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The concept of artificial intelligence (AI) has recently permeated al- training dataset. These populations are remarkably small in relationship

most every sector of daily life, including the rapidly evolving technolo-
gies and datasets of health care delivery. Each mode or type of
technology, such as medical imaging, iteratively evolves each year and
the resulting inter-related or multimodal applications multiply expo-
nentially [1]. As health care technology, such as the electronic health re-
cord or diagnostic and therapeutic approaches expand, there is an
ongoing demand for the continual process of leveraging, integrating
and optimizing these synergistic advances. This modernization, or pro-
gressive refinement in optimizing the efficiency of existing technologies
is devoted to eliminating efficiencies and maximally utilizing the infor-
mation embedded in every ephemeral event in routine clinical care.
Such modernization is expected and not innovative, per se. In clinical
medicine, as in other spheres of daily life, digital data is now amassing
in distributed electronic health records and potentially voluminous clin-
ical, imaging, laboratory and other datasets [1–3]. The recent expansion
of imaging data in stroke is an ideal example, where data are universally
acquired for all patients encountered, digitally preserved and thereby
amenable to largescale computer algorithms for decades to come from
around the world. Importantly, such informatics may yield insight far
beyond the pace and extent of what we can accomplish as physicians
in routine stroke care where every minute counts in patient outcomes.
In this issue of EBioMedicine, Tang et al. provide an intriguing application
ofmachine learning toMRI data in acute ischemic stroke to delineate the
tissue fate of penumbral regions over time [4]. Importantly, they demon-
strate that the typical time-based administration of intravenous throm-
bolysis may be successfully applied irrespective of time from symptom
onset when advanced imaging enables AI via machine learning.

Tang et al. pooled theMRI data across seven centers, acquiredwithin
9 h of symptom onset and focused on the identification of penumbral
tissue as the target of intervention [4]. Measuring the size of the penum-
bra is a key goal of stroke imaging as treatments target such opportuni-
ties to offset potentially irreversible ischemic brain injury. The authors
defied rigid time windows for intravenous thrombolysis and leveraged
more sophisticated strategies to identify the potentially reversible pen-
umbral zones of ischemia that are threatened or at-risk of ischemic in-
farction. They studied a cohort of 155 individuals, including 84 in a
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to the expected task, yet they advantaged the power of independent
voxel-based techniques to predict tissue fate in the brain after an ische-
mic stroke. Mismatch between hypoperfusion and core infarction or ir-
reversible stroke damage in the brain, as defined in this study,
correlated well with clinical outcomes at day 7 and 90 after stroke
onset. The strikingly impressive AUCs for prediction of subsequent clin-
ical outcomes in the validation dataset suggest the potential to utilize
imaging, irrespective of time, in future clinical decision-making. The ul-
timate question, with this scientific paper, not dissimilar to most of the
literature, is how likely this care paradigm for decision-makingwill per-
form in routine clinical practice, given the extreme heterogeneity of
stroke cases encountered daily around the world.

Such machine learning methods engender several automatic or re-
flexive limitations [5–9]. Only MRI was used to define penumbra,
whereas multimodal CT was not included. As a result, one cannot easily
translate this imaging technology and mismatch paradigms, including
the definition of core infarction or extent of ischemia. It demonstrates
the potential of AI, but many philosophical and even more practical
questions abound regarding future applications of this technique and
related approaches to stroke imaging. The authors conclude their inves-
tigation with the panacea of all scientific reports, suggesting that future
prospective trials should test their describedmethods. Unfortunately, in
the majority of instances with this suggestion, prospective studies are
never conducted, leading to publication bias and potentially misleading
implications for clinical practice or the routine care of stroke. The reader
and the clinician are left wondering, is this metaphorically, deep learn-
ing or simply superficial insight on the information that imaging can
provide in acute ischemic stroke?

This innovative paper builds upon prior work in mapping tissue fate
in acute ischemic stroke [6–9].Most approaches, however, are predicat-
ed on key analyses that study highly selective paradigms or homoge-
nous clinical scenarios where basic protocols or algorithms may be
applied in ideal situations. Generalizability of such approaches is a crit-
ical question in a highly heterogeneous and complex disorder such as is-
chemic stroke, where middle cerebral artery occlusion can lead to
divergent imaging patterns of ischemia from case to case. The efforts
to simplify stroke care with protocols, care pathways, algorithms and
even the prospect of robotics may fall short in achieving the expertise
of complex medical-decision making often encountered. The prospects
of AI are therefore limited by whether we believe there exists a perfect
algorithm to treat stroke. Furthermore, the development of machine
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learning requires training, from clinical care models where much of
practice is empiric and not-evidenced based. For future AI, we will
have to provide incredibly large multi-dimensional datasets and apply
many rules of evidence where data are lacking. Clinical decision-
making in stroke is often chaotic or erratic, where clinicians rapidly
change course as in withdrawal of care after aggressive therapeutic
interventions.

Can we mimic the human brain of complex medical decision-
making in stroke care with AI? Imaging interpretation and mapping of
tissue fate seems to be a good start, if it is faster and just as accurate
as the current clinical standard which may be horrifically poor in most
scenarios of stroke imaging interpretation. From a clinical perspective,
however, stroke care involves far more than imaging and the clinical
decision-making may be far beyond a simple logical method. Perhaps
the novel approach by Tang et al. is a deeper learning experience than
routine, but it yields merely superficial insight relative to the complex
challenges we face in delivering stroke care around the world every
hour.
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