ1,2 = Σ3,4 = Σ3,5 = Σ4,5 and their symmetric counterparts are equal to 0.9. Thus, there are 

two strongly correlated sets, C1 = {v1, v2} and C2 = {v3, v4, v5}, but otherwise the 

predictors are uncorrelated. Observed class labels y are either 0 or 1, according to the 

following logistic regression model:

P y = 1 υ1, …, υ500 = 1
1 + exp −∑i = 1

5 υi

. (11)

Due to correlations among the covariates, it is also useful to consider the following 

approximation:

P y = 1 υ1, …, υ500 ≈ 1
1 + exp − 2υi1

+ 3υi2

, (12)

where vi1 ∈ C1 and vi2 ∈ C2.

Since v1, … , v5 are the only covariates that appear in the generative model given in 

Equation (11), we refer to these as relevant covariates, and to the remainder as noise 
covariates.

We simulate 1,000 datasets — each comprising 200 observations — by first sampling from a 

multivariate normal in order to obtain realisations of the covariates v1, … , v500, and then 
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generating values for the response y according to Equation (11). We consider a range m = 1, 

… , 20 and use K = 100 subsamples.

3.2 HTLV1 biomarker discovery

Human T-cell lymphotropic virus type 1 (HTLV1) is a widespread human virus associated 

with a number of diseases (Bangham, 2000a), including the inflammatory condition 

HTLV1-associated myelopathy/tropical spastic paraparesis (HAM/TSP). However, the vast 

majority (~95%) of individuals infected with HTLV1 remain lifelong asymptomatic carriers 

(ACs) of the disease (Bangham, 2000b). We seek to identify protein peak biomarkers from 

SELDI-TOF mass spectral data which allow us to discriminate between ACs and individuals 

with HAM/TSP.

We have blood plasma samples from a total of 68 HTLV1-seropositive individuals (34 

HAM/TSP, 34 AC), processed as in Kirk et al. (2011). Here we analyse the combined 

dataset, DC, comprising measurements from all 68 patients. We consider m = 1, … , 12 and 

use K = 250 subsamples.

4 Results

4.1 Simulation example

We applied our selection strategies (Table 1) to each of our 1000 simulated datasets. For 

each simulation, each strategy returned a final set, V, containing the selected covariates. 

Each selected covariate must either be a noise or a relevant covariate. We can hence consider 

that V = R ∪ N, where R ⊆ V is a set containing only relevant covariates and N ⊆ V is a set 

containing only noise covariates. The case |R| = 5, |N| = 0 is the ideal, as this corresponds to 

selecting all 5 relevant covariates, but none of the noise covariates. To assess the quality of 

our strategies, we therefore calculated for each the proportion of simulated datasets for 

which this ideal case was achieved. This information is provided in Table 2, along with a 

summary of the proportion of times that other combinations of the covariates were selected.

4.1.1 Fewer false positives for strategies involving stability selection—The 

selected sets returned by Strategies S2, S3 and S5 always contained at least one relevant 

covariate, and never any noise covariates. The lack of false positives for these three 

strategies contrasts with the strategy that uses predictive performance alone (S1), which 

returned a selected set containing at least 1 noise covariate for 97.4% of the simulated 

datasets. Additionally enforcing a stability threshold upon the final selected set (S4) 

decreases this percentage (to 15.3% when τ = 0.1 and 4.3% when τ = 0.2). One of the best 

performing strategies overall is S6 (the marginal analogue of Strategy S3), which selects all 5 

relevant and 0 noise covariates for about two-thirds of the simulated datasets. In contrast to 

S2, S3 and S5, however, S6 does make some false positive selections, with noise covariates 

being included among the final selections in 3.3% of cases. S7 also performs well, selecting 

all 5 relevant and 0 noise covariates for 38.5% of the simulated datasets and making at least 

one false positive selection in only 8% of cases.
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4.1.2 Smaller values of α yield more stable selections—As well as looking at the 

final selection made for each dataset (chosen over all classification models), we can also 

consider the results for each of the classification models ℋα
1 , …, ℋα

10  considered 

separately. We focus on Strategy S3. For each simulated dataset and for each ℋα
j , we use S3 

in order to select a final set. Associated with each of these selected sets is a score (the joint 

probability of selection and correct classification). In Figure 3, we illustrate the distributions 

of the scores obtained for ℋα
2 , ℋα

4 , ℋα
6 , ℋα

8 and ℋα
10  (i.e. for α = 0.2, 0.4, 0.6, 0.8 and 

1).

We can see from Figure 3 that smaller values of α tend to yield higher values of the score. 

Recall that there are two strongly correlated groups of relevant covariates (see Section 3.1), 

and smaller values of α will tend to allow all of the covariates in these two groups to be 

selected, while larger values of α will tend to result in a single representative from each of 

the two groups being selected. Although this does not have a significant impact in terms of 

predictive performance (since Equation (12) is a good approximation to Equation (11)), it 

does have a negative effect upon stability (since, for different subsamples of the data, 

different representatives can be selected).

4.2 HTLV1 biomarker discovery

We applied our selection strategies to the HTLV1 combined dataset, DC. The selected 

covariates (protein peaks) are summarised in Table 3.

All strategies included the 11.7 and 13.3kDa peaks among their selections. As might be 

expected from the results of the previous section, Strategy S1 yields the largest selected set. 

The strategies that we found to provide the best performance in our simulation example 

(namely, S2, S3, S6 and S7) all selected the same 3 covariates. In Figure 4 we further 

illustrate the selections made using Strategy S3 by showing how the score returned by this 

strategy varies as a function of m for each of the classification models ℋα
1 , …, ℋα

10  (i.e. for 

α = 0.1, 0.2, … , 1).

We can see from Figure 4 that the highest joint scores are again achieved for smaller values 

of α. The second peak in the joint score curve at m = 6 (observed for α = 0.1, 0.2 and 0.3) is 

notable, and leads us to propose the proteins corresponding to the 13.3, 11.7 and 14.6kDa 

peaks as “high confidence” biomarkers, and the proteins corresponding to the 11.9, 17.3 and 

17.5kDa peaks as potential biomarkers that might be worthy of further investigation. In Kirk 

et al. (2011) the 11.7 and 13.3kDa peaks were identified as β2-microglobulin and 

Calgranulin B, and the 17.3kDa peak as apolipoprotein A-II.

5 Discussion

We have considered a number of strategies for covariate selection that employ assessments 

of stability, predictive performance, and combinations of the two. We have conducted 

empirical assessments of these strategies using both simulated and real datasets. Our work 

indicates that including assessments of stability can help to reduce the number of false 
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positive selections, although this might come at the cost of only making a conservative 

number of (high confidence) selections. In the context of biomarker discovery, where 

follow-up work to identify and validate putative biomarkers is likely to be expensive and 

time-consuming, assessments of stability would seem to provide a useful way in which to 

focus future study. However, for large-scale hypothesis generation, selection strategies that 

employ stability assessments might be too conservative. Our simulation results (Section 4.1) 

suggest that combining assessments of stability and predictive performance can yield 

selection strategies that have lower false positive rates than strategies based on prediction 

alone, and lower false negative rates than pure stability selection strategies. We also found 

that classification/selection models that do not select complete sets of correlated predictive 

covariates run the risk of appearing to make unstable selections (Section 4.1.2). This will 

have a detrimental effect on stability selection approaches, further increasing the number of 

false negatives. It would therefore seem that if we are concerned with the stability with 

which selections are made (which should always be the case if our main aim is covariate 

selection/biomarker discovery), then it might be counter-productive just to search for the 

sparsest classification model that yields the maximal predictive performance. In particular, in 

order to improve the stability of selections, it would seem sensible to favour mixtures of 1 

and 2 likelihood penalties (i.e. the elastic net) over lasso ( 1 only) penalties.
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Figure 1. 
Summary of the notation and basic procedure used throughout this article. The training 

dataset, D, is repeatedly subsampled to obtain a collection of datasets, Dk k = 1
K , and left-out 

datasets, D\k k = 1
K . For k = 1, … , K, a predictive model is trained on Dk and then used to 

predict the class labels of the observations in D\k, yielding a selected set of size m, smk, and 

a correct classification rate, cmk.
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Figure 2. 
Illustration of the differences between the joint strategies (S1 – S4). The round markers 

correspond to different covariates sets (of various sizes) returned by 10 different models, 

ℋα
1 , …, ℋα

10 , when applied to one of the simulated datasets of Section 3.1. Each model 

corresponds to a different value of α (see Section 2.4), hence the colours of the markers 

indicate the model that was used to select each covariate set. The larger, labelled markers 

correspond to the final sets of selections returned by strategies S1 – S4 (as indicated). S1 

returns the set, V, that maximises predictive performance, regardless of how stably it is 

selected; S2 returns the most stably selected set, regardless of the predictive performance it 

offers; S3 seeks a compromise between stability and predictive performance; and S4 returns 

the most predictive covariate set, subject to a stability threshold, τ.
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Figure 3. 
Distributions of the scores returned by S3 which were obtained in the simulation example for 

5 different values of α.
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Figure 4. 
Score returned by S3 considered as a function of m (when applied to the HTLV1 proteomics 

dataset).
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Table 1

Selection strategies considered in this article. In each case, we assume that we have a predictive model, ℋθ, 

and that we specify the number, m, of covariates that we wish to select. For j = 1, … , 6, strategy Sj returns 

selected set, V*, together with maximised score Pj (V*). S7 returns selected set V* together with the score P7.

SELECTION STRATEGIES

Joint strategies Select set V to maximise:

S1 Prediction only P1 V = ℙ classify correctly select V , ℋθ, m .

S2 Stability only P2 V = ℙ select V ℋθ, m .

S3 Joint prob. of selection & correct classification P3 V = ℙ select V & classify correctly ℋθ, m .
= P1 V P2 V

S4 Prediction with stability threshold, τ P4 V = ℙ classify correctly select V , ℋθ, m ,

subject to the constraint ℙ select V ℋθ, m ≥ τ .

Marginal strategies Select set V to maximise:

S5 Stability only (marginal case) P5 V = 1
m ∑

vi ∈ V
ℙ select vi ℋθ, m

= 1
m ∑

vi ∈ V
P2 vi .

S6 Joint prob. of selection & correct classification (marginal case) P6 V = 1
m ∑

vi ∈ V
ℙ select vi & classify correctly ℋθ, m

= 1
m ∑

vi ∈ V
P3 vi .

Other Select set V to maximise:

S7 Average prediction P1 V = ℙ classify correctly select V , ℋθ, m .

Also calculate P7 = ℙ classify correctly ℋθ, m .
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Table 2

Summary of the final selections made using the strategies described in Table 1. The first two columns 

summarise the final selections in terms of the number of relevant covariates, |R|, and the number of noise 

covariates, |N|, that appear in the final selected set. The entries in the table indicate the percentage of simulated 

datasets for which each of the combinations of relevant and noise covariates was obtained. Any rows for which 

the percentage is < 1% for all strategies are omitted (hence columns need not sum to 100%).

Strategy: S1 S2 S3 S4 S4 S5 S6 S7

(τ = 0.1) (τ = 0.2)

|R| |N| Percentage of selections

5 0 0 36.3 50.5 5.2 10.6 42.5 66.9 38.5

4 0 0.6 2.4 8.5 32.4 40.3 3.4 16 50.2

3 0 1.8 57.4 39.1 39.6 36.9 52.9 13.6 2.9

2 0 0.2 1.4 0.5 7.5 7.8 0.6 0.1 0.4

1 0 0 2.5 1.4 0 0.1 0.6 0.1 0

5 1 10.5 0 0 11.6 4.1 0 0 0.5

4 1 9.2 0 0 2.8 0.2 0 1.3 4.8

3 1 2.8 0 0 0.6 0 0 0.4 2

5 2 19.7 0 0 0.2 0 0 0 0

4 2 5.1 0 0 0 0 0 0 0.1

3 2 1.8 0 0 0 0 0 0.5 0.2

5 3 12.5 0 0 0 0 0 0 0

4 3 3.5 0 0 0 0 0 0 0

5 4 7 0 0 0 0 0 0 0

4 4 1.9 0 0 0 0 0 0 0

5 5 4.7 0 0 0 0 0 0 0

5 6 2.6 0 0 0 0 0 0 0

4 6 1.1 0 0 0 0 0 0 0

5 7 1.5 0 0 0 0 0 0 0

5 8 1.8 0 0 0 0 0 0 0

5 9 1.8 0 0 0 0 0 0 0

5 10 1 0 0 0 0 0 0 0
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Table 3

Covariates selected by strategies S1–S7. Covariates correspond to protein peaks in the mass-spectrum, and are 

labelled according to the m/z value at which the peak was located (units: kDa).

Covariate selections Strategies

11.7 13.3 S4 (τ = 0.2)

11.7 13.3 17.5 S4 (τ = 0.1)

11.7 13.3 14.6 S2, S3, S5, S6, S7

10.8 11.7 11.9 13.3 14.6 25.1 S1
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