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The brain of mammals differs from that of all other vertebrates, in
having a six-layered neocortex that is extensively interconnected
within and between hemispheres. Interhemispheric connections are
conveyed through the anterior commissure in egg-laying mono-
tremes and marsupials, whereas eutherians evolved a separate
commissural tract, the corpus callosum. Although the pattern of
interhemispheric connectivity via the corpus callosum is broadly
shared across eutherian species, it is not knownwhether this pattern
arose as a consequence of callosal evolution or instead corresponds
to a more ancient feature of mammalian brain organization. Here we
show that, despite cortical axons using an ancestral commissural
route, monotremes and marsupials share features of interhemi-
spheric connectivity with eutherians that likely predate the origin of
the corpus callosum. Based on ex vivo magnetic resonance imaging
and tractography, we found that connections through the anterior
commissure in both fat-tailed dunnarts (Marsupialia) and duck-billed
platypus (Monotremata) are spatially segregated according to corti-
cal area topography. Moreover, cell-resolution retrograde and an-
terograde interhemispheric circuit mapping in dunnarts revealed
several features shared with callosal circuits of eutherians. These
include the layered organization of commissural neurons and
terminals, a broad map of connections between similar (homotopic)
regions of each hemisphere, and regions connected to different
areas (heterotopic), including hyperconnected hubs along the medial
and lateral borders of the cortex, such as the cingulate/motor cortex
and claustrum/insula. We therefore propose that an interhemi-
spheric connectome originated in early mammalian ancestors,
predating the evolution of the corpus callosum. Because these
features have been conserved throughout mammalian evolution,
they likely represent key aspects of neocortical organization.
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The vertebrate nervous system is organized into functional
modules of spatially arranged neurons and fibers (1), where

topographic maps shared between peripheral and central circuits
mediate sensory-motor behaviors (2). Although such maps are
abundant in the spinal cord, hindbrain, and midbrain, they are
less evident in the telencephalic pallium of nonmammalian ver-
tebrates, such as birds (3, 4). Mammals, however, evolved a
highly topographic six-layered neocortex that recapitulates the
peripheral sensory maps via point-to-point connections with
subcortical regions (5–7). Moreover, the left and right cortical
hemispheres of mammals are heavily interconnected compared
with fewer such connections in birds, in which sensory-motor and
associative regions of the telencephalic pallium receive limited
input from the contralateral hemisphere (8, 9) (Fig. 1). A second
key evolutionary innovation was the origin of the corpus cal-
losum exclusively in eutherian (placental) mammals (10–12).
Such an event likely involved rerouting neocortical axons medi-
ally to the dorsal region of the embryonic commissural plate,
coupled with a process of midline tissue remodeling by

embryonic astroglia (13), which is exclusively present in euthe-
rians (14). The evolution of the corpus callosum as a distinct
tract allowed a significant expansion of the number of inter-
hemispheric neocortical connections in species with large brains
(15). The corpus callosum carries fibers topographically arranged
according to the position of their cell bodies (16–18) and con-
nects mostly similar (homotopic) but also different (heterotopic)
regions in each hemisphere (Fig. 1B). However, although the
map of callosal fibers in eutherians is well-established, and in-
cludes connectivity features that are highly conserved across
species, such as the presence of bilateral hubs (19–25), it remains
unclear whether such features depend on the route taken by
commissural axons or instead reflect more ancient organizational
principles of neocortical connectivity.
To address these questions, here we studied the main connec-

tivity features of interhemispheric cortical circuits in noneutherian
mammals and compared these with known eutherian con-
nectomes. We found that the spatial segregation of interhemi-
spheric axons across the anterior commissure in marsupials and
monotremes resembles the arrangement of fibers across the cal-
losal tract in eutherians, including the presence of point-to-point
homotopic circuits. Furthermore, single cell-level circuit mapping
via in vivo retrograde and anterograde tracer injections in
marsupials revealed a highly conserved layer distribution of
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contralaterally projecting neurons, as well as homotopic, het-
erotopic, and hyperconnected circuits through the anterior
commissure that strongly suggest an ancient precallosal origin.

Results
We first performed magnetic resonance imaging (MRI) and
tractography on fixed brains of fat-tailed dunnarts (Sminthopsis
crassicaudata: Marsupialia, Dasyuridae) by placing spherical re-
gions of interest (ROIs) at several cortical regions and an

inclusion ROI at the anterior commissure (Fig. 2A). This
revealed that interhemispheric cortical fibers are spatially seg-
regated within the anterior commissure according to the 3D
arrangement of cortical areas, similar to the topographic segre-
gation of callosal axons in humans and rodents (16–18) (Fig. 2A,
SI Appendix, Fig. S1, and Movie S1). We then examined whether
the relative position of fibers within the anterior commissure
midline was sufficient to recapitulate cortical area topography by
manually drawing 2D ROIs at the midsagittal plane (Fig. 2B).
Color-coded tractographic reconstructions of fibers crossing
through each territory of the midsagittal anterior commissure
revealed a highly topographic interhemispheric map of connec-
tions between at least five well-defined homotopic bilateral do-
mains (i.e., olfactory, frontal, cingulate/motor, neocortical, and
entorhinal cortices; Fig. 2 B and C and SI Appendix, Fig. S2). To
validate these MRI reconstructions with histology, we then
performed double injections of carbocyanine fluorescent tracers
(DiI and DiD) into separate regions of the same hemisphere of
fixed adult dunnart brains [neocortex and cingulate/motor cortex
(Fig. 2D) and neocortex and anterior olfactory nucleus (Fig.
2E)]. This resulted in segregated fibers along the anterior com-
missure, similar to previous reports in wallabies (26). Notably,
experiments of neuronal tracer injections closely recapitulated the
segregation of fibers found using MRI tractography and seeding
ROIs in equivalent areas (Fig. 2F). Similarly, an equivalent
cortical-area segregation was observed in axons within the internal
capsule, which carries cortical-subcortical connections, using both
histology (Fig. 2D) and MRI (SI Appendix, Fig. S1D), suggesting
that similar developmental mechanisms of axon guidance may
direct the areal topography of intra- and extracortical connections
(12, 17).

Pan-Mammalian Commissural Axon Segregation. To elucidate whether
the topographic segregation of interhemispheric axons based on
cortical area position is a feature exclusive to the Therian clade
(Metatheria + Eutheria), or instead they can be traced back to
more evolutionarily distant mammals, we then performed brain
tractography in an egg-laying monotreme mammal (Prototheria),
the duck-billed platypus (Ornithorhynchus anatinus: Mono-
tremata, Ornithorhynchidae). We examined MRI tractography of
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fixed platypus brains and found that well-defined, 3D-adjacent, and
homotopic commissural tracts were evident by placing small adja-
cent regions of interest within the midsagittal anterior commissure,
along anteroposterior, dorsoventral, and an oblique axis (ante-
rodorsal to posteroventral; SI Appendix, Fig. S3 and Movie S2).
Similar to in dunnarts and eutherians, placing ROIs in well-defined
cortical areas of the platypus brain (5) resulted in fibers that crossed
the midline in spatially segregated topographic domains (Fig. 3 A
and B). Moreover, this arrangement could be reconstructed by
manual parcellation of the midsagittal anterior commissure, which
resulted in at least five broadly homotopic interhemispheric sub-
systems that include the olfactory/piriform, rostral cortical, neo-
cortical, and entorhinal cortices (Fig. 3C andD andMovie S3). The
similar patterns of commissural fiber topography within the white
matter tract, with shared spatial arrangement relative to each other
and recapitulating the position of cortical areas, in species from all
extant mammalian subclasses strongly suggest the ancient origin of
neocortical axon guidance principles in the common ancestors of all
modern mammals.

Single-Cell-Level Circuit Mapping in Dunnarts. Although these results
demonstrate conserved features that suggest a pan-mammalian
topography of interhemispheric cortical connections at the macro-
and mesoscale levels, features of microanatomy connectivity, such
as neuronal projection diversity within areas, as well as branching,
fasciculation, or crossing of axons, cannot be readily revealed via
magnetic resonance imaging. To investigate whether and which
features of the callosal connectome at the cellular level are pre-
sent in marsupials, we performed retrograde interhemispheric
circuit mapping in dunnarts. Stereotaxic injections of retrograde
fluorescent tracers (carbocyanines and/or cholera toxin b subunit)
into distinct cortical regions in 13 dunnarts in vivo revealed that,
similar to callosal neurons in eutherians, contralaterally projecting
neurons are located in regions that are broadly homotopic to the

injection sites (Fig. 4 and SI Appendix, Table S1). Moreover, the
distribution of commissural projecting neurons, particularly within
primary sensory areas, differed across cortical layers (P < 0.0001,
one-way ANOVA), whereby they are located primarily in layers
2/3 (65.3 ± 2.2%), followed by layer 5 (24.3 ± 1.6%), and to a lesser
extent in layer 4 (7.6 ± 1.4%; SI Appendix, Fig. S4). These ratios
closely resemble that of eutherian callosal neurons in primary
sensory cortices (27–29). However, in both eutherian and non-
eutherian mammals, the layer distribution of commissural neurons
is largely variable across cortical areas (Figs. 4 and 5). Notably, we
found that the medial and caudal portions of the cerebral cortex of
dunnarts (i.e., motor and cingulate/retrosplenial cortices) receive
contralateral inputs not only from homotopic areas but also from
several heterotopic regions of the contralateral hemisphere (e.g.,
site 6; Fig. 4B). Such heterotopic inputs included lateral regions of
the cortex at similar rostrocaudal levels (SI Appendix, Fig. S5), as
well as long-range contralateral projections from neurons located
at more rostral regions, including the claustrum, a nonlayered
derivative of the pallial subplate, and lateral portions of the frontal
and orbital cortices (Fig. 5).
Similar long-range interhemispheric connections from the

claustrum to heterotopic contralateral targets, including the

C

D

A

ac

B ac front 

ac back 

D

D

A L

ac

A

D

A L
Pir

Rub
S1ub/Rub

Rhs
S1cub

Ent

ac

R

Pir
NCx

Ent

Fig. 3. Topography of the anterior commissure of the platypus. (A) T1-
weighted coronal series of a fixed platypus brain showing color-coded tracts
between cortical ROIs (small spheres) and the anterior commissure (ac, large
sphere). (B) Higher-magnification coronal views of the tracts generated in A as
viewed from the front (Top) and the back (Bottom). (C) Midsagittal view of the
platypus brain and the anterior commissure (Inset) showing the parcellation of
ROIs that generate the tracts in D. (D) Interhemispheric tracts across ROIs of C,
showing color-coded homotopic domains. A, anterior; D, dorsal; Ent, entorhinal
cortex; L, lateral; Pir, piriform cortex; R, rostral somatosensory cortex; Rhs, R
head-shield; Rub, R upper-bill; S1cub, primary somatosensory cortex central
upper-bill; S1ub, primary somatosensory cortex upper-bill. (Scale bar, 4 mm.)

 2.22

 1.45

 1.27

 1.00

 0.62

0.00 (Bregma, mm)

-0.61

 -1.18

 -1.78

 -2.76

A

Olf/Pir

pMed

pSom

Lat

aMed 

Fr/Orb

aSom

Occip

0

10

20

30

40

35

25

15

5

1 2 4 7653
Injection sites

%
 r

et
ro

gr
ad

el
y 

la
be

lle
d 

ne
ur

on
s

1
23

5

4

67

B

Fig. 4. Homotopic and heterotopic commissural neurons in marsupials re-
semble the callosal connectome of eutherians. (A) Coronal sections of dun-
nart brains showing a summary of retrograde tracer injection sites (DAPI and
color-coded in the Left) and the contralateral position of cell bodies (dots).
(B) Connectivity matrix combining injection sites (columns; approximate
brain positions on Top Left) and percentage of labeled neurons per brain
area (rows). aMed, anterior medial cortex; aSom, anterior somatosensory
cortex; Fr/Orb, frontal/orbital cortices; Lat, lateral cortex; pMed, posterior
medial cortex; pSom, posterior somatosensory cortex; Olf/Pir, olfactory/piri-
form cortices; Occip, occipital cortex. (Scale bar, 1 mm.)

9624 | www.pnas.org/cgi/doi/10.1073/pnas.1808262115 Suárez et al.

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1808262115/-/DCSupplemental
http://movie-usa.glencoesoftware.com/video/10.1073/pnas.1808262115/video-2
http://movie-usa.glencoesoftware.com/video/10.1073/pnas.1808262115/video-3
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1808262115/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1808262115/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1808262115/-/DCSupplemental
www.pnas.org/cgi/doi/10.1073/pnas.1808262115


dorsomedial portions of the cortex, have been previously de-
scribed in rodents (19–21) and can be revealed after retrograde
tracer injections in the posterior cingulate/retrosplenial or motor
cortices (SI Appendix, Figs. S6 and S7, respectively). Moreover,
the long-range contralateral projection neurons in the dunnart
claustrum were topographically organized according to the
mediolateral position of their termination sites (SI Appendix, Fig.
S8), further resembling the ipsilateral and contralateral topog-
raphy of the eutherian claustrum (19–23).

Anterograde Circuit Mapping via In-Pouch Electroporation in Dunnarts.
We next examined the patterns of contralateral axon innervation
via in-pouch electroporation of fluorescent reporters in dunnarts
during cortical development (30), followed by collection after
completion of corticogenesis (31). We found that, whereas com-
missural neurons project largely to homotopic targets (Fig. 6, ar-
rowheads), most neocortical regions, but not the olfactory or
piriform areas, also send heterotopic axonal projections that ter-
minate in the contralateral motor and cingulate areas (Fig. 6,
Insets). This is consistent with the retrograde tract-tracing results

and further demonstrates that the cingulate, retrosplenial, and
motor cortices receive long-range interhemispheric connections
from multiple heterotopic regions.
We next investigated whether projections from one cortical area

to two or more different targets arise from the collateral branches
of homogeneous neuronal populations, or instead from distinct
neurons with independent projection profiles. To elucidate be-
tween these scenarios, we performed injections of retrograde
tracers into the medial and lateral portions of the same hemi-
sphere of the dunnart cortex in vivo and counted neurons that
incorporated either one or both tracers at the medial and lateral
cortices contralateral to the injection sites (Fig. 7 A and B). We
found that the majority of neurons incorporated only one of the
dies, with less than 3% of neurons incorporating both dies (Fig. 7
C and D, arrowheads). Moreover, both homotopic and hetero-
topic neurons were arranged in an intermingled, salt-and-pepper
fashion, and their relative proportion differed across cortical areas
(Fig. 7 C–E). The lateral regions of the cortex, including the
insula, contained more homotopic neurons than the medial re-
gions, including cingulate and motor cortices (80.8 ± 2.7% vs.
62.6 ± 5.7%, respectively). In contrast, these medial cortical re-
gions had more heterotopic and branched (both tracers) con-
tralaterally projecting neurons than the lateral cortex (heterotopic:
35.2 ± 5.5% medial vs. 18.8 ± 2.5% lateral; both: 2.2 ± 0.5%
medial vs. 0.5 ± 0.3% lateral; P < 0.026; df = 8; n = 5; Student’s
t test; Fig. 7E). Importantly, such an arrangement of intermingled
commissural neurons with homotopic and heterotopic targets,
with only few cells that demonstrate long-range contralateral
branches, has also been reported in callosal neurons of rodents
and primates (32–34). These findings, together with anterograde
evidence of contralateral axons terminating in both homotopic
and heterotopic targets in both marsupials and eutherians, suggest
that the mechanisms of contralateral axon targeting include both
positional and nonpositional cues (35).
Finally, to get a better understanding of the homologies be-

tween the marsupial and eutherian cortical connectomes, we
examined the general distribution and bilateral symmetry of
heterotopic circuits in dunnarts, particularly within known in-
terhemispheric hubs in eutherians such as the claustrum. Simi-
lar to eutherians, the claustrum of dunnarts was distinguished
from the surrounding striatum and deep insular cortex by Nurr1+

and Ctip2− expression (Fig. 8A), and resembles the eutherian
claustrum in that it is differentially interconnected with contra-
lateral areas (19–23). For example, although the dunnart claus-
trum receives dense projections from heterotopic regions in the
contralateral hemisphere, such as the perirhinal cortex (Fig. 8B),
it is also largely avoided by axons from the contralateral primary
somatosensory sensory cortex (Fig. 8C). Furthermore, the overall
pattern of neocortical contralateral projections closely resembled
the pattern of projections within the same hemisphere, in a
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mirrored fashion (SI Appendix, Fig. S9). A similar pattern of ip-
silateral and contralateral symmetry of pyramidal neuron projec-
tions has been widely reported in the better-studied neocortex of
rats (25), further suggesting the deep-time evolutionary conser-
vation of cortical connectivity rules throughout mammals.

Discussion
In all eutherians studied to date, including rodents, carnivores,
monkeys, and humans, the axons that form the corpus callosum
are spatially segregated within the tract into rostrocaudal and
dorsoventral topographies that represent the broad position of
neuronal cell bodies across the different cortical areas (16–18).
Callosal circuits include connections between largely homotopic
regions, as well as heterotopic circuits that importantly include the
medial (i.e., cingulate, motor, and retrosplenial cortex) and lateral
(i.e., perirhinal cortex, insula, and claustrum) borders of the
neocortical sheet (25, 32–37). These medial and lateral regions
also represent hyperconnected hubs within and between hemi-
spheres and form part of the task-negative (also known as default
mode) network (25, 38). Notably, despite its relatively small size,
the nonlayered claustrum is a central contributor to large-scale
neocortical networks in rodents (21) and humans (23). Our find-
ings of the dunnart claustrum as a major component of long-range
heterotopic and hyperconnected contralateral circuits suggest its
early origin. Indeed, despite reports of the apparent absence of the
claustrum in platypus (39), cytoarchitectonic and neuroanatomical
studies in the claustrum of the short-beaked echidna (Tachyglossus
aculeatus; Monotremata) suggest that Therian-like circuits in-
cluding the claustrum/insula and the medial/frontal cortices may
have originated early in mammalian evolution, possibly as a cen-
tral hub of long-range heterotopic connectivity between and within
neocortical hemispheres (40–42).
Previous studies in marsupials have described several features

of cortical intra- and interhemispheric organization that are
shared with eutherians. These include similar developmental
sequence of neuronal generation (26, 30, 31, 43, 44), expression
of cell type-specific and layer-specific genetic markers (44–46),

and patterns of connections within and between cortical hemi-
spheres, including homotopic and heterotopic circuits (26, 47–
50), which laid the groundwork for the present study. Taken
together, our findings in platypus and dunnarts further suggest
the early origin and conservation of an interhemispheric cortical
connectome that predates the evolution of the corpus callosum.
The main features of such an ancient connectome are summa-
rized in Fig. 8D and include coexistence of homotopic and het-
erotopic circuits, topographic segregation of commissural axons
within the tract according to the position of cell bodies, and
hyperconnected hubs at the medial (cingulate/motor) and lateral
(claustrum/insula) borders of the cortex. In conclusion, our re-
sults suggest that the origin of the corpus callosum in early eu-
therian ancestors likely included the conservation of preexisting
features of intra- and interhemispheric connectivity. Notably,
humans with congenital absence of the corpus callosum, but with
preserved interhemispheric integrative functions, often show
compensatory wiring through the anterior commissure that re-
sembles the noneutherian connectome (51). This suggests that,
under certain unknown conditions, neocortical commissural
neurons may exploit developmental plasticity of ancient mech-
anisms of axon guidance, resulting in functional interhemispheric
circuits. Our findings provide a comparative framework to fur-
ther elucidate the molecular underpinnings of interhemispheric
wiring in individuals with and without a corpus callosum, as well
as to investigate developmental hypotheses concerning the evo-
lution of homologous circuits in the vertebrate brain.

Materials and Methods
Animal Ethics. This studywas approved by The University ofQueenslandAnimal
Ethics Committee and followed international guidelines on animal welfare.

A

C E

D

B

Fig. 7. Intermingled populations of homotopic and heterotopic commis-
sural neurons in dunnarts. (A and B) Double retrograde injections with
CTB647 and CTB555 and/or DiI and DiD in the medial and lateral cortices
result in intermingled cell bodies in the contralateral homotopic cortices (C
and D) with very few double-labeled cells (arrowheads). (E) The proportion
of cells that project exclusively to homotopic (Hom), heterotopic (Het) and to
both targets (double-labeled cells) over the total number of cells labeled in
the section, differ between the medial and lateral cortices (mean + SEM, n =
5; *P < 0.026). (Scale bars, 1 mm in B, 100 μm in H.)

Fig. 8. Heterotopic circuits and a pan-mammalian connectome. (A) Coronal
dunnart brain section stained against Nurr1 (red), Ctip2 (green), and DAPI
(blue) outline the claustrum (Cl) from the striatum (St), white matter (wm), and
insula (Ins). (B and C) Axon terminals in the claustrum (Cl) were differentially
found after electroporations in the perirhinal (PRh, B) or somatosensory (S1, C)
cortices of the contralateral hemisphere. (D) Schematic of a coronal brain
section representing the features of an interhemispheric connectome likely
conserved by all mammals. Neocortical (NCx) neurons from layers 2/3 and 5
project to contralateral homotopic regions (1), following a topographic ar-
rangement of axons across the midline (2), whereas hyperconnected and
heterotopic circuits include the cingulate-motor (Cg/M) and insular (Ins) corti-
ces, as well as the claustrum (3). rf, rhinal fissure. (Scale bars, 250 μm.)

9626 | www.pnas.org/cgi/doi/10.1073/pnas.1808262115 Suárez et al.

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1808262115/-/DCSupplemental
www.pnas.org/cgi/doi/10.1073/pnas.1808262115


Magnetic Resonance Imaging and Tractography. Fixed brains of adult platypus
(n = 2) and dunnarts (n = 3) were scanned at 16.4 or 9.4 T (Bruker Ultrashield
Plus Avance I, 89 mm bore, or Bruker Biospec Avance III, 300 mm bore, re-
spectively; Paravision 5.1). Diffusion MRI datasets were processed using
HARDI/Q-ball reconstruction, and tractography was generated using Fiber
Assignment by Continuous Tracing in TrackVis (www.trackvis.com).

In-Pouch Electroporation of Dunnart Joeys. Electroporation of cortical neurons
in dunnarts attached to the mother’s teat was performed as described (30).
Briefly, 0.5–1 μL of a 1 mL/mg DNA solution of pCAG-eYFP plasmid was in-
jected into the lateral ventricle, followed by delivery of five 100-ms square
pulses of 30–35 V at 1 Hz (ECM 830, BTX; Harvard Bioscience).

Histology and Cell Counts. Double injections of fine carbocyanine crystals (DiI
and DiD) were performed in fixed dunnart brains, using a pulled-glass mi-
cropipette. Brains were kept from light in formalin at 4 °C for 7 d, and then at
38 °C for 7 mo for transport. In vivo stereotaxic injections (SI Appendix, Table
S1) were performed under 2–5% isoflurane, using a reference atlas of the

stripe-faced dunnart (S. macroura) (52). Brains were collected after 7 d, and
histological images obtained with confocal microscopy. Cell counts were made
blind to the injection sites. Statistically significant differences were considered as
P < 0.05, using two-tailed Student’s t test (Fig. 7E) or one-way ANOVA (Prism 7).

Supplementary Information. Supplementary material and full methods are
provided in SI Appendix.
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