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Abstract

Acute kidney injury (AKI) incidence among hospitalized patients is increasing stea-

dily. Despite progress in prevention strategies and support measures, AKI remains

correlated with high mortality, particularly among ICU patients, and no effective AKI

therapy exists. Here, we investigated the function in kidney ischaemia‐reperfusion
injury (IRI) of C1orf54, a newly identified protein encoded by an open reading frame

on chromosome 1. C1orf54 expression was high in kidney and low in heart, liver,

spleen, lung and skeletal muscle in healthy mice, and in the kidney, C1orf54 was

expressed in tubular epithelial cells (TECs), but not in glomeruli. C1orf54 expression

was markedly decreased on Day 1 after kidney IRI and then gradually recovered to

baseline levels by Day 7. Notably, relative to wild‐type mice, C1orf54‐knockout
mice exhibited impaired TEC proliferation and delayed recovery after kidney IRI,

which led to deteriorated renal function and increased mortality. Conversely, aden-

ovirus‐mediated C1orf54 overexpression promoted TEC proliferation and amelio-

rated kidney pathology, which resulted in accelerated renal repair and improved

renal function. Mechanistically, C1orf54 was found to promote TEC proliferation

through PI3K/AKT signalling. Thus, C1orf54 holds considerable potential as a thera-

peutic target in kidney IRI.
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1 | INTRODUCTION

Acute kidney injury (AKI) has been described as “[A]n abrupt (within

48 hours) reduction in kidney function” as measured by serum crea-

tinine increases.1 AKI incidence has risen steadily in several demo-

graphic groups, particularly in the context of multiorgan disease and

sepsis. Despite advances in preventive strategies and support

measures, AKI remains associated with high morbidity and mortality,

generally reported to be in the 30%‐70% range. Moreover, even if

AKI patients survive the acute illness, they face chronic conse-

quences, including high risk of developing or exacerbating chronic

kidney disease and accelerated development of end‐stage renal

disease.2,3

Renal ischaemia‐reperfusion injury (IRI), a common AKI cause,

results from a generalized or localized impairment of oxygen and

nutrient delivery to, and waste product removal from, kidney cells.4
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Local tissue oxygen supply and demand and accumulation of meta-

bolism waste products are mismatched, and this results in tubular

epithelial cell (TEC) injury, which, if severe, causes cell death by

apoptosis and necrosis (acute tubular necrosis), coupled with organ‐
level functional impairment of water/electrolyte homeostasis and

reduced excretion of metabolism waste products.4,5 However,

because the mechanism underlying kidney IRI is largely unknown, a

treatment strategy is lacking.

The kidney can repair itself,5 and a crucial pathologic feature of

post‐AKI repair is renal TEC proliferation and regeneration.6 Cell pro-

liferation repairs the damaged kidney by replacing TECs lost due to

cell death.4 Accumulating evidence indicates that paracrine signalling

from endogenous surviving epithelial cells (eg distal TECs) could

underlie anti‐IRI effects, and multiple factors secreted from distal

nephrons could produce paracrine effects to promote the prolifera-

tion and repair of surviving tubular cells through cell‐to‐cell cross-
talk.4,6

Chromosome 1 is the largest human chromosome and contains

8̧% of all human genetic information and thus might be more repre-

sentative of the human genome than other chromosomes.7 Chromo-

some 1 harbours C1orf54, which encodes a predicted secreted

protein of mostly unknown function. As a secreted protein, we pro-

posed that C1orf54 may have some function in the physiological or

diseased states. Thus, we generated C1orf54 deficiency mice to

examine its role in diseased state. In this study, we demonstrated

that C1orf54 was expressed exclusively in renal TECs, and by gain

and loss of function studies, we revealed that C1orf54 promoted

renal repair and TEC proliferation through PI3K/AKT signalling, which

alleviated kidney damage after IRI.

2 | MATERIALS AND METHODS

2.1 | Mice

Male 8‐ to 10‐week‐old C1orf54−/− (C1 KO) mice had been back-

crossed to C57BL/6 at least 10 generations before use. Mice were

housed in individual microisolator cages with free access to sterile

acidified water and irradiated food in a specific‐pathogen‐free facil-

ity. This study and all animal procedures conformed to the Guide for

the Care and Use of Laboratory Animals, published by the US

National Institutes of Health (NIH publication no. 85‐23, revised

1996), and were approved by the Animal Care Committee of Shang-

hai Jiaotong University School of Medicine.

2.2 | Generation of C1orf54‐knockout mice

C1 KO mice were developed by Shanghai Model Organisms Center,

Inc. (Shanghai, China). To generate C1orf54‐floxed mice, a C1orf54‐
targeting vector was constructed with ET cloning techniques in

EL250 bacterial cells; the construct was designed to flank exon 3

with loxp sites and a pGK‐neomycin‐polyA cassette. The vector was

electroporated into B6/129 embryonic stem (ES) cells, which were

then selected with 2 drugs, G418 and ganciclovir, to screen for

homologous recombination clones. Long PCR and sequencing were

used to identify and confirm the ES clones exhibiting correct homol-

ogous recombination, which was genotyped with these primers: 5′‐A
CCCTTGGTGTCTATGCTGGTC‐3′ and 5′‐CTGGAAGATGTCCGTGG
TGTTA‐3′, for correct 5′‐homology‐arm recombination; and 5′‐CA
AAGAGGGTGAGAAGGTAAGC‐3′ and 5′‐CAGACATCAATAGGAGCA
GGAAT‐3′, for correct 3′‐homology‐arm recombination. Positive ES

cell clones were expanded and microinjected into C57BL/6J blasto-

cysts to generate chimeric mice, which were crossed with C57BL/6J

mice to obtain C1orf54‐floxed heterozygous (C1orf54flox/+) mice. The

C1orf54flox/+ mice were mated with EIIA‐Cre mice (Tg (EIIa‐Cre); The
Jackson Laboratory) expressing Cre recombinase in the early embryo

to obtain heterozygous C1orf54‐knockout (C1orf54+/−) mice, which

were intercrossed to generate the homozygous C1orf54‐knockout
(C1orf54−/−) mice used here.

2.3 | AKI induction in mice

Kidney IRI was induced as described.8 Mice were anesthetized by

intraperitoneally injecting sodium pentobarbital (50 mg/kg body-

weight; Sigma‐Aldrich, St. Louis, USA) before surgery, during which

both kidneys were exposed through a flank incision and the kidney

pedicles were clamped for 30 minutes at 37°C by a heat device.

Sham‐operated animals underwent the same procedure except for the

renal pedicle clamping. For the histological analysis of kidney from

sham‐operated mice, we killed the mice on Day 7 after operation.

2.4 | Histology and Immunohistochemistry

Kidneys were fixed in 4% paraformaldehyde (24 hours) and embed-

ded in paraffin, and then, 5‐μm sections were subject to PAS and

Masson's trichrome staining as per standard protocols. At least 10

random fields from each sample were analysed. Immunohistochemi-

cal staining was performed with anti‐C1orf54 (Sigma‐Aldrich,
St. Louis, USA) as described,9 and C1orf54‐positive cells were

counted under a microscope (Olympus, 400× magnification).

For immunofluorescence analysis, tissue sections were boiled in

citrate buffer solution (10 minutes), treated with 0.2% Triton X‐100
(30 minutes, room temperature) and incubated overnight with rabbit

anti‐C1orf54 (H00079630‐B04P, Sigma‐Aldrich) and rabbit mono-

clonal anti‐Ki‐67 (9129s, Cell Signaling Technology) to detect

C1orf54 and proliferation, respectively. Villin antibody (Santa Cruz)

was used to colocalize the C1orf54 and renal tubular. All sections

were incubated (1 hour) with donkey anti‐rabbit Alexa Fluor® 488‐
conjugated secondary antibody (A‐21206, Invitrogen, Carlsbad, CA,
USA) and donkey antimouse Alexa Fluor®‐555 conjugated secondary

antibody (A‐31570, Invitrogen), costained with DAPI and imaged

under an Olympus microscope.

2.5 | Renal‐damage evaluation

The areas of PAS‐stained debris (at corticomedullary junction) and

brush borders (at corticomedullary junction and cortex region) in
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kidney specimens were quantified with NIH ImageJ software, and

the percentages of these areas relative to the entire section in a

slide are presented; 5 kidney sections from at least 3 mice from each

group were examined. Specimens were evaluated in a manner

blinded to the mouse strain.

2.6 | Serum BUN and creatinine measurement

At the end of experiments, mice were anesthetized, and blood was

collected from the retro‐orbital plexus. Serum creatinine (Cre) and

BUN concentrations were measured with creatinine serum kit (2

whole plate kit, Arbor Assays, KB02‐H1) and urea nitrogen (BUN)

detection kit (2 plates, Arbor Assays, K024‐H1).

2.7 | TUNEL assay

To examine apoptosis in damaged kidneys from WT and C1 KO mice

post‐IRI, we used an in situ cell death detection kit (Roche,

11684795910) for TUNEL (terminal deoxynucleotidyl transferase

dUTP nick‐end labelling) staining of apoptotic cells in renal sections.

TUNEL+ cells were counted by researchers blinded to the mouse

groups.

2.8 | BrdU incorporation

A BrdU labelling reagent (ThermoFisher, 000103; 1 mL/100 g) was

intraperitoneally injected into C1 KO and WT mice, and 2 hours later,

the mice were killed and kidneys were harvested. Subsequently, kid-

ney paraffin sections were costained with a BrdU monoclonal anti-

body (Thermo Fisher, MA5‐11285) and DAPI.

2.9 | Cell culture

HK‐2 cells were cultured in DMEM/F12 supplemented with 10%

FBS, penicillin and streptomycin. To mimic IRI in vitro, cells in FBS‐
free medium were exposed to hypoxia (1% O2, 94% N2 and 5% CO2)

for 6 hours at 37°C and then cultured under normoxia (5% CO2,

95% air) for reoxygenation (for 0, 6, 12 or 24 hours) and harvested

for analyses. HK‐2 cells were transiently transfected with negative

control or C1orf54‐specific siRNA (100 nmol/L per 105 cells) by Lipo-

fectamine (Invitrogen, Carlsbad, CA, USA).

2.10 | Adenovirus, gene transfer

Recombinant adenoviruses were generated by subcloning the

C1orf54 cDNA into pShuttle‐CMV vector and then produced by

following the AdEAsy XL adenoviral vector system protocol (Agilent

Technologies, Santa Clara, CA, USA). Cultured cells were infected

by adding viruses (5 MOI) in serum‐containing culture medium;

after 2 hours, cultures were washed with PBS and incubated with

fresh medium. For adenovirus‐mediated gene transfer in vivo,

hydrodynamic injection was used; adenoviruses in 1 mL of PBS

were injected within 10 seconds into the mouse tail vein 24 hours

before treatment. To block PI3K/AKT pathway, wortmannin (PI3K

inhibitor, 1.0 mg/kg) was intraperitoneally injected into the C1orf54

overexpressing mice once every other day.

2.11 | Western blotting

Total protein extracts were prepared from renal tissues or cells,

and after measuring protein concentrations (BCA method), samples

were electrophoresed and transferred to PVDF membranes, which

were blocked (5% milk/TBST, room temperature) and then incu-

bated (overnight, 4°C) with these primary antibodies (in 3% BSA

solution): goat anti‐C1orf54 (sc‐240106, Santa Cruz); mouse mono-

clonal anti‐C1orf54 (H00079630‐B04P, Abnova Biotechnology); cas-

pase‐3 and cleaved caspase‐3 antibodies (9662 and ASP175,

respectively); mouse monoclonal anti‐PCNA (PC10, 2586s); AKT

and phospho‐AKT antibodies (9272s, 9271s); p38‐MAPK and phos-

pho‐p38‐MAPK antibody (8690s, 9211s); β‐catenin antibody

(8480s); SAPK/JNK and phospho‐SAPK/JNK antibody (9252s,

9251s); STAT3 and phospho‐STAT3 antibody (9139s, 9145s), Cell

Signaling Technology; after secondary antibody staining (room tem-

perature, 1 hour), bands were quantified with ImageJ densitometry

software.

2.12 | Statistical analyses

Power was not calculated to predetermine sample sizes, and

randomization was not used to determine samples or mice to be

allocated to experiments. Areas were calculated in a blinded

manner. In vitro experiments were repeated at least thrice. Data

were analysed with GraphPad Prism (GraphPad Software Inc.,

San Diego, CA) and are presented as means ± SD unless specified

otherwise. Paired results were assessed with parametric tests

(eg Student's t test). Multiple groups were compared with 1‐way

or 2‐way ANOVA followed by Bonferroni's post hoc test. For

Kaplan‐Meier curves, P values were determined with the log‐rank
test.

3 | RESULTS

3.1 | C1orf54 was highly expressed in renal TECs
and down‐regulated after kidney IRI

No C1orf54 function in the body has been reported previously.

Here, we began by examining C1orf54 expression in different organs

and tissues in healthy mice: Immunohistochemical staining (Fig-

ure 1A,B) revealed for the first time that C1orf54 expression was

high in the kidney but low in heart, liver, spleen, lung and skeletal

muscle and that renal C1orf54 was expressed in TECs but not glo-

meruli (Figure 1A). Unexpectedly, C1orf54 was shown to be highly

expressed in small intestine (Figure S1A). Furthermore, double stain-

ings with C1orf54 and villin confirmed that C1orf54 was exclusively

in TECs, and specifically, it localized in both nucleus and cytoplasm

(Figure 1C).
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TECs respond to ischaemic insults: In AKI, TECs undergo cell

death and proliferation for repair.4,6 Thus, we used the kidney IRI

model to investigate C1orf54 function in the mouse kidney.

Immunofluorescence staining of kidney sections revealed a marked

decrease in C1orf54 expression on Day 1 post‐IRI, followed by grad-

ual recovery to baseline levels by Day 7 (Figure 2A,B). Western blot-

ting results confirmed the temporal dynamics of renal C1orf54

expression (Figure 2C,D). Moreover, C1orf54 released from TECs

and localized around tubules after kidney IRI (Figure 2A). Thus,

serum C1orf54 level was 3̧‐fold higher after kidney IRI than after

sham operation (Figure 2E,F).

3.2 | C1orf54 deficiency exacerbated renal
dysfunction after kidney IRI

To assess C1orf54's pathophysiological role in kidney IRI, we gener-

ated C1orf54‐knockout (C1 KO) mice (Figure S1B-D). C1 KO mice

developed similarly as wild‐type (WT) mice and showed no differ-

ence at baseline in 2 renal dysfunction markers: serum blood urea

nitrogen (BUN) and creatinine (Figure 3A). In WT mice, the 2 mark-

ers peaked on Day 1 post‐IRI and then gradually recovered, whereas

in C1 KO mice, the markers peaked on Day 3, were substantially

higher than those in WT mice and did not reach baseline even on

Day 7 post‐IRI (Figure 3A). Accordingly, the survival rate of C1 KO

mice was significantly lower than that of WT mice (60% vs 90%, log‐
rank test, P = .0137) (Figure 3B). These results indicated that

C1orf54 deficiency impaired and delayed the post‐IRI renal recovery
process.

Next, we stained renal sections with periodic acid‐Schiff (PAS) to
examine how WT and C1 KO mice differed in 2 renal pathologic indi-

cators: intraluminal debris and brush borders (Figure 4A‐C). On Day 1

post‐IRI, the kidney TEC structure was impaired in both WT and C1

KO mice; dilation of numerous tubules at the corticomedullary junc-

tion, congestion with necrotic cells and loss of nuclei and brush bor-

ders were observed. However, starting on Day 3, PAS+ intraluminal

debris levels were significantly lower in WT mice than in C1 KO mice,

whereas the brush‐border extent was higher in TECs of WT mice than

that of C1 KO mice. Moreover, even on Day 7, C1 KO mice exhibited

no clearance of PAS+ intraluminal debris or brush‐border recovery at

the corticomedullary junction. Accordingly, Masson's trichrome stain-

ing revealed greater renal fibrosis in C1 KO mice than in WT mice on

Day 14 post‐IRI (Figure 4D,E). In line with these findings, phosphory-

lation of SMAD3 and expression of TGF‐β1 were greatly enhanced in

C1 KO mice after kidney IRI (Figure 4F,G), indicating that TGF‐β/
Smad3 signalling is a key pathway in renal fibrosis associated with

C1orf54 deficiency in kidney.
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3.3 | C1orf54 promoted renal TEC proliferation

To precisely examine C1orf54's involvement in renal recovery, we

first tested whether C1orf54 affected cell death. As expected,

apoptosis or necrosis occurred immediately after hypoxia injury,10

but unexpectedly, we detected no difference in the number of

TUNEL+ cells and the levels of cleaved caspase‐3 and caspase‐3
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between WT and C1 KO mice on Day 1 post‐IRI (Figure 5). These

results indicated that C1orf54 did not affect TEC apoptosis.

Because post‐injury TEC proliferation is critical for recovery from

AKI,11 we tested whether C1orf54 deficiency impaired this prolifera-

tive response. Proliferation is an immediate early response that peaks

at 24‐48 hours post‐IRI and declines thereafter, concurrently with

morphological recovery of tubular structures.11,12 We stained C1 KO

and WT kidney sections at various times post‐IRI for Ki‐67, a cell

proliferation marker (Figure 6A,B): Ki‐67+ cells were mainly located at

the corticomedullary junction in WT and C1 KO mice, and their num-

bers did not differ significantly on Day 1 post‐IRI; however, from Day

3 onwards, markedly fewer Ki‐67+ cells were detected in C1 KO mice

than in WT mice. Moreover, analysis of another proliferation indica-

tor, bromodeoxyuridine (BrdU) incorporation, confirmed diminished

TEC proliferation at the corticomedullary junction in C1 KO mice rela-

tive to that in WT mice on Days 3 and 7 post‐IRI (Figure 6C,D).
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3.4 | C1orf54 was required for hypoxia/
re‐oxygenation‐induced TEC proliferation

We examined the mechanism underlying C1orf54‐mediated TEC pro-

liferation by performing in vitro studies on a tubule epithelial cell

line: We assessed HK‐2 cell proliferation after 6‐hour hypoxia treat-

ment followed by reoxygenation for different periods. Immunofluo-

rescence staining (Figure 7A,B) and Western blotting (Figure 7C,D)

results confirmed that C1orf54 levels decreased following hypoxia
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and then recovered after 12‐hour reoxygenation; moreover, in line

with previous findings,13 hypoxia/reoxygenation up‐regulated the cell

proliferation marker PCNA (Figure 7E,F).

Next, through siRNA‐mediated knockdown, C1orf54 was down‐
regulated in HK‐2 cells (Figure 7G), and in these cells, hypoxia/

reoxygenation‐induced PCNA expression was also significantly

decreased (Figure 7H,I). Conversely, adenovirus‐mediated C1orf54

overexpression markedly enhanced PCNA expression in HK‐2 cells

(Figure 7J‐L). Thus, C1orf54 was essential for hypoxia/reoxygena-

tion‐induced TEC proliferation.
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3.5 | C1orf54 promoted TEC proliferation through
PI3K/AKT signalling

P38 MAPK, JNK, STAT3, Wnt/β‐catenin and PI3K/AKT signalling

pathways were reported to be involved in TEC proliferation11,12;

thus, we examined whether these signalling pathways partici-

pate in C1orf54‐mediated TEC proliferation. We found that

kidney IRI led to P38, JNK, STAT3 and β‐catenin activation,

while deficiency of C1orf54 did not alter phosphorylation of

P38, JNK and STAT3, and expression level of β‐catenin
(Figure 8A,B), indicating that these signalling pathways were not

essential for TEC proliferation. Next, we revealed that IRI‐
induced AKT phosphorylation was considerably lower in C1 KO

mice than in WT mice (Figure 8C,D); accordingly, C1orf54

knockdown significantly decreased hypoxia/reoxygenation‐
induced AKT phosphorylation in vitro (Figure 8E,F). To examine

whether PI3K/AKT signalling is required for C1orf54‐induced
TEC proliferation, we used the PI3K inhibitor wortmannin

in vivo to block PI3K/AKT signalling. We first confirmed that

adenovirus‐mediated C1orf54 overexpression in vivo greatly

increased C1orf54 expression in the kidney (Figure 8G). C1orf54

overexpression markedly increased PCNA expression, and this

was potently suppressed by wortmannin (Figure 8H). These

results indicated that C1orf54 induced TEC proliferation through

PI3K/AKT signalling.

3.6 | C1orf54 overexpression alleviated post‐IRI
renal dysfunction

Lastly, we examined whether C1orf54 helps mitigate IRI‐induced
renal dysfunction. C1orf54 overexpression significantly decreased

serum BUN and creatinine starting from Day 3 post‐IRI (Figure 9A,

B) and increased Ki‐67+ cell numbers (Figure 9C,D) and alleviated

renal fibrosis (Figure 9E,F) post‐IRI. However, blockade of PI3K/AKT

pathway with wortmannin prevented the protective effect of

C1orf54 on renal function after kidney IRI (Figure 9G,H). These

results suggested that C1orf54 overexpression enhanced TEC pro-

liferation and improved renal function via PI3K/AKT signalling after

kidney IRI.

4 | DISCUSSION

This study demonstrated that C1orf54 was critically involved in

post‐IRI renal repair: Whereas C1orf54 deficiency led to suppressed

TEC proliferation, delayed repair and aggravated kidney dysfunction,

C1orf54 overexpression increased TEC proliferation, accelerated

repair and improved kidney function, mainly by activating PI3K/AKT

signalling.

After AKI, renal TECs undergo complex pathological repair pro-

cesses, including migration, proliferation and redifferentiation.14
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For kidney repair, “cell‐to‐cell crosstalk” and growth factors are

reported to be essential, and secreted proteins could function as

growth factors that facilitate tissue repair and regeneration.15–17

Approximately 2000 proteins in the proteome have been reported

to possess the structural features necessary for secretion into the

extracellular milieu, but the biological functions of these proteins

are largely unknown. Recently, the bone marrow cell secretome

was screened, and after bioinformatic analysis was used to elimi-

nate genes characterized or predicted to encode potential non‐
secreted proteins, 150 genes were analysed18; 2 proteins,

C19orf10 (“myeloid‐derived growth factor”) and C1orf54, were

found to possess potential secreted protein functions, and further

investigation revealed that C19orf10 promoted angiogenesis and

cardiomyocyte survival after myocardial infarction. However,

C1orf54 function remains relatively unknown, and few studies

have reported its role in any disease. We demonstrated that

C1orf54 was highly expressed in renal TECs and involved in TEC

proliferation, accelerated repair and improved kidney function after

renal IRI. Further studies are needed to examine whether C1orf54

could act as a biomarker for acute tubular injury and excrete in

the urine.

The kidney IRI model is commonly used to study the AKI mecha-

nism. By this model together with C1orf54 deletion and adenovirus‐
mediated overexpression, we demonstrated that C1orf54 was

essential for TEC proliferation and kidney repair, but did not affect

TEC apoptosis. C1orf54 was reported to potentially function in the

pathophysiology of diffuse congenital hyperinsulinism through the

IGF‐1/mTOR/AKT pathway,19 and the PI3K/AKT pathway is known

to play a critical role in cell proliferation.20,21 Here, we demonstrated

that AKT phosphorylation was inhibited in C1orf54‐deficient mice

after kidney IRI and that this could be reproduced in HK‐2 cells sub-

ject to hypoxia/reoxygenation.

In the present study, on Day 5 post‐IRI, about 50% of the

C1orf54 KO mice were dead. However, kidney function as indicated

by BUN and creatinine already started to drop on Day 3, which

points to an additional risk factor beside AKI in the KO mice. This

paradox may be due to the following: First, despite the gradual

recovery of renal function, but it has not returned to normal, there

is still a serious renal insufficiency; Second, acute renal insufficiency

is often complicated with other organ injuries, namely multiple organ

dysfunction, which may result in its death later after kidney ischae-

mia injury.

We suspect that C1orf54 acts as a protein that is secreted from

TECs damaged after kidney IRI. Immunofluorescence imaging

revealed certain C1orf54‐positive particles around surviving and

necrotic tubules, and Western blotting results showed that serum

C1orf54 levels were low in sham‐operated mice and markedly

increased in mice subject to kidney IRI. However, further investiga-

tion is required to ascertain how C1orf54 is released from TECs and

how C1orf54 regulates PI3K/AKT signalling.

In conclusion, this study demonstrated for the first time that

C1orf54 was expressed exclusively in renal TECs and promoted TEC

proliferation and kidney repair post‐IRI by acting through the PI3K/

AKT signalling pathway. Therefore, our findings identify a potential

target for AKI treatment.
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