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Because all climate models exhibit biases, their use for assessing
future climate change requires implicitly assuming or explicitly
postulating that the biases are stationary or vary predictably. This
hypothesis, however, has not been, and cannot be, tested directly.
This work shows that under very large climate change the bias
patterns of key climate variables exhibit a striking degree of
stationarity. Using only correlation with a model’s preindustrial
bias pattern, a model’s 4xCO2 bias pattern is objectively and cor-
rectly identified among a large model ensemble in almost all cases.
This outcome would be exceedingly improbable if bias patterns
were independent of climate state. A similar result is also found
for bias patterns in two historical periods. This provides compel-
ling and heretofore missing justification for using such models to
quantify climate perturbation patterns and for selecting well-
performing models for regional downscaling. Furthermore, it
opens the way to extending bias corrections to perturbed states,
substantially broadening the range of justified applications of
climate models.
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Future climate projections are based on numerical simulations
from global climate models that are grounded in first principles

but exhibit well-documented biases in their simulation of the
current climate state (1, 2), thus raising questions about their fit-
ness for climate projections. A large body of work has assessed
model biases in the context of prioritizing models for climate
projections, high-resolution downscaling, and impact assessment.
Such studies either implicitly assume (3–6) or explicitly postulate
(7) that biases are stationary, that is, that a model’s errors should
be very similar in the different climate states being examined, or
that they are reproducibly linked to the state of the climate (8).
However, this fundamental hypothesis has not been, and cannot
be, tested directly for the obvious reason that the future climate
has not been realized yet (2, 8–11). Limited stationarity of climate
model biases, in particular of limited-area models, has been shown
on regional scales for surface temperature and precipitation (8, 12,
13), which are certainly the most widely used climate parameters
in downscaling applications for climate change impact studies.
However, a global, broader assessment extending to large-scale
circulation characteristics is lacking.
“Perfect model” or “pseudo-reality” experiments (e.g., ref. 14)

can, in the absence of existing future climate data, provide a means
of evaluating individual climate model projections or forecasts
against another projection or forecast. In this case, the latter are
taken as a surrogate for reality, against which perturbed model runs
or other methods can be evaluated (15).
In this work, we apply a similar approach to climate model

projections on the centennial time scale to test the fundamental
hypothesis of climate model bias stationarity against a pseudo-
reality in a coordinated CMIP5 multimodel climate change ex-
periment. For a large set of variables that characterize tropospheric
circulation, energy and water cycle (nv = 15), we identify biases of a
number of individual models (nm = 18) against a common refer-
ence (the multimodel mean) for the preindustrial climate experi-
ment and carry out an objective test in which, for a given variable,

each model’s preindustrial bias map is compared with all models’
corresponding bias maps from the 4xCO2 experiment. We use
area-weighted pattern correlations between error maps for the two
selected experiments [preindustrial control (piControl) and abrupt
fourfold CO2 concentration increase (abrupt4xCO2)] as a metric to
measure bias pattern similarity. The nm correlation coefficients rv,i,j
for a given variable v, a given model i, and all models j ∈ {1,. . .,nm}
are then ranked. As there are nv = 15 variables and nm = 18
models, we have ne = nv × nm = 270 error maps for each period,
and thus ne rankings of nm correlations. These ne rankings can be
seen as individual, but not necessarily independent, tests of bias
stationarity. If climate model bias patterns are stationary, then,
among the nm 4xCO2 bias maps with which the preindustrial bias
map of the tested model is compared, the 4xCO2 bias of the tested
model itself should in most of the cases be the one that exhibits the
strongest similarity. In the following, we show that this is indeed the
case to a very high extent. This provides strong support for the bias
pattern stationarity hypothesis that is so crucial for the use of
climate change projections.
Details on the methods used, on the selection of models, vari-

ables and experiments, and on the choice of the multimodel mean
as the reference pseudo-reality are given in Methods.

Results
Bias Stationarity Under Strong Climate Change: 4xCO2 Versus Preindustrial
Climate. In the vast majority of cases (260 out of the ne = 270), the
bias correlation coefficient rv,i,j between the preindustrial bias map of
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to the magnitude of the climate change that is expected on a
centennial time scale. Using climate models for assessing future
climate change therefore relies on the hypothesis that these
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late climate change and allows extending the range of climate
model applications.
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a given model i and the 4xCO2 bias map of any model j ∈ {1,. . .,nm}
is highest for i = j. That is, the abrupt4xCO2 error pattern that most
closely resembles the piControl error pattern for a given model and
variable is usually the abrupt4xCO2 error pattern of that same
given model.
The nm × nm × nv correlation coefficients rv,i,j can be averaged

over the nv variables for each pair i,j of models, yielding nm × nm
average correlation coefficients Ri,j. These are displayed in Fig. 1.
Clearly, these average correlation coefficients tend to be highest for
the diagonal elements Ri,i, with values above 0.8 in the majority of
cases, and they tend to be weak (usually jrj < 0.3) for the non-
diagonal elements Ri,j ≠ i. Because we have nv variables, any two
models i,j can be paired between 0 and nv times, based on the
ranking of their correlation coefficient rv,i,j for a given variable
and model i. This number of objective identifications of the
abrupt4xCO2 bias of model i with the piControl bias of model
j, Ai,j, is also displayed in Fig. 1. For 12 models, all abrupt4xCO2
bias maps are identified correctly (Ai,j = nv = 15); for four
models, one bias map out of 15 is identified incorrectly (Ai,j = 14);
for one model, two bias maps are identified incorrectly (Ai,j = 13);
and for one model (7), identification with its own piControl bias is
unsuccessful for four of the 15 variables (Ai,j = 11). In total,
identification of a given abrupt4xCO2 bias pattern with the same
model’s piControl bias pattern occurs therefore in 260 out of the
ne = 270 rankings; if piControl and abrupt4xCO2 biases were in-
dependent, one would expect only 15 correct identifications be-
cause the probability of correct identification for each individual
test is 1/18. In a Poisson distribution, the cumulative probability
of at least 260 correct identifications out of 270, given an av-
erage random success rate of 15, is vanishingly low (far below
10−200, as an upper estimate using the Chernoff bound indicates:
PðX≥ xÞ≤ ðe−λðeλÞxÞ=xx ≈ 2 · 10−216, with x = 260 and λ = 15).
We can therefore reject with extreme confidence the null hypothesis

that piControl and abrupt4xCO2 biases are independent. Of course,
it does not come as a surprise that piControl and abrupt4xCO2
biases are not independent; however, the exceedingly high pro-
portion of correct identifications is a very meaningful and hence
unrecognized result.
A comparison of the piControl and abrupt4xCO2 bias maps

clearly illustrates this strong similarity. The individual models’
850-hPa temperature (T850) error patterns for the piControl
(Fig. 2A) and the abrupt4xCO2 simulations (Fig. 2B) bear close
resemblance on global to regional scales. Even if the models in the
two parts of the figure were randomly shuffled, it would be easy to
identify the corresponding pairs by eye because of the strong sta-
tionarity of the bias patterns. This is also the case for the other
variables (SI Appendix, Figs. S1–S14). Furthermore, the comparison
between these two parts of the figure shows that the magnitude of
the model errors does not change much between the two periods.
The spatial correlation between the abrupt4xCO2 and piControl

biases is naturally linked to the rms of the difference between
these biases, as shown in Fig. 3 for the average rankings across all
15 variables. The correlation coefficient for the model ranked first
(which, in 260 out of 270 cases, is the tested model itself) is typ-
ically much higher than for the other models (median 0.87, while
the median is 0.52 for the model ranked second, and less for the
models behind). The rms difference between the matched
abrupt4xCO2 and piControl biases in the same figure is on av-
erage about half the rms for the models ranked second, and less
than 30% of the rms difference of the model ranked last.
The rms of the difference between the matched abrupt4xCO2 and

piControl bias maps is on average about half the piControl bias. The
average slope of the pointwise linear regression between the matched
abrupt4xCO2 and piControl bias maps tends to be slightly below
1 (between 0.7 and 0.8 for two variables, between 0.8 and 0.95 for
11 out of the 15 variables, and above 1 for only one variable). This
indicates that pattern-scaled model outputs tend to slightly converge
toward the multimodel mean under strong warming. A possible rea-
son for this behavior might be that snow and ice cover is strongly
reduced in the 4xCO2 equilibrium climate, limiting the effect of strong
intermodel variations in the snow and ice albedo feedback (16–18).
These results clearly show that under two very different climates

the bias patterns of an individual model with respect to the mul-
timodel ensemble mean are very similar. In CMIP-type model
intercomparisons, the actual number of truly independent climate
models is lower than the number of participating models because
several share a common development history (19, 20). Although
we only selected one model from each modeling center (Methods),
our ensemble still contains such cases. Indeed, most of the rare
misidentifications of bias patterns tend to occur between models
that share a common development history, such as models 1
(ACCESS-1-0) and 11 (HadGEM2-ES), and similarly 7 (EC-
EARTH) and 14 (MPI-ESM-LR). Such cases might have been
prevented by identifying model similarity based on their output
(e.g., refs. 21 and 22) instead of simply choosing only one model
from each modeling center. However, this would have complicated
the procedure here without adding much to the point. In any case,
this further supports the finding that individual large-scale climate
model bias patterns are highly stationary under climate change.

Bias Stationarity over the 20th Century. In addition to being sta-
tionary under substantial climate change, climate model biases
are also stable during the 20th century. We calculated the model
biases for 1976–2005 and 1901–1930 with respect to ERA-20C
(23) instead of the multimodel mean. In this case, identification
of 1976–2005 biases with 1901–1930 biases is correct in 257 out
of 270 cases. Most (10) of the 13 incorrect identifications in this
case are due to a known spurious Southern Hemisphere extra-
tropical sea-level pressure trend in ERA-20C during the early
20th century (23, 24). This trend leads to erroneous identifica-
tion of several models’ late-20th-century sea-level pressure and
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Fig. 1. Average linear correlation coefficients Ri,j (colored squares) across all
variables and number of identifications Ai,j (numbers printed on squares, not
printed for Ai,j = 0) for each tested piControl/identified abrupt4xCO2 simu-
lation pair. Models used are as follows: 1, ACCESS1-0; 2, BNU-ESM; 3, CCSM4;
4, CNRM-CM5; 5, CSIRO-Mk3-6-0; 6, CanESM2; 7, EC-EARTH; 8, FGOALS-g2; 9,
GFDL-CM3; 10, GISS-E2-H; 11, HadGEM2-ES; 12, IPSL-CM5A-LR; 13, MIROC-
ESM; 14, MPI-ESM-LR; 15, MRI-CGCM3; 16, NorESM1-M; 17, bcc-csm1-1; and
18, inmcm4.
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500-hPa geopotential height bias maps with the early-20th-
century bias map of the GISS-E2-H model, which happens to
be the only CMIP5 model that exhibits a spatiotemporal pattern of
sea-level pressure change similar to the ERA-20C reanalyses.
There is thus no systematic drift in the climate model biases with
respect to the 20th-century reanalysis, except for the sea-level field,
and in this case the drift is due to reanalysis problems. This pro-
vides confidence in the conclusion that the bias stationarity in fu-
ture climate change found here is not an apparent stationarity due
to a systematic bias drift common to all models.

Discussion
This analysis concerns large-scale and climatological mean tro-
pospheric circulation, energy, and water-cycle patterns. On smaller
spatial and temporal scales, the stability of bias patterns evidenced
here will generally be weaker. For example, it has been shown that
for hydrological climate impact studies, which concern smaller
spatial and temporal scales, climate model precipitation bias sta-
tionarity is not sufficient to warrant statistical bias correction (25–
27). Similarly, evaluation of paleoclimate simulations suggests that
on small scales the amplitude of climate change is often under-
estimated (28, 29). Furthermore, feedbacks related to land-surface
processes have been shown to potentially skew near-surface tem-
perature projections on regional scales in biased models (30).
However, constant surface features, such as topography, can also
“pin” circulation features (e.g., katabatic winds) and thus increase
local stationarity of model bias patterns.

In any case, because we address different spatial and temporal
scales and variables, the results presented here cannot be seen as
a direct support of statistical bias corrections of climate model

Fig. 2. T850 error patterns (degrees celsius) with respect to the ensemble mean for the individual models. (A) piControl; (B) abrupt4xCO2. The color scale is the
same for all models and both experiments. Models are ordered from left to right and from top to bottom (model 1 at the top left, model 6 at the top right,
and model 18 at the bottom right; model numbers are as in Fig. 1).
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Fig. 3. Regression coefficients r between tested piControl model runs and
each of the abrupt4xCO2 model runs, in decreasing order (gray boxes and
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left scale). The associated mean normalized rms differences between the
bias maps are shown as red circles (right scale; rms difference is normalized
with respect to the rms difference of the model ranked first).
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output, such as quantile–quantile mapping, which are frequently
used in climate change impact modeling and which usually focus
on precipitation and surface air temperature (e.g., refs. 31–34).
However, our results provide support for in-run bias correction
of atmospheric circulation models (35). This approach consists
of adding seasonally and spatially varying incremental correction
terms to the prognostic equations for some of the state variables
of an atmospheric model (usually temperature, wind, and hu-
midity). These spatially and seasonally varying correction terms
are propotional to the biases of these variables, but of opposite
sign. We have shown here that biases of this type of atmo-
spheric variables are stationary on the relevant spatial and
temporal scales. Therefore, this bias correction method should
be transferable to a different climate. Output from atmospheric
circulation models that are bias-corrected using this method
can then be used for impact modeling, or as an input for re-
gional models for downscaling (which can then be used to drive
impact models).
It is often argued that a biased representation of the present

climate strongly reduces the credibility of projected future cli-
mate change, because it could indicate that there are funda-
mental flaws in climate models. Here we have shown that the
climate model bias patterns are highly stationary under two
climate-change regimes that have very different amplitudes of
change and different combinations of forcings. This increases
confidence in the basic capability of current-generation climate
models to correctly simulate the climate response to a range of
different drivers.
Climate models share common parameterizations, compo-

nents, and, more largely, concepts. This is in particular true for
climate models that share a common development history (e.g.,
refs. 19 and 20), but the fundamental concepts underlying the
construction of climate models (e.g., which basic processes are to
be represented, which ones are explicitly resolved or parameter-
ized, etc.) are common to most, if not all, models. One might
suspect that the stationarity of the climate model bias patterns
shown here could be due to these structural similarities shared by
all climate models, which could have led to strong similarities in
the projected climate change signals. However, not all aspects of
projected future climate change are robust across the CMIP5
ensemble. For example, even the sign of projected precipitation
changes is uncertain in some regions (4), and yet precipitation
biases as calculated here against the multimodel ensemble (SI
Appendix, Fig. S2) are highly stationary. Therefore, the funda-
mental reason for the stationarity of the bias patterns does not
seem to be that there are structural similarities among the models
that could lead to quasi-identical climate change projections, but
rather that there are structural dissimilarities that lead to stable
intermodel differences and biases in a large range of climates.

Conclusion
In summary, the use of current-generation coupled models for
projections of climate change on centennial time scales is based
on the fundamental but yet unproven hypothesis that, although
current climate model biases are of the same order of magnitude
as the expected climate change itself (2), the simulated climate
change signal as such is largely credible (34, 36). The results
presented here provide altogether clear evidence for a strong
and consistent stationarity of a wide range of large-scale mean
tropospheric circulation, energy, and water-cycle climate model
bias patterns under substantial climate change. This is a compelling
and as-yet-missing justification for using current-generation coupled
climate models for climate change projections. As a whole, our
results open prospects for the use of climate models for improved
climate projections that have until now been hampered by the un-
certainties induced by inevitable biases in the representation of the
present climate. In particular, our results suggest that it should be
possible to empirically correct large-scale circulation errors in

climate models at run time based on identification of present-
day model errors with respect to observations (35, 37). These
corrected global simulations could then be used as “perfect”
lateral boundary conditions for limited-area, high-resolution re-
gional climate models. However, efforts to increase the realism
of climate models through improved parameterizations, higher
spatial resolution, and judicious tuning (38) remain timely.

Methods
We use the last 30 y of the first ensemble members of the piControl and
years 121–150 of the abrupt4xCO2 simulation from the CMIP5 database,
accessed on October 18, 2016. The global, annual mean surface air tem-
perature difference between these two simulations varies between 3.1
and 6.3 °C for the selected models (discussed below), representing a very
strong climate change signal. For these two simulations, we extracted 15
annual mean variables: precipitation rate; sea-level pressure; surface air
temperature; total column water vapor; 850-, 700-, and 300-hPa air tem-
perature; zonal mean air temperature; 850- and 200-hPa zonal and me-
ridional wind; zonal mean zonal and meridional wind; and 500-hPa
geopotential height. These variables were interpolated onto a common
T42 grid. Variables that have a vertical dimension (zonal mean wind and
temperature) were extracted on 17 standard pressure levels between 10
and 1,000 hPa.

These variables were available for 30 CMIP5 models. Because different
versions of the same model from a given modeling center tend to share
many common biases, we defined a reduced ensemble consisting of only
one model version from each modeling center participating in CMIP5. This
reduced ensemble consists of 18 models (see Fig. 1 legend) and is referred
to as E18.

For each experiment (piControl and abrupt4xCO2), model, and variable,
we calculated the 30-y mean error with respect to the ensemble mean. For
all variables except the precipitation rate p and total column water vapor v,
this error is simply defined as the difference from the ensemble mean; for p
and v, the error is defined via the ratio of the precipitation rate p (and total
column water vapor v, respectively) of the model and the ensemble mean,
that is, log(pi/pE18) and log(vi/vE18), respectively, with i indicating an indi-
vidual model and E18 the multimodel ensemble mean.

While systematic biases, shared by a majority of climate models, do exist,
it has been shown that the “mean model,” defined as the average output
of the different models participating in CMIP-type intercomparisons, tends
to exhibit weaker large-scale biases than most, if not all, models taken
individually (1, 2, 39–41) and is therefore seen as the best representation
of the real climate system; note that in a pseudo-reality experiment the
model used as surrogate reality actually does not need to be the model
that is assessed as the “best” model against some standard. Because of the
large number of models (nm = 18), the multimodel mean can be seen as
virtually independent of any single model for practical purposes in the
sense that an individual model will not substantially influence the multi-
model mean. We carried out tests excluding the tested model from the
multimodel mean; these tests yielded results very similar to those
reported here.

Concentrating on bias patterns, we pattern-scaled (42, 43) the abrupt4-
xCO2 model outputs, normalizing the global mean surface air temperature
change with respect to the piControl value to 5 °C. This eliminates the in-
fluence of intermodel differences in climate sensitivity. The scaling with
respect to a normalized global mean surface air temperature change has no
effect on the correlation coefficients.

For each variable and model, the error map obtained for the piControl
simulation is compared with all models’ error maps calculated for the
abrupt4xCO2 simulations for the same variable.
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