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Abstract

Asthma is a chronic lung disease that has a high prevalence. The therapeutic intervention of this 

disease can be made more effective if genetic variability in patients’ response to medications is 

implemented. However, a clear picture of the genetic architecture of asthma intervention response 

remains elusive. We conducted a genome-wide association study (GWAS) to identify drug 

response-associated genes for asthma, in which 909,622 SNPs were genotyped for 120 

randomized participants who inhaled multiple doses of glucocorticoids. By integrating 

pharmacodynamic properties of drug reactions, we implemented a mechanistic model to analyze 

the GWAS data, enhancing the scope of inference about the genetic architecture of asthma 

intervention. Our pharmacodynamic model observed associations of genome-wide significance 

between dose-dependent response to inhaled glucocorticoids (measured as %FEV1) and five loci 

(p = 5.315 × 10−7 to 3.924 × 10−9), many of which map to metabolic genes related to lung 

function and asthma risk. All significant SNPs detected indicate a recessive effect, at which the 

homozygotes for the mutant alleles drive variability in %FEV1. Significant associations were well 

replicated in three additional independent GWAS studies. Pooled together over these three trials, 

two SNPs, chr6 rs6924808 and chr11 rs1353649, display an increased significance level (p = 

6.661 ×10−16 and 5.670×10−11). Our study reveals a general picture of pharmacogenomic control 

for asthma intervention. The results obtained help to tailor an optimal dose for individual patients 

to treat asthma based on their genetic makeup.
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INTRODUCTION

Asthma is a chronic lung disease characterized by recurring periods of wheezing, chest 

tightness, shortness of breath, and coughing mediated through airway inflammation.1 Given 

its substantial societal cost,2 the discovery of any therapeutic intervention to treat this 

disease, especially severe asthma, has been a long-standing public health concern.3,4 Recent 

developments in molecular genetics provide an unprecedented opportunity to understand the 

genetic causes of asthma and identify targets that can be used to control the syndrome.4,5 

More importantly, a systematic, large-scale survey of associations between common DNA 

sequence variants and disease has succeeded in identifying a set of specific genes that 

influence asthma.6–8 These asthma-associated genetic variants identified, distributed on 

various chromosomes, are found to affect this lung disease through altering key biochemical 

pathways that are related to lung function.9,10

Although there is no doubt that the identification of genes for disease risk facilitates the 

development of effective medications for its treatment,11 the efficient application of such 

medications will rely on our knowledge about pharmacogenomic effects on drug disposition, 

drug metabolism, and drug response, given the fact that inter-individual variation exists in 

the response to a particular drug.12,13 However, until recently, most pharmacogenomic 

studies have been carried out using candidate gene approaches. Specific genes that encode 

enzymes involved in drug metabolism as well as drug targets, typically receptors or 

enzymes, have been identified. A successful example of candidate gene studies is the 

identification of genes that control the effect of anticoagulant drugs, such as warfarin.14 

Some pharmacogenomic studies have also identified genes responsible for adverse drug 

reactions,12 including those that encode metabolic enzymes and those that are related to the 

immune system and mitochondrial functions. In a recent review, Tse et al.15 described 

candidate genes and pathways detected thus far to control variability in response to three 

classes of asthma medications, β-adrenergic receptor agonists, inhaled corticosteroids and 

leukotriene modifiers.

Since 2007, genome-wide association studies (GWAS) have increasingly emerged as a 

powerful tool for pharmacogenomic studies. Significant associations through GWAS have 

been detected for the response to interferon-α,16–18 clopidogrel19 and warfarin,20–22 as well 

as for adverse drug reactions related to statin-induced myopathy23 and flucloxacillin-

induced liver injury.24 All these studies may help shed light on the genetic control 

mechanisms of drug response and their clinical implications.

Unlike a case in mapping complex diseases, GWAS of drug response is often characterized 

by a small size of samples12 so that there may be insufficient power to detect small or 

moderate size effects. One approach to overcome this limitation is the use of family-based 

data25–29 and has recently been applied to asthma treatment response30. However, the vast 

majority of clinical trials of drug response do not involve DNA collection in non-trial family 

participants. Here, we present an alternative approach by incorporating the 

pharmacodynamic principle of drug response into a pharmacogenetic GWAS. The basic idea 

of such incorporation is to model drug effect-dose relationships through mathematical 
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equations based on repeated measures of drug response at multiple dosages.30 By estimating 

and testing those mathematical parameters that define the effect-dose curves, one can 

determine how a specific gene affects drug effects at each dose or across a range of doses. 

Because of its statistical parsimony, i.e., the number of curve parameters is always less than 

the number of doses,31–34 the incorporation of mathematical equations can potentially 

increase the power of detecting significant associations, compared to traditional GWAS 

analysis based on a simple phenotype-genotype relationship. Although the theory of this 

incorporation has well been established in the previous studies,30–34 here we have for the 

first time reported a systematic implication of this theory for practical pharmacogenetic 

studies in asthma intervention.

The pharmacodynamic approach was applied to analyze a pharmacological GWAS trial 

derived from SNP Health Association Asthma Resource projects (SHARP),35–37 leading to 

the identification of five significant SNPs responsible for pulmonary response after asthma 

treatment. Associations between these SNPs and the same phenotype were well confirmed 

by analyzing three additional GWAS. In order to investigate how small sample sizes, 

characteristic of pharmacogenomics studies, impact on the estimation of genetic effects and 

the power of gene detection, we performed computer simulation by mimicking the data 

structure of SHARP. We found that the implementation and use of a pharmacodynamic 

model can overcome, to some extent, the limitation of small sample sizes in 

pharmacological GWAS.

PHARMACODYNAMIC MODELING OF GWAS

Statistical Design

Consider a clinical trial composed of n participants used for a pharmacological GWAS, in 

which each of the participants is genotyped for SNPs throughout the entire genome. These 

participants receive the administration of a drug under a multitude of doses, at each of which 

a pharmacological parameter that reflects drug effect is measured. Under this design, each 

participant (say i) has a series of dose-dependent pharmacological phenotypic data, 

expressed as yi = (yi(Cil), …, yi(CiMi
)), where (Ci1, …, CiMi

) are Mi doses of administration 

participant i receives. We allow different participants to possibly receive different number of 

doses in the clinical trial.

It is likely that drug response as a complex trait is controlled by many genes each with a 

different effect. The GWAS is motivated to identify all possible genes and estimate each 

gene’s effects on drug response. Assuming that there is such a gene with three genotypes 

and, also, considering the influence on drug response by other covariates, such as race, sex, 

life style, and age, the phenotypic value of participant i at dose m can be described by a 

regression model, expressed as,

yi(Cim) = ∑
j = 1

3
zi jg j(Cim) + ∑

k = 1

K
αkuik + ∑

l = 1

L
∑

s = 1

Sl
xilsvls + ei(Cim) (1)

Wang et al. Page 3

Pharmacogenomics J. Author manuscript; available in PMC 2018 September 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



where gj(Cim) is the genotypic value of participant i who carries SNP genotype j at dose 

Cim; zij is an indicator variable of participant i defined as 1 if this participant carries a 

genotype considered and 0 otherwise; uik is the value of the kth (k = 1, …, K) continuous 

covariate for participant i; αk is the effect of the kth continuous covariate; vls is the effect of 

the lth (l = 1, …, L) discrete covariate at its sth (s = 1, …, Sl) level; xils is the indicator 

variable that describes the sth level of the lth discrete covariate for participant i; and ei(Ciτ) 

is a random error.

We implement a maximum likelihood approach to estimate the parameters involved in 

model (1). The likelihood of all participants is constructed as

L = ∑
j = 1

3
∑
i = 1

n j
f j(yi) (2)

where nj is the number of participants with genotype j; and fj(yi) is assumed to follow a 

multivariate normal distribution with mean vector for genotype j as

μ j i = g j(Ci1) + ∑
k = 1

K
αkuik + ∑

l = 1

L
∑

s = 1

Sl
xilsvls, ..., g j(CiMi

) + ∑
k = 1

K
αkvik + ∑

l = 1

L
∑

s = 1

Sl
xilsbls (3)

and covariance matrix

Σi =

σ1
2 ⋯ σ1Mi

⋮ ⋱ ⋮
σMi1

⋯ σMi
2

(4)

We incorporated the pharmacodynamic model to estimate the genotypic values of a 

particular genotype j at different dosages30, as shown in equation (2). Emax equation38 that 

specifies drug effect E at a particular dose C is thought to be one of the most 

pharmacodynamics models, expressed as

E(C) = E0 +
EmaxCH

EC50
H + CH (5)

where E0 is the baseline, Emax is the asymptotic (limiting) effect, EC50 is the drug 

concentration that results in 50% of the maximal effect, and H is the slope parameter that 

determines the slope of the concentration-response curve. The larger H, the steeper the linear 

phase of the log-concentration effect curve. The phenotypic longitudinal data were 

normalized to remove the baseline so that drug effect at different levels of dosage is defined 
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by three parameters. By estimating these parameters for different SNP genotypes, we could 

draw the curves of drug response for each genotype and test how different genotypes vary in 

the form of curve.

We used the Emax equation (5) to model dose-dependent genotypic values for each SNP 

genotype j by pharmacological parameters (Emaxj, EC50j, Hj). In addition, considering the 

autocorrelation feature of the random error, we used the autoregressive regression model to 

estimate the across-dose covariance structure. Other approaches for modeling covariance 

structure are available in the literature,39–42 allowing a choice of the best fit model for a 

practical data set.

Hypothesis Tests

Whether a particular gene affects drug response can be tested by a log-likelihood ratio 

approach. This can be done on the basis of two alternative hypotheses:

H0: Emax j, EC50 j, H j ≡ Emax, EC50, H .
H1: At least one of the equalities above does not hold

(6)

Under each hypothesis, we calculate the likelihood and further calculate their ratio. This 

ratio is thought of being chi-square distributed with six degrees of freedom.

After a gene is confirmed to be significant among its three genotypes, we will further test 

how this gene acts to affect drug response. The action of a gene can be additive, dominant or 

recessive. Wu et al.30 provided a general procedure to test the mode of action under a 

pharmcodynamic model. A SNP is first analyzed by a genotypic model, i.e., testing 

differences among three genotypes based on hypothesis test (6), followed by the additive and 

dominant/recessive tests. We used model selection criteria, such as BIC, to choose an 

optimal model.

APPLICATIONS

Samples

The research with human participants has been approved by Penn State College of 

Medicine’s Review Board. Table 1 summarizes key population characteristics of several 

trials used for GWAS analysis. In the Dose of Inhaled Corticosteroids with Equisystemic 

Effects (DICE) trial35, 120 randomized participants (post-pubertal to 60 years of age) were 

recruited with mild-to-moderate asthma, defined as 12% change in forced expiratory volume 

in 1 second (FEV1) or ≤ 8 mg/ml methacholine provocative concentration causing a 20% 

drop in FEV1 (PC20) and baseline FEV1 65–90% of predicted. During enrollment, AM 

(prior to 9:30 AM) plasma cortisol concentration of ≥ 5 mcg/dl needed to be attained. After 

a 1-week run-in period, participants were randomized to one of six active inhaled 

corticosteroid (ICS) delivery systems (or the corresponding placebo). After each week of 

treatment, participants remained at the study center for an overnight stay and then received a 

medication supply with a doubled dose for the subsequent week. This process continues 
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until there are a total of four dosages. At each of the dosages, participants were measured for 

the percent predicted value of the pre-bronchodilator forced expiratory volume in one 

second (%FEV1).

The IMPACT trial35 includes 225 adult asthma participants (in age 18–65 years with mild, 

persistent asthma) with FEV1 ≥ 70% of predicted, displaying either ≥ 12% or > 200 ml 

improvement following albuterol inhalation or bronchial hyperreactivity (methacholine PC20 

< 16 mg/ml). All participants were instructed to take open-label budesonide or prednisone as 

guided by the symptom-based action plan. The run-in and treatment phases both ended with 

a 14-day period of intense combined therapy. Salmeterol Off CorticoSteroids (SOCS)36 and 

Salmeterol ± Inhaled Corticosteroids (SLIC) trials37 include 79 and 106 asthma participants, 

respectively, which were conducted in tandem with a common 6-week run-in period on 

inhaled corticosteroid therapy (Table 1). At the end of the run-in period, the milder patients 

were allocated to SOCS (FEV1 > 80% predicted, PEF variability ≈ 20%) and the more 

moderate patients allocated to SLIC. The %FEV1 was measured for the three trials above.

In four trials, DICE, IMPACT, SOCS, and SLIC, subjects were genotyped for 909,622 SNPs 

throughout the entire genome. Genotyping was performed on Affymetrix 6.0 arrays. SNP 

genotypes were obtained after stringent quality-control filters.

Results

Gene detection: We used the pharmacodynamic model to identify genes for drug 

response (%FEV1) to inhaled corticosteroids for asthma treatment by jointing estimating the 

effect due to covariates, age, BMI, race, gender and drug type. Dose levels of drugs were 

normalized to a range from 0 to 1. We implemented four genetic models to study the 

patterns of pharmacological inheritance: (1) genotypic model detecting the overall effect due 

to differences among three SNP genotypes, (2) additive model detecting the effect due to the 

substitution of the wild-type allele (common) by the mutant (minor), (3) dominant model in 

which the mutant allele is dominant over the wild-type allele, and (4) recessive model in 

which the expression of the mutant is masked by the wild-type allele. We excluded those 

SNPs from our GWAS analysis with minor allele frequency < 0.3; this threshold is larger 

than usual, aimed to assure sufficient samples for each genotype group given our modest 

sample size. To the end, a total of 266,944 SNPs were involved in the analysis.

The four genetic models were each used to scan SNPs throughout the entire genome for the 

DICE trial. After the Bonferroni correction, five significant SNPs were detected by the 

genotypic (Supplementary Fig. 1A) and recessive model (Supplementary Fig. 1D). The 

additive and dominant models did not identify significant associations (Supplementary Fig. 

1B and 1C). Two SNPs on chromosomes 8 and 11 were detected by both genotypic and 

recessive models, but according to BIC values calculated, both SNPs conform to the 

recessive model better than the genotypic model. The following loci produce associations of 

genome-wide significance with physiological response to glucocorticoid therapy for asthma 

(Table 2); rs6924808 on chromosome 6 with wild-type allele C and mutant T (p = 5.315 × 

10−7), rs10481450 on chromosome 8 with wild-type allele A and mutant T (p = 2.614 × 

10−8), rs1353649 on chromosome 11 with wild-type allele G and mutant A (p = 3.924 × 

10−9), rs12438740 on chromosome 15 with wild-type allele C and mutant T (p = 4.499 × 
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10−8), and rs2230155 on chromosome 15 with wild-type allele C and mutant T (p = 1.798 × 

10−7). To evaluate the influence of population stratification, we calculated the ratio of the 

median of the log-likelihood ratios among all SNPs analyzed over the critical value of the 

chi-square distribution at the 0.05 significance level. If this ratio is near, or slightly less than, 

1.0, this indicates that the effect due to population stratification is ignorable43. The ratios 

calculated are 0.82 – 0.88 for the genotypic, additive and dominant models used, suggesting 

that our results are not largely affected by population structure.

Pharmacodynamic pattern of genetic effects: The pharmacodynamic model allows 

the estimates of genotype-specific curve parameters, (Emax, EC50, H), that define drug 

response (see Supplementary Table 1 for the maximum likelihood estimates of the 

parameters and the standard deviations of the estimates). Each of these parameters differs 

strikingly between two groups of genotypes, the homozygote for the mutant allele, and a 

mix of the homozygote for the wild-type allele and the heterozygote for the two different 

alleles, at significant SNPs. The overall influence of these parameters on variability in 

glucocorticoid response curve can be seen from response curves drawn for each genotype 

group (Fig. 1). It can be observed that individual SNPs fit raw longitudinal data reasonably 

well and also different SNPs affect drug response in different ways.

At all significant SNPs, the wild-type allele is dominant over the mutant for their actions in 

affecting glucocorticoid response, as revealed by the recessive model (Table 2). For chr6 

rs6924808, the homozygote (CC) for the wild-type allele C and the heterozygote (CT) for 

the wild-type allele and mutant T are more responsive to changing doses of glucocorticoids 

than the homozygote (TT) for the mutant (Fig. 1A). At chr8 rs10481450 and chr11 

rs1353649, the homozygotes for the mutant display remarkably greater sensitivity to drug 

dose than the genotypes containing the wild-type alleles (Fig. 1B and 1C). Chr15 

rs12438740 and chr15 rs2230155 are located closely together on the same chromosome, 

with a high linkage disequilibrium (r = 0.99), exhibit a similar dynamic pattern of genetic 

effect (Fig. 1D and 1E); the homozygote for the mutant do not respond until a particular 

dose level is reached, whereas the genotypes containing the wild-type allele appear to be 

resistant to increasing dose. Figure 1 shows that some SNPs capture a wide variation like 

rs10481450 and rs1353649, whereas the others explain a narrow variation like rs6924808, 

rs12438740, and rs2230155. Some SNPs are sensitive to a small change in low doses of 

drug, such as rs6924808, and some display variation after a certain level of dose is reached, 

such as rs10481450 and rs12438740. The common feature of all the SNPs is that different 

groups of genotypes start to diverge at a lower level of dose and stabilize their variation 

during a wide range of dose.

In sum, the mutant allele produces a pronounced increase in lung function after 

glucocorticoid treatment as compared with the wild-type allele for all SNPs, except for chr6 

rs6924808. Overall, subjects who are homozygous for the mutant allele are 30–300% larger 

for %FEV1 values at an intermediate dose of glucocorticoids than those who are 

homozygous for the wile-type allele and heterozygous for the two alleles (Fig. 2; 

Supplementary Table 2). The differences between these two groups of genotypes are 30–

245% of the mean of all treated subjects. There are striking differences in the heritability of 

%FEV1 response to glucocorticoid therapy explained by individual SNPs (Fig. 3). Chr11 
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rs1353649 accounts for 19–26% of the phenotypic variation, whereas these values are 8–

20% for chr8 rs10481450 and chr6 rs6924808 and 2–5% for chr15 rs12438740 and chr15 

rs2230155. All SNPs display a dynamic change of heritability over dose.

Cross validation: We performed an additional analysis to cross-validate the results 

detected by randomly splitting the population into two equally-sized sub-groups. In 

Supplementary Table 3, we summarized the results about the estimates of parameters from 

100 resampling replicates for each subgroup at a significant SNP rs10481450, in a 

comparison with those from the whole population. The parameter estimates of each 

subgroup are quite consistent, and they are consistent with those using the whole population. 

Although standard errors of the estimates for some parameters are large due to a small 

sample size, they are reasonably within the space of estimates.

Computer Simulation

The statistical properties of the pharmacodynamic model to analyze GWAS data were 

investigated through computer simulation. The simulation mimicked the DICE trial in terms 

of sample size, dose level, and demographical attributes of participants. The phenotypic data 

of drug response were simulated using parameters estimated for SNP rs10481450 detected 

from the DICE trial by assuming normally-distributed residuals. The data were simulated 

using the genotypic, additive, dominant and recessive models and then analyzed by each 

model.

The pharmacological model has good power to detect a correct pattern of genetic action 

(Table 2). When a correct model was used, genotype-specific pharmacodynamic parameters 

and covariate effects can be reasonably estimated. Table 3 gives the estimates of parameters 

and their sampling errors under different sample sizes when the genotypic model is assumed. 

In Supplementary Table 4, estimates of parameters by the dominant, recessive and additive 

models are given. The estimates of three pharmacological parameters, Emax, EC50 and H, 

each have a reasonably small sampling error for each genotype, even when the sample size is 

modest (100). The estimation precision of these parameters increases dramatically when 

sample size increases to 200 or 400.

Because humans cannot be controlled, like plants or animals, it is unavoidable to include 

many covariates, such as different demographic factors, in human GWAS. These covariates 

would often confound the identification of significant genes. However, the deployment of a 

multiple regression model that incorporates covariate effects can filter some of these 

confounders. As shown in Table 4, the estimates of genotype-specific pharmacodynamics 

parameters are not affected by covariates. Furthermore, model (1) can provide an estimate of 

the effects of each covariates including continuous and discrete. Estimates of some of the 

covariate effects are not very precise under a small sample size (100), but this situation can 

improve dramatically when the sample size increases to 400.

Wu et al.30 showed that the pharmacodynamics model displays increased power of gene 

detection compared to traditional GWAS analysis based on a single static phenotype. To 

confirm their result, we used the simulated data above that mimics the DICE trial to estimate 

the empirical power of gene detection at each of four doses. This power was observed to be 
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substantially lower (by 1.5 to 8.5 times) than the power of gene detection by the 

pharmacodynamics model that makes use of data at all doses at one time, consistent with 

Wu et al.’s finding.

Replication

Here, we used three other trials to validate the results. These trials are the IMProving 

Asthma Control Trial (IMPACT),35 Salmeterol Off CorticoSteroids (SOCS) trial,36 and 

Salmeterol ± Inhaled Corticosteroids (SLIC) trials.37 Because of one single dose of 

corticosteroid used, we analyzed associations between %FEV1 values and five significant 

SNPs detected from DICE using a univariate model (Table 4). All the five SNPs were found 

to be significant in the three trials, except for chr15 rs2230155 being non-significant for 

SOCS and chr8 rs10481450 and chr11 rs1353649 being marginally significant for IMPACT 

and SOCS, respectively (Table 4). Pooled together over IMPACT, SOCS, and SLIC of a 

similar design, all SNPs, except for chr15 rs2230155, display significant associations with 

glucocorticoid response. Figure 4 compares the differences of %FEV1 between two groups 

of genotypes, the mutant homozygote and a mix of the homozygote for the wild-type allele 

and the heterozygote for the two different alleles, at each SNP for the pooled three trials. For 

chr6 rs6924808 and chr11 rs1353649, such differences have different directions between the 

pooled trials and DICE. When an optimal model, i.e., genotypic model, was used, these two 

SNPs produce a very high level of significance for associations (p = 6.661 ×10−16 and 

5.670×10−11; Table 4).

DISCUSSION

The pharmacodynamic model has successfully detected five loci of significant effects on 

response curves of corticosteroids for asthma by integrating the biochemical processes of 

drug response into GWAS. This integration has proven to be statistically more powerful for 

gene detection than traditional approaches based on a single dose30. The identification of 

significant SNPs by our model has been validated by resampling and simulation studies. 

Furthermore, these five SNPs demonstrate good replication in three independent clinical trial 

populations for the same phenotype. In general, the mutant alleles at most SNPs tend to 

increase pulmonary function of asthma participants by 30–300% after inhaled glucocorticoid 

treatment relative to the wild-type alleles, although the expression of the mutant may be 

masked by the wild-type allele. In another study, Tantisira et al.29 found that the mutant 

homozygote at chr7 rs37972 displays 120–330% decrease of lung function through 

glucocorticoid treatment compared with the wild-type homozygote. In both our and Tantisira 

et al.’s studies, the heritabilities of glucocorticoid response explained by individual SNPs are 

much larger than those detected for disease and physiological traits.8–11 This may be due to 

the fact that drug response is evolutionarily a “young” trait, which has not experienced yet a 

long history of natural selection as the other traits have.12

High heritability detection should benefit from the statistical merit of our pharmacodynamic 

model which was derived from parsimonious modeling of the mean-covariance structures 

for longitudinal data of drug response across a series of doses. For example, four parameters 

are needed to describe drug response of a genotype at four dose levels if traditional 
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approaches are used, while the pharmacodynamic model only uses three parameters to do 

the same thing. Moreover, the pharmacodynamic model, such as the Emax model36 and 

differential equations, 44,45 contains biologically meaningful aspects of drug response in 

terms of body-drug interactions. Applied to GWAS of response to corticosteroids for asthma 

intervention, this model can not only facilitate the interpretation and elucidation of the 

pharmacogenomics architecture of this important clinical problem, but also increase the 

statistical power of significant association detection.

Except for SNP rs6924808 on chromosome 6, the other four detected are located in the 

vicinity of candidate genes associated with cellular functions. It appears that SNP 

rs10481450 on chromosome 8 is related to gene TNKS, a PARP member localized 

predominantly in the cytosol, that regulates cellular viability and NAD(+) metabolism46 and 

gene MSRA that has a function to repair oxidative damage to proteins to restore biological 

activity.47 SNP rs1353649 on chromosome 11 is nearby many candidate genes, such as 

DBX1,48 NAV2,49 HTATIP2,50 and PRMT3,51 some of which determine nicotine 

dependence. MYO1E is also a nicotine dependence-related gene52 in which two associated 

SNPs, rs12438740 and rs2230155, on chromosome 15 were identified.

A modest sample size used may overestimate genetic effects of SNPs. However, our 

pharmacodynamic model makes use of the longitudinal feature of phenotypic data measured 

repeatedly for the same subjects, which has proven to be powerful for increasing the 

precision of parameter estimation.30 Our finding here shows a promise to utilize the genetic 

results obtained to predict individual patients’ performance in asthma intervention. Recent 

studies showed that asthma may be affected by DNA methylation through regulating gene 

expression.53 It is straightforward to integrate methylation variants into the model to better 

reveal the genetic and epigenetic basis of asthma intervention. To the end, by incorporating 

our new model with genetic and epigenetic observations for asthma6,7 and associated 

alteration in lung function by asthma,9,10 we may better determine and design the optimal 

doses for individual patients13, maximizing drug efficacy for optimal pulmonary function 

response while minimizing drug toxicity.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Changes in pulmonary response to varying doses of inhaled corticosteroids as defined as 

prebronchodilator %FEV1 for two different groups of genotypes (i.e., the mutant 

homozygote, MM, and a mix of the homozygote for the wild-type allele and the 

heterozygote for the two different alleles, W_) at five significant SNPs, chr6 rs6924808 (A), 

chr8 rs10481450 (B), chr11 rs1353649 (C), chr15 rs12438740 (D), and chr15 rs2230155 

(E), for the DICE trial detected by the recessive model. Blue thin lines in background are 

response curves of individual participants to varying dosages. The original data were 

normalized by removing the baselines and plotted against relative scales of corticosteroid 

dosages.

Wang et al. Page 14

Pharmacogenomics J. Author manuscript; available in PMC 2018 September 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. 
Changes of normalized %FEV1 mean (±SE) by the mutant homozygote (MM) over a mix of 

the homozygote for the wild-type allele and the heterozygote for the two different alleles 

(W_) at an intermediate dose of glucocorticoids for significant SNPs, chr6 rs6924808 (A), 

chr8 rs10481450 (B), chr11 rs1353649 (C), chr15 rs12438740 (D), and chr15 rs2230155 

(E), for the DICE trial detected by the recessive model.
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Figure 3. 
Dynamic changes of the heritability for %FEV1 over relative scales of corticosteroid 

dosages explained by individual SNPs, chr6 rs6924808 (A), chr8 rs10481450 (B), chr11 

rs1353649 (C), chr15 rs12438740 (D), and chr15 rs2230155 (E) for the DICE trial.
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Figure 4. 
Changes of %FEV1 mean (±SE) by the mutant homozygote (MM) over a mix of the 

homozygote for the wild-type allele and the heterozygote for the two different alleles (W_) 

at an intermediate dose of glucocorticoids for significant SNPs, chr6 rs6924808 (A), chr8 

rs10481450 (B), chr11 rs1353649 (C), chr15 rs12438740 (D), and chr15 rs2230155 (E), for 

pooled IMPACT, SOCS and SLIC trials detected by the recessive model. Note that %FEV1 

was not normalized because these trials contain only one dose of glucocorticoids.
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Table 1:

Population characteristics of the longitudinal DICE trial and other three independent trials.

Characteristic DICE IMPACT SOCS SLIC SOCS/SLIC

No. of subjects 120 251 79 106 31

Inhaled glucocorticoid Budesonide 1)Budesonide
2)Prednisone+
Budesonid+
Zafirlukast

Triamcinolone 1)Triamcinolone
2)Salmetrol+
Triamcinolone

Triamcinolone

Age – yr 30.6±8.1 34.2±10.8 30.4±10.9  35.9±12.4 32.7±11.4

Sex – no. subject(%)

    Male 51(56.7%) 57(39.0%) 30(41.1%) 43(45.3%) 11(52.4%)

    Female 39(43.3%) 89(61.0%) 43(58.9%) 52(54.7%) 10(47.6%)

Baseline FEV1-% of predicted 79.0±7.4 88.8±13.3 85.6±14.0 67.6±10.9 73±15.9

Change in FEV1-% 6.5±10.3 1.3±7.4 7.3±11.8 4.5±9.8 2.6±16.6
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Table 2:

Power to correctly identify the pattern of pharmacological inheritance by the pharmacodynamic model. The 

data were simulated by mimicking the DICE data structure and the estimates obtained by BIC from 1000 

simulation replicates.

Sample Size True Model Estimated Model

Full Recessive Dominant Allelic

100

Full 887 106 7 0

Recessive 1 993 1 5

Dominant 0 0 954 46

Additive 4 63 69 864

200

Full 991 9 0 0

Recessive 14 986 0 0

Dominant 5 0 983 12

Additive 9 10 18 963

400

Full 1000 0 0 0

Recessive 16 984 0 0

Dominant 8 0 990 2

Additive 2 1 1 996
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Table 3:

Means of the estimates of parameters for the pharmacodynamic approach and their standard errors (in 

parentheses) from simulated data by mimicking the DICE data structure with different sample sizes based on 

1000 simulation replicates (full genotypic model).

Parameter True Value
Sample Size

100 200 400

Emax1 9.934 10.511 (1.653) 10.465 (1.417) 10.332 (1.167)

H1 1.472 1.441 (0.589) 1.435( 0.562) 1.455 (0.517)

EC50(1) 0.069 0.094 (0.089) 0.082 (0.050) 0.076 (0.024)

Emax2 17.637 17.317 (2.539) 17.515 (2.228) 17.668 (1.884)

H2 2.509 2.864 (0.796) 2.723 (0.662) 2.618 (0.477)

E50(2) 0.551 0.544 (0.091) 0.549 (0.068) 0.552 (0.053)

Emax3 19.858 20.185 (2.422) 20.060 (2.019) 19.976 (1.567)

H3 2.2 2.580 (0.955) 2.430 (0.779) 2.340 (0.583)

EC50(3) 0.13 0.144 (0.047) 0.137 (0.028) 0.134 (0.019)

α1 −0.075 −0.077 (0.086) −0.074 (0.058) −0.074 (0.040)

α2 0.113 0.116 (0.109) 0.111 (0.072) 0.112 (0.050)

v11 2.135 2.178 (1.100) 2.150 (0.775) 2.117 (0.527)

v12 −1.065 −1.074 (1.407) −1.104 (0.966) −1.104 (0.681)

v13 −3.553 −3.531 (1.427) −3.532 (0.944) −3.521 (0.668)

v14 3.037 2.978 (1.641) 3.014 (1.124) 3.039 (0.822)

v21 3.855 3.943 (1.666) 3.925 (0.956) 3.872 (0.627)

v22 −6.059 −6.031 (2.081) −6.039(1.279) −6.044 (0.874)

v23 4.904 5.001 (2.418) 4.943 (1.417) 4.902 (0.998)

v31 −0.798 −0.829 (0.699) −0.814 (0.464) −0.816 (0.322)

ρ 0.754 0.738 (0.027) 0.746 (0.020) 0.750 (0.014)

σ2 71.401 66.294 (6.071) 68.769 (4.415) 69.995 (3.103)

Note: α1 and α2 are the effects due to two continuous covariates; v1, v2 and v3 are the effects due to three discrete covariates each with a different 

level; and ρ and σ2 are the autoregressive parameters that model the covariance structure.
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