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Quantum many-body systems exhibit an extremely diverse range
of phases and physical phenomena. However, we prove that the
entire physics of any quantum many-body system can be repli-
cated by certain simple, “universal” spin-lattice models. We first
characterize precisely what it means for one quantum system
to simulate the entire physics of another. We then fully clas-
sify the simulation power of all two-qubit interactions, thereby
proving that certain simple models can simulate all others, and
hence are universal. Our results put the practical field of ana-
logue Hamiltonian simulation on a rigorous footing and take a
step toward justifying why error correction may not be required
for this application of quantum information technology.

quantum information theory | quantum simulation | many-body physics |
Hamiltonian complexity

The properties of any physical system are captured in its
Hamiltonian, which describes all of the possible energy con-

figurations of the system. Among the workhorses of theoret-
ical many-body and condensed matter physics are spin-lattice
Hamiltonians, in which the degrees of freedom are quantum
spins arranged on a lattice, and the overall Hamiltonian is built
up from few-body interactions between these spins. Although
these are idealized, toy models of real materials, different spin-
lattice Hamiltonians are able to model a wide variety of different
quantum phases and many-body phenomena: phase transitions
(1), frustration (2), spontaneous symmetry breaking (3), gauge
symmetries (4), quantum magnetism (5), spin liquids (6), topo-
logical order (7), and more. In this paper, we prove that there
exist particular, simple spin models that are universal: They can
replicate to any desired accuracy the entire physics of any other
quantum many-body system (including systems composed not
only of spins but also bosons and fermions). This implies, in par-
ticular, that the ground state, full energy spectrum and associated
excited states, all observables, correlation functions, thermal
properties, time evolution, and also any local noise processes are
reproduced by the universal model.

Note that this is a very different notion of “universality” from
that of universality classes in condensed matter and statisti-
cal physics (8). Universality classes capture the fact that, if we
repeatedly “zoom out” or course-grain the microscopic degrees
of freedom of a many-body system, models that are microscopi-
cally different become increasingly similar (converge to the same
limit under this “renormalization group flow”), and their macro-
scopic properties turn out to fall into one of a small handful of
possible classes. The “universality” we are concerned with here
(9) has a completely different and unrelated meaning. It is closer
to the notion of universality familiar from computing. A univer-
sal computer can carry out any possible computation, including
simulating completely different types of computers. Universal
models are able to produce any many-body physics phenom-
ena, including reproducing the physics of completely different
many-body models.

One might expect that universal models must be very compli-
cated for their phase diagram to encompass all possible many-
body physics. In fact, some of the models we show to be universal
are among the simplest possible. Nearest-neighbor Heisenberg
interactions on a square lattice give rise to 2D models with the
simplest possible local degrees of freedom (qubits), short-range,

two-body interactions, and the largest possible local symmetry
[full SU (2) invariance]. Yet our results prove that, if all of the
coupling strengths can be varied individually, this model is uni-
versal. Thus, it can replicate in a rigorous sense the full physics of
models with higher spatial dimensions, long-range interactions,
other symmetries, higher-dimensional spins, and even bosons
and fermions.

In addition to the new relationships this establishes between
apparently very different quantum many-body models, with
implications for our fundamental understanding of quantum
many-body physics, there are also potential practical applications
of our results in the field of analogue quantum simulation. There
is substantial interest nowadays in using one quantum many-body
system to simulate the physics of another, and one of the most
important applications of quantum computers is anticipated to
be the simulation of quantum systems (10, 11).

Two quite different notions of Hamiltonian simulation are
studied in the literature. The first concerns simulating the time
dynamics of a Hamiltonian on a quantum computer using an
algorithm originally proposed by Lloyd (12), and refined and
improved in the decades since (13–16). This is the quantum com-
puting equivalent of running a numerical simulation on a classi-
cal computer. However, it requires a scalable, fault-tolerant, dig-
ital quantum computer. Except for small-scale proof-of-principle
demonstrations, this is beyond the reach of current technology.
The second notion, called “physical” or “analogue”—in the sense
of “analogous”—Hamiltonian simulation, involves directly engi-
neering the Hamiltonian of interest and studying its properties
experimentally (akin to building a model of an airfoil and study-
ing it in a wind tunnel). This form of Hamiltonian simulation is
already being performed in the laboratory using a variety of tech-
nologies, including optical lattices, ion traps, superconducting
circuits, and others (10, 17, 18). Just as it is easier to study a scale
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model of an airfoil in a wind tunnel than an entire airplane, the
advantage of artificially engineering a Hamiltonian that models
a material of interest, rather than studying that material directly,
is that it is typically easier to measure and manipulate the artifi-
cially engineered system. It is possible to measure the state of a
single atom in an optical lattice (19–21); it is substantially harder
to measure, for example, the state of a single electron spin in a
2D layer within a cuprate superconductor.

Many important theoretical questions regarding analogue
quantum simulation remain open, despite its practical signifi-
cance and experimental success (10, 17, 18). Which systems can
simulate which others? How can we characterize the effect of
errors on an analogue quantum simulator? [This was highlighted
in a 2012 review article (11) as one of the key questions in this
field.] On a basic level, what should the general definition of ana-
logue quantum simulation itself be? The notions of simulation
and universality we develop here enable us to answer all these
questions.

This computationally inspired notion of physical universal-
ity has its origins in earlier work on “completeness” of the
partition function of certain classical statistical mechanics mod-
els (22–24). Recent results by De las Cuevas and Cubitt (9)
built on those ideas to establish the more stringent notion of
universality for classical spin systems. Related, more practi-
cally focused notions have also been explored in recent work
motivated by classical Hamiltonian engineering experiments
(25). Here we consider the richer and more complex setting
of quantum Hamiltonians, which requires completely different
techniques.

For our explicit constructions that establish the existence
of universal Hamiltonians we are able to draw on a long
literature in the field of Hamiltonian complexity (26–33),
studying the computational complexity of estimating ground
state energies. These results per se only concern the ground
state energy, and moreover only the computational complex-
ity of estimating it. Nonetheless, the “perturbative gadget”
techniques developed to prove Hamiltonian complexity results
(26, 27) turn out to be highly useful in constructing the full
physical simulations required for our results. By combining
our precise mathematical understanding of analogue Hamilto-
nian simulation with these Hamiltonian complexity techniques,
we are able to design “gadgets” that transform one many-
body Hamiltonian into another while preserving its entire
physics and local structure, as required to construct universal
models.

1. Hamiltonian Simulation
We start by establishing precisely what it means for one quantum
many-body system to simulate another. Any nontrivial simulation
of one Hamiltonian H with another H ′ will involve encoding
the first within the second in some way. We want this encod-
ing H ′= E(H ) to “replicate all of the physics” of the original
H . To reproduce all static, dynamic, and thermodynamic prop-
erties, the encoding E needs to fulfill a long list of operational
requirements:

i) E(H ) should be a valid Hamiltonian: E(H ) = E(H )†.
ii) E should reproduce the complete energy spectrum:

spec(E(H )) = spec(H ). More generally, E(M ) should pre-
serve the outcomes (eigenvalues) of any measurement M :
spec(E(M )) = spec(M ).

iii) Individual interactions in the Hamiltonian should be
encoded separately: E(

∑
i αihi) =

∑
i αiE(hi). Otherwise,

encoding would require solving the full many-body
Hamiltonian, obviating any need to simulate it.

iv) There should exist a corresponding encoding of states, Estate,
such that measurements on states are simulated correctly:
For any observable A, Tr(E(A)Estate(ρ)) = Tr(Aρ).

v) E should preserve the partition function (potentially up
to a physically unimportant constant rescaling): ZH ′(β) =

Tr(e−βE(H )) = cTr(e−βH ) = c ZH (β).
vi) Time evolution according to E(H ) should simulate time evo-

lution according to H : e−iH ′tEstate(ρ)e iH ′t = Estate(e−iHt

ρe iHt).
vii) Any error or noise process on the E(H ) system should cor-

respond to some error or noise process on the H system: For
any superoperatorN ′, there should exist a superoperatorN
such thatN ′(Estate(ρ)) = Estate(N (ρ)).

Using Jordan- and C∗-algebra techniques, we prove (SI
Appendix) that, remarkably, the very basic requirements i–iii
already imply that all other operational requirements are satis-
fied too. Furthermore, any encoding map E that satisfies them
must have a particularly simple mathematical form:

E(H ) =U (H⊕p ⊕ H̄⊕q)U † [1]

for some unitary U and nonnegative integers p, q such that p +
q ≥ 1. (H̄ denotes complex conjugation of H .)

This characterization of Hamiltonian encodings holds if the
entire simulation is to exactly replicate all of the physics of the
original. However, in practice no simulation will ever be exact.
What if the simulator Hamiltonian H ′ only replicates the physics
of the original Hamiltonian H up to some approximation? As
long as this approximation can be made arbitrarily accurate, H ′

will be able to replicate the entire physics of H to any desired
precision.

Moreover, it suffices if the physics of H is replicated within
some well-isolated subspace of H ′, even if H ′ behaves noth-
ing like H outside that subspace. An important case is when
the simulation occurs within the subspace of states with energy
below some cutoff ∆, especially if this energy cutoff can be
made as large as desired (Fig. 1). Due to energy conservation,
any initial state with energy less than ∆ will be unaffected by
the high-energy sector. Indeed, as long as the cutoff is larger
than the maximum eigenvalue of H , H ′ will be able to simulate
all possible states of H . This also holds for all of thermody-
namic properties; any error in the partition function due to the
high-energy sector is exponentially suppressed with increasing
∆. In practice, one is often interested only in low-temperature
properties of a quantum many-body Hamiltonian, as these are
the properties relevant to quantum phases and phase transi-
tions. In that case, the energy cutoff does not even need to
be large, merely sufficiently above the lowest excitation energy.
Thus, we need to generalize our characterization to encompass
approximate simulation of H in the low-energy subspace of H ′.

Finally, for a good simulation we would also like the encod-
ing to be local, in the sense that each subsystem of the original

Fig. 1. Simulating one Hamiltonian within the low-energy space of
another. H′ (Right) simulates H (Left) to precision (η, ε) below energy
cutoff ∆.
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Hamiltonian corresponds to a distinct subset of particles in the
simulator. This will enable us to map local observables on the
original system to local observables on the simulator system, as
well as to efficiently prepare states of the simulator.

By making all of the above mathematically precise, we show
(SI Appendix) that this leads to the following rigorous notion
of Hamiltonian simulation, which encompasses both exact sim-
ulation (as a special case) and, more generally, approximate
simulation within a low-energy subspace (also see Fig. 1):

Definition 1 (analogue Hamiltonian simulation): A many-body
Hamiltonian H ′ simulates a Hamiltonian H to precision (η, ε)
below an energy cutoff ∆ if there exists a local encoding E(H ) =
V (H ⊗P + H̄ ⊗Q)V †, where V =

⊗
i Vi for some isometries

Vi acting on 0 or 1 qudits of the original system each, and P and
Q are locally orthogonal projectors, such that

i) there exists an encoding Ẽ(H ) = Ṽ (H ⊗P + H̄ ⊗Q)Ṽ † such
that Ẽ(1) =P≤∆(H ′) and ‖Ṽ −V ‖≤ η;

ii) ‖H ′≤∆− Ẽ(H )‖≤ ε.

Here, we write H ′≤∆ =P≤∆(H ′)H
′ where P≤∆(H ′) denotes the

projector onto the subspace spanned by eigenvectors of H ′ with
eigenvalues below ∆.

The first requirement (i) states that, to good approximation
(i.e., within error η), the local encoding E approximates an
encoding Ẽ onto low-energy states of H ′. The second require-
ment (ii) says that the map Ẽ gives a good simulation of H (i.e.,
within error ε). Note that if η= ε= 0 and ∆→∞, the simulation
is exact. Increasing the accuracy of the simulation will typically
require expending more “effort,” for example by increasing the
energy of the interactions.

Definition 1 requires the simulating subspace to be the low-
energy sector. All our simulations achieve this. However, it is
worth noting that Definition 1 can readily be generalized to
other types of subspace, by replacing P≤∆(H ′) by a projector
onto the subspace of interest. Physically relevant examples might
include symmetric subspaces, superselection sectors, or invariant
subspaces of another Hamiltonian. Constructing interesting sim-
ulations in such subspaces is an interesting direction for future
research.

Our definition of Hamiltonian simulation, which follows from
physical requirements, turns out to be a refinement of a defini-
tion of simulation introduced in prior work (33) in the context
of Hamiltonian complexity theory. There are two important dif-
ferences. We allow the encoding map E to be anything that
satisfies the physical requirements i–iii from above, which can be
more complicated than a single isometry. However, we restrict
E to be local, since we require simulations to preserve local-
ity. A notion of universal analogue quantum simulation was also
discussed—though not formally defined—in ref. 34, along with
some requirements that a quantum simulator should satisfy. Our
requirements encompass these.

Our notion of Hamiltonian simulation is strong enough to
imply that all our requirements i–vii are indeed satisfied: All
static, dynamic, and thermodynamic properties are preserved up
to any desired precision (see the next section and SI Appendix for
rigorous statements).

We are usually interested in simulating entire quantum many-
body models, rather than individual Hamiltonians. By “model”
we mean very generally here any family of Hamiltonians (e.g., the
2D Heisenberg model consists of all Hamiltonians with nearest-
neighbor Heisenberg interactions on a 2D square lattice of some
given size, with uniform coupling strengths). The 2D Heisenberg
model with variable couplings is another, more general model,
consisting of all 2D Heisenberg Hamiltonians with any values for
the individual coupling strengths.

When we say that a model A can simulate another model B ,
we mean it in the following strong sense: Any Hamiltonian H on
n qudits (i.e., d -dimensional spins) from model B can be sim-
ulated by some Hamiltonian H ′ on m qudits from model A,
and this simulation can be done to any precision η, ε with as
large an energy cutoff ∆ as desired. The simulation is efficient
if each qudit of the original system is encoded into a constant
number of qudits in the simulator [i.e., each Vi in Definition
1 maps to O(1) qudits], H ′ is efficiently computable from H ,
and the energy overhead and number of qubits of the simulation
scales at most polynomially [i.e., ‖H ′‖= poly(n, 1/η, 1/ε, ∆) and
m = poly(n, 1/η, 1/ε, ∆)].

2. Consequences of Simulation
We arrived at a rigorous notion of Hamiltonian simulation by
requiring the simulation to approximate the entire physics to
arbitrary accuracy. This is clearly very strong. Just as exact sim-
ulation preserves all physical properties perfectly, approximate
simulation preserves all physical properties approximately. First,
all energy levels are preserved up to any desired precision ε.
Second, by locality of E , for any local observable A on the orig-
inal system there is a local observable A′ on the simulator and
a local map Estate(ρ) such that applying A′ to Estate(ρ) per-
fectly reproduces the effect of A applied to ρ. This applies to
all local observables, all order parameters (including topologi-
cal order), and all correlation functions. Thus, all these static
properties of the original Hamiltonian are reproduced by the
simulation.

Third, Gibbs states of the original system correspond to Gibbs
states of the simulator, and the partition function of H is repro-
duced by H ′, up to a physically irrelevant constant rescaling and
an error that can be exponentially suppressed by increasing the
energy cutoff ∆ and improving the precision ε. More precisely, if
the original and simulator Hamiltonians have local dimension d ,
then (SI Appendix)

|ZH ′(β)− (p + q)ZH (β)|
(p + q)ZH (β)

≤ dm−ne−β∆

(p + q)e−β‖H‖ + (eεβ − 1).

Since it is able to reproduce the partition function to any
desired precision, all of thermodynamic properties of the original
Hamiltonian are reproduced by the simulation. Finally, all
dynamical properties are also reproduced to any desired preci-
sion. More precisely, the error in the simulated time evolution
grows only linearly in time (which is optimal without active
error correction) and can be suppressed to any desired level by
improving the approximation accuracy ε and η:

‖e−iH ′tEstate(ρ)e iH ′t −Estate(e−iHtρe iHt)‖1 =O(tε+ η). [2]

We can also derive some important consequences for simulation
errors. A recurring criticism of analogue Hamiltonian simula-
tion is that, because it does not implement any error correction,
errors will accumulate over time and swamp the simulation. A
common counterargument is that any real physical system is
itself always subject to noise and errors. If the properties of its
Hamiltonian are sensitive to noise, the behavior of the real phys-
ical system will include the effects of this, so from a physical
perspective it is in fact fine to simulate this noisy system rather
than an artificial, perfect, error-corrected system.

There is truth to both sides. In the absence of error correc-
tion, errors will accumulate over time, as Eq. 2 shows. It is also
true that the same will happen in the original physical system, so
this may not matter for simulating physical properties, but only
if noise and errors in the simulation closely mimic the noise and
errors experienced by the real physical system we are trying to
simulate.
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With our precise definition of Hamiltonian simulation in hand,
we can take a first step toward a rigorous version of this argu-
ment. Most natural noise models are local: Physical errors tend
to act on nearby particles, not across the entire system. The
definition of Hamiltonian simulation we arrived at immediately
implies that local errors in the original system correspond to
local errors in the simulator. However, we can go further. We
prove (SI Appendix) that, under a reasonable physical assump-
tion, a local error in the simulator approximates arbitrarily well
the encoded version of some local error on the original system.
To make this precise, note that if we take the energy cutoff ∆ to
be large enough, errors on the simulator system are unlikely to
take the simulated state out of the low-energy space of H ′.
Assume that this happens with probability at most δ, for some
δ≤ η. Then for any noise operation N ′ acting on ` qudits of the
simulator, there is always some noise operation N on at most `
qudits of the original system [which we can easily write down (SI
Appendix)] such that, for any state ρ, the effect ofN ′ on the sim-
ulator approximates (again, to any desired precision) the effect
ofN on the original system:

Estate(N (ρ)) =N ′(Estate(ρ)) +O(
√
η),

where N and N ′ are superoperators. The fact we can prove the
result this way around is crucial: It shows that any local noise and
errors in our simulator just reproduce the effects of local noise
and errors in the original physical system. This is much stronger
than merely showing that errors on the original system can be
simulated.

This is as strong a result as one can hope for in a fully gen-
eral, abstract description of Hamiltonian simulation. However,
it still falls far short of a full justification of the lack of error
correction in analogue quantum simulation. Fully justifying this
would require characterizing all of the noise and error processes
occurring in the particular Hamiltonian simulator implementa-
tion, then determining whether these faithfully reproduce the
effects of the natural noise and error processes in the physical
system it is being used to simulate. Our results provide the math-
ematical framework required to carry out the latter; the former
is an experimental physics challenge. Even then, the validity of
this argument rests on the validity of the noise characterization
and model. Ultimately, determining whether or not a simulation
is accurate always comes down to testing its predictions in the
laboratory.

3. Universal Hamiltonians
The notion of Hamiltonian simulation we have arrived at is
extremely demanding. It is not a priori clear whether any
interesting simulations exist at all. In fact, not only do such
simulations exist, we prove that there are even universal quan-
tum simulators. A model is “universal” if it can simulate any
Hamiltonian whatsoever, in the strong sense of simulation dis-
cussed above. Depending on the target Hamiltonian, this sim-
ulation may or may not be efficient. Typically, the simulation
will be efficient for target Hamiltonians with local interactions
in the same (or lower) spatial dimension. However, while uni-
versal models can also simulate Hamiltonians in higher spatial
dimensions with only modest (polynomial) system-size overhead,
this comes at an exponential cost in energy. More precisely,
any interaction graph that is spatially sparse can be simu-
lated efficiently by any of the universal models in 2D, whereas
the complete graph can be simulated with polynomial space
overhead but exponential energy overhead (see SI Appendix
for details).

Remarkably, even certain simple 2D quantum spin-lattice
models are universal. To show this, we in fact prove a still
stronger result. We completely classify all two-qubit interac-
tions (i.e., nontrivial interactions between two spin-1/2 particles)

according to their simulation ability (SI Appendix). This clas-
sification tells us which two-qubit interactions are universal.
The universal class turns out to be identical to the class of
QMA-complete two-qubit interactions from quantum complex-
ity theory (32), where QMA is the quantum analogue of the
complexity class NP (35).

The classification also shows that there are two other classes of
two-qubit interaction, with successively weaker simulation abil-
ity. Combining our Hamiltonian simulation results with previous
work (33), we find that there is a class of two-qubit interac-
tions that can simulate any stoquastic Hamiltonian (i.e., any
Hamiltonian whose off-diagonal entries in the standard basis are
nonpositive). This is the class of Hamiltonians believed not to
suffer from the sign problem in numerical Monte Carlo calcula-
tions. Another class is able, by previous work (9), to simulate any
classical Hamiltonian (i.e., any Hamiltonian that is diagonal in
the standard basis).

The 2D Heisenberg and XY models with variable coupling
strengths are important examples which we show fall into the first
category and hence are universal simulators. The 2D (quantum)
Ising model with transverse fields falls into the second category
and so can simulate any other stoquastic Hamiltonian (33). The
2D classical Ising model with fields falls into the third cate-
gory and so is an example of a universal classical Hamiltonian
simulator (9).

4. Universality Classification
We now summarize the proof of the universality classification
result (see SI Appendix for full technical details). This involves
chaining together a number of steps, the most important of which
are shown in Fig. 2. In fact, most of the technical difficulty lies
in proving universality of the Heisenberg and XY interactions,
as these have the most restrictive symmetries of all two-qubit
interactions. Once these are shown to be universal, recently
developed techniques (32, 36) show that any other Hamiltonian
from the universal category can simulate one of these two (this
step is omitted from the illustration in Fig. 2). Hence, by univer-
sality of the Heisenberg or XY interactions, such Hamiltonians
can also simulate any other Hamiltonian.

Step 1. The Heisenberg interaction hHeis =σx ⊗σx +σy ⊗σy +
σz ⊗σz (where σx ,y,z are the Pauli matrices) has full local
rotational symmetry. Mathematically, this is equivalent to invari-
ance under arbitrary simultaneous local unitary rotations U ⊗U .
The XY interaction hXY =σx ⊗σx +σy ⊗σy is invariant under
arbitrary rotations in the z-plane (i.e., U ⊗U with U = e iθσz

Fig. 2. Part of the sequence of simulations used in this work. An arrow
from one box to another indicates that a Hamiltonian of the first type can
simulate a Hamiltonian of the second type.
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for any angle θ). Any Hamiltonian composed of just one of
these types of interaction inherits the corresponding symmetry.
Thus, all its eigenspaces also necessarily have this symmetry. Yet
if it is to be universal, it must simulate Hamiltonians without this
symmetry.

To overcome the symmetry restriction, we develop more
complicated simulations based around the use of “perturbative
gadgets” [a technique originally introduced to prove QMA-
completeness results in Hamiltonian complexity theory (26, 27)].
In a perturbative gadget, a heavily weighted term CH0 (for
some large constant C ) dominates the overall Hamiltonian
H ′=CH0 +H1 such that the low-energy part of H ′ is approx-
imately just the ground space of H0. Within this low-energy
subspace, an effective Hamiltonian is generated by H1 and can
be calculated using a precise version of perturbation theory (33),
which accounts rigorously for the approximation errors result-
ing from neglecting the higher-order terms. The first-order term
in the perturbative expansion is given by H1 projected into
the ground space of H0, as one might expect. However, if this
term vanishes, then the more complicated form of higher-order
terms may be exploited to generate more interesting effective
interactions.

To break the symmetry of the Heisenberg and XY interac-
tions, it is necessary for the encoded Hamiltonian to act not on
the physical qubits of the system but on qubits encoded into a
subspace of multiple physical qubits. To achieve this, we design a
four-qubit gadget where the strong H0 term, consisting of equally
weighted interactions across all pairs of qubits, has a twofold
degenerate ground space. This 2D space can be used to encode
a qubit. This gadget is used repeatedly to encode all qubits of
the systems separately, as illustrated in Fig. 3. We then add less
heavily weighted interactions acting between qubits in different
gadgets, to generate effective interactions between the encoded
qubits. This allows us to generate any two-qubit interaction that
does not involve any σy terms.

Steps 2 and 3. The next steps use simpler perturbation gadgets,
in which H0 is used to project a system of ancilla qubits into a
fixed state, such that the effective Hamiltonian that this gener-
ates couples the remaining qubits. This type of gadget is known
in the Hamiltonian complexity literature as a mediator qubit
gadget (27), because the ancilla qubits are seen to “mediate”
an effective interaction between the other qubits in the system.
Previously known gadgets of this type (27) allow many-body
interactions to be simulated using two-body interactions. We
combine these with a new mediator gadget (SI Appendix) to show
how two-qubit Hamiltonians without σys can simulate all real
local Hamiltonians.

Step 4. There is still a more basic obstacle to overcome. All
matrix elements of hHeis or hXY are real numbers (in the stan-
dard basis). Thus, any Hamiltonian built out of these interactions
is also real (hence the lack of σys so far). Yet, if it is to be

Fig. 3. Schematic illustrating simulation of one Hamiltonian with another.
Each logical (red) qubit is encoded within four physical (blue) qubits,
forced into their ground space by strong pairwise interactions. Interactions
between the physical qubits implement effective interactions between the
logical qubits. An error on a physical qubit only affects one logical qubit.

universal it must simulate Hamiltonians with complex matrix
elements.

A simple encoding overcomes this restriction, by adding an
additional qubit and encoding the real and imaginary parts
of H separately, controlled on the state of the ancilla qubit.
The Hamiltonian H ′= Re(H )⊕ Im(H ) is clearly real and is
easily seen to be an encoding of H , since H ′=H ⊗

∣∣+y

〉
+

H̄ ⊗ |−y

〉
, where

∣∣±y

〉
= (
∣∣0〉± i |1

〉
)/
√

2. To make this encod-
ing local, it can be adjusted to a simulation where there is
an ancilla qubit for each qubit of the system, but these ancil-
las are forced by additional strong local interactions to be in
span{

∣∣+y

〉⊗n
,
∣∣−y

〉⊗n}.

Step 5. Finally, higher-dimensional spins (qudits) can be simu-
lated by encoding each qudit into dlog2 de qubits in the obvious
way. To simulate indistinguishable particles, one can verify that
standard techniques for mapping fermions or bosons to spin
systems give the required simulations (SI Appendix).

To show that Hamiltonians with arbitrary long-range inter-
actions can be simulated with a 2D lattice model, there is a
further step: embedding an arbitrary interaction pattern within
a square lattice. This can be achieved by effectively drawing
the long-range interactions as lines on the lattice and using
further perturbative gadgets to remove crossings between lines
(27). This step requires multiple rounds of perturbation the-
ory, which can result in the final Hamiltonian containing local
interaction strengths that scale exponentially in the number of
particles. Thus, the final simulation, while efficient in terms of
the number of particles and interactions, is not necessarily effi-
cient in terms of energy cost for arbitrary Hamiltonians. For
example, we do not know how to construct an energy-efficient
simulation of a 3D lattice Hamiltonian using a 2D lattice model,
nor do we necessarily expect it to be possible. However, full
efficiency is recovered when the original Hamiltonian is spa-
tially sparse (27) (a class which encompasses all 2D lattice
Hamiltonians).

5. Conclusions
We close by highlighting some of the limitations of our results
and possible future directions. First, while our strong notion
of simulation preserves locality in the sense that a few-particle
observable in the original system will correspond to a few-
particle observable in the simulator, simulating, for example,
a 3D system in a 2D system necessarily means that the cor-
responding observables in the simulation will not always be
on nearby particles. Also, to simulate higher-dimensional sys-
tems in 2D, our constructions require very large coupling
strengths.

From the analogue Hamiltonian engineering perspective, our
results show that surprisingly simple types of interactions suffice
for building a universal Hamiltonian simulator. Together with
the ability to prepare simple initial states, these would even suf-
fice to construct a universal quantum computer, or to perform
universal adiabatic quantum computation (SI Appendix). (How-
ever, error correction and fault tolerance, which are essential for
scalable quantum computation, would require additional active
control.) The converse point of view is that, as these appar-
ently restrictive models turn out to be universal, simulating them
on a quantum computer may be more difficult than previously
thought.

Furthermore, our mathematical constructions require ex-
tremely precise control over the strengths of individual local
interactions across many orders of magnitude. Although some
degree of control is possible in state-of-the-art experiments (10,
18), the requirements of our current universal models are beyond
what is currently feasible. However, it is already possible to
experimentally engineer more complex interactions than those
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we have shown to be universal. Now that we have shown that
universal models exist, and need not be extremely complex, it
may be possible to construct other universal models tailored to
particular experimental setups.

From a fundamental physics perspective, an important lim-
itation of our current results is that our universal models are
not translationally invariant. Although we show there are uni-
versal models in which all interactions have an identical form,
our proofs rely heavily on the fact that the strengths of these
interactions can differ from site to site. Classic results showing
that local symmetries together with translational invariance can
restrict the possible physics (37, 38) suggest breaking transla-
tional invariance may be crucial for universality. However, much

of the intuition for our proofs comes from Hamiltonian complex-
ity, where recent results have shown that translational invariance
is no obstacle to complexity (31, 39).

In light of our results, determining the precise boundary
between simplicity and universality in quantum many-body
physics is now an important open question for future research.
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