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Abstract

Tumor immunoediting consisting of three phases of elimination, equilibrium or dormancy, and 

escape, has been supported by preclinical and clinical data. A comprehensive understanding of the 

molecular mechanisms by which anti-tumor immune responses regulate these three phases are 

important to developing highly tailored immunotherapeutics that can control cancer. To this end, 

IFN-γ produced by Th1 cells, cytotoxic T cells, NK cells and NKT cells is a pleiotropic cytokine 

that is involved in all three phases of tumor immunoediting, as well as during inflammation-

mediated tumorigenesis processes. This essay presents a review of literature and suggests that 

overcoming tumor escape is feasible by driving tumor cells into a state of quiescent but not 

indolent dormancy in order for IFN-γ producing, tumor-specific T cells prevent tumor relapse.
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Introduction

Tumors display high levels of heterogeneity because of genetic instability, a characteristic of 

malignancy [1]. This results in a multitude of responses of tumor to the host immune 

responses or immunotherapeutics such that some tumor clones undergo apoptosis while 

other clones lay dormant and may later escape from the immune response and lead to distant 

metastasis. Anti-tumor immune responses utilize four major pathways to fight the tumor. 

Firstly, activated lymphocytes produce perforin to poke a hole in the extracellular membrane 

of target tumor cells as well as granzyme B to enter tumor cells and cleave caspases for the 
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induction of apoptosis [2]. Secondly, they also express Fas-L to engage with Fas receptor on 

tumor cells and induce apoptosis [2]. Thirdly, they produce TNF-related apoptosis-inducing 

ligand (TRAIL) to engage with TRAIL receptors on tumor cells and in turn induce tumor 

cell apoptosis [3]. Finally, activated lymphocytes produce IFN-γ, which is a pleiotropic 

cytokine with a wide range of activity; IFN-γ simultaneously induces apoptosis, tumor 

dormancy, and immunoediting in tumor cells that could lead to tumor relapse and 

progression [4–8]. Paradoxically, chronic exposure of cells to IFN-γ facilitates the 

development of hepatocellular carcinoma [9], colorectal carcinoma [10], and papilloma [11]. 

Therefore, understanding the distinct mechanisms by which IFN-γ affects the tumor could 

lead to the development of highly tailored immunotherapeutics that could control the tumor 

without inducing tumor escape and relapse. IFN-γ is primarily produced by T cells, NK 

cells and NKT cells. The receptor for IFN-γ is comprised of two subunits which include 

IFN-γ receptor alpha (IFN-γ Rα) and IFN-γ receptor beta (IFN-γ Rβ). Binding of IFN-γ to 

its cell surface receptor IFN-γ Rα induces dimerization of IFN-γ Rα, thereby forming a site 

for the assembly with IFN-γ Rβ. Upon heterodimerization of IFN-γ Rα/IFN-γ Rβ, their 

intracellular janus family kinases, JAK1 and JAK2, respectively, dimerize and become 

phosphorylated. This phosphorylation creates binding sites for the signal transducer and 

activator of transcription (STAT) proteins, primarily STAT1 [12]. Phosphorylated STAT1 

homodimers are then translocated into the nucleus to bind the interferon regulatory factor-1 

(IRF-1) gene gamma-activated sequence (GAS) sites on the promoters of downstream target 

genes [13]. This, in turn, activates diverse pathways in different tumor clones.

IFN-γ induces apoptosis in tumor cells

IFN-γ exerts its tumor killing function directly by the induction of apoptosis or by 

facilitating non-apoptotic cell death, as well as indirectly by rendering tumor cells 

susceptible to apoptosis inducing function of the immune response or chemotherapies. For 

instance, IFN-γ induces IRF1, a tumor suppressor gene, which in turn reduces Bcl2 and 

increases Bak. These events facilitate the release of cytochrome c from mitochondria and 

activation of caspases, resulting in apoptosis [14]. Reactive oxygen species (ROS) and 

reactive nitrogen intermediates (RNI) at low concentrations are associated with cell 

proliferation. However, tumor cells that produce high amounts of RNI and ROS in response 

to IFN-γ tend to undergo apoptosis [15]. IFN-γ can also induce non-apoptotic cell death 

through the induction of autophagy in human hepatocellular carcinoma (HCC) [16]. IFN-γ-

induced activation of STAT1 enhances the expression of the death receptor FAS and its 

ligand FAS-L in hepatoma and colon adenocarcinoma cells [17], and of TRAIL and its 

receptor death receptor 5 (DR5) in human tumor cell lines [18–20]. Accordingly, activated 

STAT1 sensitizes tumor cells to FAS or TRAIL mediated apoptosis. Also, activation of 

STAT1 by IFN-γ inhibits the expression of the p53 inhibitor murine double minute 2 

(MDM2), thereby enhancing p53-induced apoptosis by doxorubicin and cisplatin [21].

IFN-γ arrests cancer growth by driving tumor cells into a state of dormancy

Although the IFN-γ/STAT1 pathway induces tumor cell apoptosis, activation of STAT1 can 

also result in the inhibition of tumor cell growth and establishment of dormancy. In 

melanoma, activation of the IFN-γ/STAT1 pathway results in the downregulation of cyclin E 

and cyclin A with consequent tumor cell dormancy [22]. Activated STAT1 can also interact 
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with cyclins D1, D2, D3 and CDK4 and result in cell cycle arrest in fibrosarcoma cells [23]. 

Tumor inhibitory function of IFN-γ-induced STAT1 activation is also mediated by the 

upregulation of the miRNA-29 family and a consequent downregulation of CDK6 in 

melanoma cells [24]. IFN-γ mediated tumor dormancy can also be induced independent 

from STAT1 signaling. Tumor clones that highly express indolamine 2,3-dioxygenase 1 

(IDO1) and kynurenine (Kyn)-aryl hydrocarbon receptor (AhR) respond to IFN-γ by 

upregulating the cell cycle inhibitor p27, consequently preventing STAT1 signaling and 

inducing tumor dormancy [25]. In fact, p21 and p27 facilitate hypo-phosphorylation of the 

tumor suppressor Rb, thereby suppressing the activity of E2F transcription factor and 

inhibiting the activation of genes involved in cell proliferation. In a T antigen (Tag)-induced 

multistage carcinogenesis in pancreatic islets, IFN-γ producing CD4+ T cells inhibit tumor 

cell proliferation and establish tumor dormancy without destroying malignant cells [26]. It 

was also reported that CD8+ T cells maintain murine B cell lymphoma (BCL1) in the state 

of dormancy by producing IFN-γ [6]. Radiation-induced tumor dormancy is also mediated 

by the production of IFN-γ in Balb/c neu transgenic mice such that neutralization of IFN-γ 
reversed radiation-induced tumor dormancy and resulted in tumor relapse [27]. It has been 

demonstrated that levels of the expression of IFN-γ Rα on mammary tumor cells determine 

whether IFN-γ eliminates the tumor or establishes tumor dormancy. While low expression 

of IFN-γ Rα in tumor cells results in tumor dormancy, high levels of IFN-γ Rα expression 

result in tumor elimination in the presence of IFN-γ producing, neu-specific CD8+ T cell 

responses in FVB mice [7]. Given that STAT1 activation by IFN-γ results in the 

upregulation of major histocompatibility complex class I (MHC class I) molecules, which 

present antigens to T cells [28], dormant tumor cells could become more susceptible to the 

immune surveillance.

IFN-γ edits tumor cells and facilitates tumor escape and relapse

In addition to apoptosis inducing and tumor inhibitory functions, IFN-γ can also induce 

aberrant DNA methylation [29, 30] or genetic alteration in tumor cells [4], resulting in tumor 

progression and relapse. IFN-γ-induced tumor immunoediting is mediated through several 

mechanisms which include the induction of tumor antigen loss [30–34], upregulation of PD-

L1 in tumor cells [35], recruitment of myeloid-derived suppressor cells (MDSCs) and tumor 

associated macrophages (TAMs) to the tumor site [36, 37]. IFN-γ-induced HER2/neu loss 

has been reported in FVBN202 transgenic mouse model of breast cancer [30], and patients 

with HER2/neu positive ductal carcinoma in situ (DCIS) or breast cancer [32–34]. 

Activation of STAT1 by IFN-γ results in the induction of the immune checkpoint protein 

PD-L1 in tumor cells [38]. In addition, chronic IFN-γ signaling in tumor cells increases 

resistance to immune checkpoint blockade through STAT1-related epigenetic and 

transcriptomic alterations, rendering melanoma resistant to radiation therapy and immune 

checkpoint inhibitors [39]. It was suggested that the genomic instability induced by IFN-γ 
during tumor progression is due to adaptation of the tumor to an immunologically hostile 

microenvironment [4]. This phenomenon has been predicted by the adaptation model of 

immunity [40, 41]. Recent studies suggested that the state of tumor dormancy could 

determine whether IFN-γ may keep dormant cells in check or may edit dormant tumor cells 

and result in tumor relapse. Specifically, Ki67low indolent tumor cells are susceptible to 

immunoediting and escaping from immunotherapy whereas Ki67- quiescent dormant cells 
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fail to undergo immunoediting and thus remain dormant by IFN-γ producing T cells [8]. 

Quiescent dormancy is due to lack of tumor cell proliferation and tumor cell arrest in G0 

whereas indolent dormancy is due to a balance between tumor cell apoptosis and 

proliferation. Since genetic and epigenetic changes take place during cell division, indolent 

cells remain susceptible to immunoediting and escape from immunotherapy. We have 

reported that IFN-γ induces the expression of PD-L1 on Ki67low indolent, but not on Ki67- 

quiescent, dormant cells [8] . The detection of circulating tumor cells in breast cancer 

survivors even 22 years after mastectomy without clinical evidence of disease [42] suggests 

the existence and maintenance of tumor dormancy in cancer survivors.

Chronic exposure to IFN-γ facilitates tumorigenesis

Although IFN-γ is known for its ant-tumor function during anti-tumor immune responses, 

chronic exposure of normal cells to IFN-γ can also facilitate malignant transformation. In 

fact, IFN-γ appears to be pro-tumorigenic early during cell transformation whereas it 

manifests anti-tumor function against established tumors. For instance, IFN-γ has been 

reported to be involved in the initiation stage, but not in the promotion stage, of 

diethylnitrosamine-induced hepatocellular carcinoma due to its inflammatory function [9]. 

Suppressor of cytokine signaling-1 (SOCS1)-deficient mice are not able to inhibit IFN-γ 
inflammatory signaling. These mice develop spontaneous colorectal carcinoma because of 

the IFN-γ-induced hyperactivation of STAT1, which results in the induction of 

carcinogenesis-related enzymes, cyclooxygenase-2 and inducible nitric oxide synthase [10]. 

In the 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced papilloma model, IFN-γ is 

involved in the development of papilloma by enhancing a Th17-associated inflammatory 

response [11]. IFN-γ producing macrophages were detected in 70% of human melanomas 

[43]. To this end, ultraviolet (UV)-induced cutaneous malignant melanoma can be abolished 

by systemic blockade of IFN-γ [43]. Non-alcoholic fatty liver disease (NAFLD) is also 

associated with the dominance of M1 macrophages which produce inflammatory cytokines, 

including IFN-γ [44, 45]. In fact, IFN-γ-induced protein 10 (IP-10) is elevated in patients 

with progressive NAFLD [46]. Dietary saturated fatty acids are major contributors to 

NAFLD through the activation of NF-kB, which is a key transcription factor for M1 

macrophage activation [44, 47]. This, in turn, leads to inflammation-induced liver damage in 

nonalcoholic steatohepatitis (NASH) disease [45] and consequent progression to HCC [48, 

49]. Even in the absence of NF-kB signaling, IFN-γ producing NKT cells actively 

participate in the pathogenesis of NASH disease [50]. Also, a higher frequency of IFN-γ 
producing Th1 cells is evident as NAFLD progresses to NASH disease [51].

Concluding remarks

IFN-γ is a pleiotropic cytokine which could manifest opposing effects on host cells ranging 

from cell transformation in the context of chronic inflammation, monocytes/macrophages, to 

anti-tumor effects, cytotoxic T cells (CTL), Th1, NK, NKT cells, during the immune 

response (Figure 1). The anti-tumor function of IFN-γ also varies depending on 

heterogeneity of the tumor cells and tumor microenvironment. IFN-γ can induce tumor cell 

apoptosis, directly or indirectly by upregulating the expression of FAS and DR5 on tumor 

cells. This cytokine can also induce cell cycle arrest and establish tumor cell dormancy. A 
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dual function of IFN-γ appears to be due to low expression of IFN-γ Rα in tumor cells. 

Depending on the type of tumor dormancy, IFN-γ producing T cells can maintain tumor 

dormancy or result in tumor escape and relapse. In fact, IFN-γ could induce tumor 

immunoediting in indolent dormant cells (Ki67low) whereas it maintains quiescent dormant 

cells (Ki67-) in the state of dormancy without clinical evidence of disease. To this end, 

CD8+ T cells, Th1 cells, NK cells, NKT cells could be involved in the process of tumor 

immunoediting. Therefore, we suggest that establishment of quiescent tumor dormancy in 

residual disease by novel therapeutics may render dormant cells highly responsive to 

immunotherapy without risk of recurrence.
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Figure 1. Multifaceted role of IFN-γ in cancer.
Pro-tumor function of IFN-γ is mediated by chronic inflammation involving inflammatory 

monocytes and macrophages. Anti-tumor function of IFN-γ is mediated by cells of the 

adaptive immune system (CTL and Th1), NK cells and NKT cells. The outcome of anti-

tumor immune responses is determined by the status of the expression of IFN-γ Rα on 

target cells such that high levels of IFN-γ Rα render the tumor susceptible to apoptosis 

while low levels of IFN-γ Rα could result in tumor immunoediting and relapse or 

maintenance of immunogenic tumor dormancy depending on the type of tumor dormancy 

being Ki67- quiescent or Ki67low indolent, respectively.
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