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Abstract

Motivation: Single-cell RNA-sequencing (scRNA-seq) has brought the study of the transcriptome

to higher resolution and makes it possible for scientists to provide answers with more clarity to the

question of ‘differential expression’. However, most computational methods still stick with the old

mentality of viewing differential expression as a simple ‘up or down’ phenomenon. We advocate

that we should fully embrace the features of single cell data, which allows us to observe binary

(from Off to On) as well as continuous (the amount of expression) regulations.

Results: We develop a method, termed SC2P, that first identifies the phase of expression a gene is in,

by taking into account of both cell- and gene-specific contexts, in a model-based and data-driven fash-

ion. We then identify two forms of transcription regulation: phase transition, and magnitude tuning.

We demonstrate that compared with existing methods, SC2P provides substantial improvement in

sensitivity without sacrificing the control of false discovery, as well as better robustness. Furthermore,

the analysis provides better interpretation of the nature of regulation types in different genes.

Availability and implementation: SC2P is implemented as an open source R package publicly avail-

able at https://github.com/haowulab/SC2P.

Contact: zhijin_wu@brown.edu or hao.wu@emory.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Studies of transcriptome have been arguably the most active field in gen-

omics research. Traditionally, gene expression is measured from ‘bulk’

samples pooling a large number (often in the scale of millions) of cells,

thus the measurements reflect the average expression of a population of

cells. For highly heterogeneous samples such as cancer or brain tissues,

the bulk measurements fail to provide more detailed information for

the transcriptomic variation. For example, bulk expression data cannot

differentiate a ‘50% decrease in all cells’ and a mixture of ‘complete

shut-down in half of the cells, while no change in the other half’.

Single-cell RNA-sequencing (scRNA-seq) emerged recently as

a powerful technology to investigate transcriptomic variation and

regulation at the individual cell level (Buettner et al., 2015; Patel

et al., 2014; Picelli et al., 2013; Ramsköld et al., 2012; Shalek et al.,

2014; Tang et al., 2009; Usoskin et al., 2015). It is in scRNA-seq

that we finally observe evidence of binary status of transcription

(Shalek et al., 2013; Wills et al., 2013), which we refer to as ‘phases’

in transcription. Phase I corresponds to low level non-specific tran-

scription (for example, as a result of random initiation), and Phase II

corresponds to targeted specific transcription. The regulation of

transcription includes a phase transition between Phase I and Phase

II, as well as continuous regulation within Phase II.

Even though the analysis of scRNA-seq data is multifaceted,

including cell clustering (Kiselev et al., 2017; Ntranos et al., 2016),
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pseudo-time construction (Trapnell et al., 2014) and rare cell

type identification (Grün et al., 2015; Jiang et al., 2016), differential

expression (DE) remains the most fundamental question to be

answered. The scRNA-seq technology makes it possible for scien-

tists to provide answers with more clarity even to the simple ques-

tion of DE. Due to the special characteristics of scRNA-seq data,

including excessive zero counts for both biological and technical rea-

sons, higher variability and multi-modal distribution that cannot be

attributed to the zero counts (Bacher and Kendziorski, 2016), DE

methods developed for bulk RNA-seq cannot be directly applied.

We illustrate some of these characteristics in Figure 1, where histo-

grams of the log counts in three cells are presented. A spike of zero

counts is observed in all three cells, most obvious in Cell A and to a

less extent in Cells B and C. A substantial fraction of genes have

non-zero but very low counts (with log2 counts less than 3).

Another group of genes reach counts that are orders-of-magnitudes

higher, sometimes forming a second mode, which is most obvious in

Cell B. Cell B appears to have a greater proportion of genes with

high expression level, though it also has more than twice as many

genes with zero counts as seen in Cell C. These examples suggest

that non-zero count is not a reliable reflection of expression activity

and to dichotomize genes into on/off categories by one arbitrary cut-

off may lead to systematic biases between cells.

Recently, a few methods were developed specifically for scRNA-

seq DE. SCDE (Kharchenko et al., 2014) uses a mixture of Poisson

and negative binomial distributions to capture the two phases, and

then identifies DE when the gene is on. Monocle (Trapnell et al.,

2014) uses a generalized additive model (GAM) to test the differen-

ces in marginal mean expressions; BPSC (Vu et al., 2016) uses a

beta-Poisson mixture model to capture the bimodality in the expres-

sion, and then implements a generalized linear model (GLM) for

DE test for, again, the differences in marginal mean expressions.

Even though these methods have noticed and mentioned the phe-

nomenon of two-phase transcription from scRNA-seq data, they dis-

missed the importance of the phase transition. Genes in Phase I are

often considered technical ‘dropouts’ that failed to be detected, and

the DE analyses are mostly focused on the marginal changes or with-

in the Phase II, e.g. when the gene is ‘on’. Even when phase transi-

tion is considered in some methods, it is not recognized as an

important form of DE in its own right. For example, MAST (Finak

et al., 2015) includes a test for phase change but only declares a

gene DE if ‘the estimated fold-change is greater than 1.5’ in addition

to low FDR. D3E (Delmans and Hemberg, 2016) is a method based

on a bursting model that explicitly considers ‘On’ and ‘Off’ status of

gene expression. The detection of DE, however, is marginal: the

method uses non-parametric or likelihood ratio tests to test a null

hypothesis that the distributions of expression across two groups are

identical. When the null is rejected, it does not infer the reason being

a change in bursting rate or in burst size. Korthauer et al. (2016)

also considers the possibility of multi-modal distribution of a gene’s

expression, and presents a Bayesian modeling framework (scDD)

that identifies differential distribution (DD) across conditions. The

transition between phases is not directly inferred. Instead, genes that

are identified as showing DD are subsequently classified by their

patterns of difference, including mean shift, differential proportion

of the same components, differential modality or a combinations

of these.

We advocate that the lower mode in the distribution of gene ex-

pression corresponds to a phase of inactivity, and phase transition is

the first important step in transcription regulation, hence it is essen-

tial to the understanding of the regulation mechanism. Thus a prin-

cipled, data-driven approach rather than arbitrary cutoff for

determining phase is necessary. We observe, in multiple biological

systems, that DE can take the form of phase transition or magnitude

tuning, and a combination of these two. Most interestingly, we ob-

serve examples of ‘compensation’ (presented in the Results section):

a population of cells may have a lower percentage expressing a par-

ticular gene, but the cells expressing that gene do so at a higher level.

In such cases, the average expression level may remain the same and

be completely unidentifiable in bulk RNA-seq.

In this work, we present a statistical method, termed SC2P, that

identifies the phase for each gene in each cell, given the context

(both biological and technical) of each cell sample and gene-specific

profile. With this latent phase inferred, we identify genes that go

through different forms of DE. This includes genes that are turned

on with different frequencies in different populations (Form I), as

well as genes that are transcribed at different rates (Form II). These

different forms of DE reveal, potentially, different mechanisms in

the regulation of transcription, such as initiation versus elongation

speed (Jonkers and Lis, 2015), bursting frequency versus bursting

size (Dar et al., 2012; Raj et al., 2006), or different half-life of RNA

transcripts. Being able to distinguish the forms of DE between cell

types, or over time, will also elucidate the relationship between ex-

pression and genomic/epigenomic elements: some markers may be

associated with the probability of expression while others may be

associated with the amount of expression.

2 Materials and methods

2.1 Data model
We begin with the expression measured as sequence read counts for

G genes and C cells in a G�C matrix Y. For a particular gene, we

use a two-component mixture model to describe its expression from
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Fig. 1. Histogram of three cells in the human brain dataset. The y axis is

trimmed at 500 to allow the visualization of lower frequencies. The parame-

ters are described in the Methods section. p is the estimated prior proportion

of genes in Phase II. (A) A cell with extremely high zero inflation, and a small

fraction (8%) of genes in Phase II expression. (B) A cell with high zero infla-

tion, but also a high proportion (32%) of genes in Phase II expression. (C) A

cell with low zero inflation, but also small fraction (9%) in Phase II expression
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individual cells. This characterizes the phenomenon observed in

multiple publicly available datasets (Darmanis et al., 2015; Shekhar

et al., 2016) as well as our data that many genes demonstrate a bi-

modal distribution: one component corresponds to very low counts

with an excess of zero, consistent with a background, inactive tran-

scription; the other component corresponds to higher counts with a

long right tail that are approximately normal in log scale. We refer

to these as the two ‘phases’ of transcription. A key difference sepa-

rating our model from those described in existing methods is our

treatment of the first component, by allowing cell-specific parame-

ters. The status of each gene in each cell, i.e. which component the

observed count is generated from, is latent, but inferable given the

observed count and the gene-cell contexts.

We use a zero-inflated Poisson (ZIP) distribution to model Phase

I (inactive transcription), and a lognormal-Poisson (LNP) model for

Phase II (targeted specific transcription). Specifically, let Ygi denote

the count observed on gene g in cell i, and Zgi denote the binary la-

tent expression state (Zgi¼1 for Phase II). We model Phase I with a

ZIP distribution YgijZgi ¼ 0 � ZIP pi; kið Þ, where pi is for the extra

point mass at 0 to account for zero-inflation, and ki is the Poisson

rate. Both the zero-inflation and the Poisson parameter are cell spe-

cific, reflecting the heterogeneity in low counts among cells. In

scRNA-seq data, each sample is a single cell. Thus the parameters pi

and ki reflect both cell effects and sample preparation effects, which

are not separately identifiable.

Conditioning on a gene in Phase II, or the ‘on’ phase, the

observed count is modeled by log-normal Poisson (LNP) mixture

distribution, with hgi denote the mean expression rate:

hgijZgi ¼ 1 � LN lg; r
2
g

� �
; Ygijhgi � Poisson hgiSi

� �

Here Si is the size factor representing the sequencing depth in cell i.

We use lognormal-Poisson distribution instead of the often-used

negative binomial (gamma-Poisson) distribution for two reasons.

First, the heterogeneity between samples in scRNA-seq data are

much greater than that in the bulk data, making the gamma model

no longer flexible enough (more detailed discussions are provided in

the Supplementary Material). Second, the log normal model offers

more convenience in downstream DE testing procedure, since we

can use existing methods for linear models on log transformed data.

The LNP model for the phase II distribution is cell- and gene-

specific, capturing the expression heterogeneity among cells and

genes. Marginally, the model gives

P Ygi ¼ ygi

� �
¼ 1� pið ÞZIP ygijpi; ki

� �
þ piLNP ygijlg; r

2
g

� �
:

where pi represents the prior probability for gene g in cell i to be in

the specific transcription phase. The parameters for the ZIP model

could vary between genes, but we choose the simplification by

assuming the same parameters pi and ki for all genes within a cell for

better model identification and easier parameter estimation. With

this simplification, the cell’s profile provides information about the

inactive transcription as well as the technical issues such as extrac-

tion and counting efficiency for the sample. The gene’s profile across

cells provides information about a gene’s expected expression when

it enters the active transcription phase. We estimate cell specific

parameters for the ZIP and gene specific parameters for the LNP dis-

tributions (detailed below). Given these hyper parameters and the

observed count, the posterior probability of each gene in Phase II is

computed. Most existing methods determine the phases by applying

an arbitrary threshold to all genes and all cells (Kharchenko et al.,

2014; Shalek et al., 2013), which fails to consider the cell- and

gene-specific characteristics. MAST attempts to derive gene-specific

thresholds by implementing an ad hoc ‘adaptive thresholding’ to es-

timate thresholds based on average expression level of genes. It takes

TPM (transcripts per million) as inputs to normalize out one par-

ticular cell-specific characteristics: the total sequencing depth.

However, MAST ignores the differences in expression distributions

from different cells. Our proposed method achieves cell- and gene-

specific inference for phases based on a rigorous statistical model.

This leads to a data-driven determination of transcription phase for

genes, and subsequently better DE detection results.

2.2 Parameter estimation
2.2.1 Estimation of ZIP parameters

Cell-specific ZIP parameters pi and ki are estimated for each cell

separately. We developed a robust and efficient ZIP estimation

method, which takes advantage of the linearity of log

transformed probability mass in a Poisson or a ZIP random variable.

Specifically, for a Poisson random variable Y, log P Y ¼ kð Þ ¼
�k� log k!ð Þ þ k log kð Þ. Define the expected frequency as

Dk � P Y ¼ kð Þ, we see that log Dk þ log k!ð Þ has a linear relation-

ship with k with slope log k. This linear relationship remains even

when there is zero inflation, except for k¼0. Given the observed

frequencies dk �
Pn

i¼1 I yi ¼ kð Þ=n, we regress log dk þ log k!ð Þ on k

to estimate k, with decreasing weights for higher k to enforce robust-

ness. With k estimated, we use the zero frequency exceeding expect-

ation (exp ð�bkÞ) to estimate the inflation. If the observed zero

counts does not exceed (exp ð�bkÞ), we set the inflation as zero (i.e.

the possibility of zero-depletion is not considered). Specifically,

given bk, we estimate the zero inflation as

bp ¼ max 0; d0 � P Y ¼ 0jbk� �� �
¼ max 0; d0 � exp �bk� �� �

:

2.2.2 Estimation of LNP parameters

With ZIP parameters estimated, we use the 99th quantile of the esti-

mated ZIP distribution as initial threshold to filter out low-count

genes, that is, genes with counts greater than the 99th quantile of

ZIP are considered as in phase II in the initial round. This step will

provide more accurate and stable foreground estimation. Note that

the thresholds established here are not used as naive cutoffs to dis-

tinguish the two components, which was a common approach taken

by some previous single-cell analyses (Kharchenko et al., 2014;

Shalek et al., 2013). Instead, the counts passing the threshold are

used to estimate the Phase II parameters lg and rg via empirical

Bayesian shrinkage methods (Smyth, 2004). In detail, we log

transform the counts and feed them into the shrinkage estimation

procedure, by posing a common prior lg � N l0;r
2
0

� �
and r2

g � Inv

�v2 �0; s2
� �

and borrow information across genes, to obtain

estimates lg and r2
g . For genes that rarely enter the Phase II, the

shrinkage procedure stabilizes the estimates. For genes with many

high counts, there will be less shrinkage. We then plug in these esti-

mates to obtain the posterior probability of being in phase II (pgi)

given each gene’s counts in each cell as

bpgi ¼ P Zgi ¼ 1jYgi ¼ ygi

� �

¼
bpiLNP ygijblg; br2

g

� �

bp iLNP ygijblg;br2
g

� �
þ 1� bpið ÞZIP ygijbk i; bpi

� � :

Here bp i is the estimated mixture probability for Phase II. We initial-

ize pi as the proportion of genes exceeding the 99th percentile of the

ZIP pi; kið Þ. We could iteratively estimate bpi and LNP parameters lg
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and rg based on an EM algorithm. In practice, we found that extra

iterations do not significantly alter the final result. Thus we skip the

iterative procedure for computational efficiency.

The probability mass function (PMF) of LNP distribution does

not have close-form. It can be efficiently and accurately approxi-

mated by

LNP yjl;r2
� �

� U log2 yþ 0:5ð Þjl; r2
� �
� U log2 max 0; y� 0:5ð Þjl; r2

� �
:

where U :jl;r2
� �

is the cumulative distribution function (CDF) of

Gaussian distribution with mean l and variance r2. Numerical

comparison with Monte-Carlo approximation method confirms

that the Gaussian CDF approximation achieves excellent accuracy

(Supplementary Fig. S2). We use this approximation in our imple-

mentation for computing efficiency.

2.3 Two-phase differential expression tests
With the inferred latent phase status of each gene in each cell, we

propose a single-cell two-phase testing procedure (SC2P) that iden-

tify genes with DE in either the frequency or the magnitude of ex-

pression in Phase II. The first class of DE includes genes that are

turned on to Phase II with different frequencies between cell popula-

tions. We dichotomize the each gene’s phase based on the posterior

probability (Phase II if bpgi > 0:99 by default, though the user may

choose a different cutoff). A logistic regression model of bZgi is used

to detect DE in this class. The second class of DE includes genes that

show a difference in the magnitude of expression level given these

are in Phase II. For each gene, the log2-transformed counts in cells

with bZgi ¼ 1 are used as input data, and the test is conducted using

LIMMA (Smyth, 2004). In both phases, false discovery rate

(Benjamini and Hochberg, 1995) is used to control type I error.

3 Results

We demonstrate the benefit of SC2P on two independent datasets.

In the first dataset (referred to as ‘human brain data’), single cell

sequencing data on 466 cells from human cortical tissue are

obtained from GEO under accession number GSE67835. The libra-

ries were prepared with Nextera XT DNA Sample Preparation Kit

(Illumina), and sequenced by Illumina NextSeq instrument using

2 � 75 paired-end read (details are available in the appendix of

Darmanis et al. (2015)). Cell-specific markers are identified from

bulk sequencing of purified cell types in the mouse brain (Zhang

et al., 2014), as described in Darmanis et al. (2015). These cell-type-

defining markers were then used to classify single cells from human

brain into predefined cell types: oligodentrocytes (n¼38), astrocytes

(n¼62), microglia (n¼16), neurons (n¼131), endothelial (n¼20),

oligodendrocyte precursor cells (n¼18), fetal quiescent (n¼110)

and fetal replicating cells (n¼25). There are also 46 cells classified

as ‘hybrid’.

In the second dataset (referred to as ‘T2D data’), 978 cells from

human pancreatic islet are profiled (Lawlor et al., 2017). Cells were

processed on the C1 Single Cell Autoprep System. Multiplexed sin-

gle cell libraries were prepared with Nextera XT reagent, and

All sequencing was performed on a NextSeq500 (Illumina). Raw

sequence data is under accession SRP075970 in NCBI Sequence

Read Archive (SRA). The processed dataset is available at Gene

Expression Omnibus (GEO) with accession number GSE86473. Cell

types are classified using known marker genes as described in

Lawlor et al. (2017).

3.1 Data exploration
We illustrate the typical characteristics of scRNA-seq data that

motivated our model using the human brain dataset. Figure 1 shows

the distribution of expressions from all genes for three different cells.

There is extremely high number of zeros in cell A, but we still ob-

serve about 8% of genes in Phase II, and these genes reach high

counts. Figure 1B shows a cell that appear to have much greater

fraction of the genes in Phase II, with an estimated p (proportion of

genes in Phase II) at 32%, though still with substantial zero inflation

(p0 ¼ 0:86). Figure 1C shows a cell with little zero inflation (less

than a third of zero counts compared to Cell A), but also a low frac-

tion of genes in Phase II (9%), similarly to Cell A. In addition, the

expression level tends to be lower in this cell compared with cell A.

These examples demonstrate that ‘non-zero count’ is not a reliable

reflection of expression activity, and that the zero inflation is a sam-

ple specific feature. The proportion of genes with ‘detected’ expres-

sion, if defined as any none-zero count or counts above a universal

cutoff, is a poor reflection of overall expression in a cell. To dichot-

omize genes into on/off categories by one arbitrary cutoff will also

lead to systematic biases between cells.

3.2 Data-driven determination of phases
Our method estimates cell specific Phase I parameters, as well as

gene specific Phase II parameters. Given an observed count of a spe-

cific gene in a particular cell, the conditional Phase II probability is

computed given both the cell and gene context. Figure 2A is an ex-

ample of all genes in a cell, from the T2D dataset. Their probabil-

ities of being in Phase II increase as counts increase, and essentially

approach 1 for genes with counts greater than 20. There is a great

deal of variability among genes as we do not make a simple cutoff

for all genes in a cell. A gene (red circled) with a count as high as 18

is inferred to be most likely in Phase I, while another gene (green

circled) as low as 6 is inferred to be probably in Phase II. This may

appear counter intuitive, but Figure 2B explains the difference. The

red gene is observed to have counts over several hundred in general,

making the observation of 18 an extreme outlier. In contrast, the

green gene has much lower expression. Figure 2C shows the Phase II

probability for these two genes against observed counts across cells.

Again, there is not a perfectly monotonic relationship because differ-

ent cells have different Phase I parameters.

3.3 Examples of different forms of DE
With latent phases of a gene’s expression inferred, we are able to

detect DE in different forms: a difference in the Phase II proportion

between conditions, or a different level of expression, or a combin-

ation of both? Here we show DE detection examples from compar-

ing alpha cells between Type II diabetic patients and controls in the

T2D dataset.

Figure 3 illustrates examples of four forms of DE identified.

Figure 3A shows a gene that is more prevalent in T2D cells (78% off

in non T2D cells versus 36% off in T2D cells), but among the cells

that do express the gene, the mean expression level and spread are

similar in both populations. Figure 3B shows a gene is expressed in

the majority of cells regardless of disease status, but the mean ex-

pression level is higher in T2D cells. Figure 3C shows a gene that is

up-regulated in T2D cells in both types of DE regulation: the gene is

more likely to be turned on in T2D cells, and when it is turned on

the magnitude of expression tends to be higher. These three forms of

DE lead to a difference in average expression between two cell popu-

lations, which can potentially be detected by bulk RNA-seq as well,

though the mechanism of regulation would not be identifiable.

Two-phase scRNA-seq DE 3343
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Most interestingly, we also observe a form of DE that achieves a

‘compensation’ effect in expression. Figure 3D shows a gene that is

turned on in a smaller proportion of T2D cells (83% non-T2D cells

have the gene on, versus 68% of T2D cells), but among those cells

that do express the gene, the expression level is higher on average in

T2D cells. Genes that undergo DE in this form may end up with

similar level of average expression between cell populations, and

may not be identified by bulk RNA-seq, or any analysis that only

seeks marginal differences.

These examples demonstrate the importance of identifying DE in

both forms in order to gain a full understanding of the mechanism

of DE. From our proposed method, SC2P reports the estimated pro-

portions of cells in phase I/II, the fold change in phase II, and false

discovery rate (FDR) associated with either type of DE, thus pro-

vides more comprehensive information for DE detection.

3.4 DE detection comparison with existing methods
We compare the DE detection performance of SC2P with several

existing methods: SCDE (Kharchenko et al., 2014), BPSC (Vu et al.,

2016) and MAST (Finak et al., 2015).

3.4.1 SC2P has higher sensitivity without sacrificing false

discovery control

First, we validated the ability to identify known DE genes. There is a

lack of gold standard for true positives in data, but more than 20

cell type marker genes are given in the human brain dataset. These

marker genes are identified by comparing purified cell types via bulk

RNA-seq (Darmanis et al., 2015; Zhang et al., 2014). They provide

a partial list of true positives with strong signal, thus the ability to

recover these genes among the top genes declared as DE is a reason-

able validation of sensitivity.

Figure 4 shows the results from human brain dataset, comparing

astrocytes and oligodendrocytes cells. Figure 4A compares the abil-

ity to recover known marker genes from the top ranked DE genes

reported by four methods. Overall, SCDE, MAST and SC2P provide

comparable overall results, and BPSC performs unfavorably. In add-

ition, there are many more marker genes belonging to the Form I DE

than Form II, indicating that the phase transition is more prevalent

than magnitude adjustment between cell types. Even though SCDE

reports these genes as DE, this mechanism is not revealed. The

results for recovering DE in known markers in other comparisons

are provided in Supplementary Material (neuron versus oligo-

dendrocyte in Supplementary Fig. S3, and astrocyte versus neurons

in Supplementary Fig. S4), and they lead to the same conclusion.

We focus on the comparison with MAST hereafter since it is the

only other method in the group that also provides the functionality

of testing DE in two phases. Figure 4B shows MAST and SC2P

identify many genes in common for both forms of DE, with SC2P

being much more sensitive, when both methods control FDR at

0.05. To ensure that the high sensitivity of SC2P is not achieved by

sacrificing the control of false discoveries, we performed the follow-

ing permutation test to assess the type I error control from DE tests.

Fig. 2. Cell- and gene-specific phase determination. Data are from the in the T2D dataset. (A) Estimated probabilities of being in Phase II given observed counts,

for all genes in one cell. (B) For two genes highlighted in Panel A, normal quantile–quantile plot of their counts across all cells. Their counts in the cell shown in

Panel A are circled. (C) The estimated probability of Phase II for the same two genes plotted against observed counts across different cells

A B

C D

Fig. 3. Examples of different forms of differential expression from the T2D

dataset: (A) phase transition alone (Form I P-value¼ 4.41e-11, Form II

P-value¼0.98); (B) magnitude regulation only (Form I P-value¼ 0.22, Form II

P-value¼4.9e-06); (C) phase transition and magnitude regulation in concord-

ant manner (Form I P-value¼8.42e-03, Form II P-value¼ 4.04e-05); (D) expres-

sion compensation (Form I P-value¼ 3.91e-03, Form II P-value¼ 1.61e-05).

Each figure plots the expressions for a particular gene from all cells. The bars

at the bottom of the figures represent the proportions of cells not expressing

the gene (in Phase I). Each dot represents the log expression values for this

gene from a cell. (P-values are from the proposed SC2P method)
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We randomly shuffle the cells among two conditions, and then per-

form DE test on the shuffled dataset. All DE genes detected from the

shuffled dataset should be false positives, and the resulting P-values

from the DE test on shuffled dataset should follow uniform distribu-

tion. We then compute the observed type I error rate for a given

P-value threshold, and compare that with the nominal P-value to

evaluate the type I error control from the statistical test. Figure 4C

shows that the observed type I errors based on a permutation test

for both SC2P and MAST are well controlled and below the nominal

type I error for both forms of DE detection, validating that the

higher sensitivity of SC2P is not from inflated type I error.

Comparison between other human brain cell types and the T2D

data (Supplementary Figs S3–S6) lead to the same conclusion. These

results show SC2P has better sensitivity than MAST, while having

the comparable type I error control and accuracy in ranking genes.

We obtained the lists of different DE genes called by SC2P and

MAST. The heatmap of these gene’s expression data are presented

in Supplementary Figures S7 and S8. These figures provide a direct

visualization of the raw data, thus are not obscured by the choice of

modeling or processing, though they do not provide quantitative as-

sessment of performance.

3.4.2 Robustness of SC2P

One critical property of any DE detection method is the robustness:

that the discoveries are not sensitive to a few outliers. When we de-

clare that a gene is differentially expressed between two cell popula-

tions, this result should not be driven by only a few cells. In other

words, the analysis should be highly independent on the inclusion or

exclusion a few cells, which are random samples from cell popula-

tions we study.

We compared the P-values obtained from the full dataset with

the P-values from reduced dataset obtained by randomly removing

5% of the cells, from a population of 100 cells total in the neurons

versus oligodendrocytes comparison. The panels in the second row

of Figure 5 show excellent concordance between the two sets of P-

values in DE detection from SC2P, in the testing of both forms of

DE. In contrast, the panels in the first row of Figure 5 show such

comparison results from MAST, which present substantial differ-

ence between results from the full data and reduced data. Most

strikingly, we observe qualitatively different answers between the

two sets of P-values: there are non-trivial amount of genes reported

to have extreme statistical significance (with log10 P-value � �10)

when using all cell, but become non-significant (with log P-value

near 0) when 5% cells are excluded. This contrast in robustness is

observed in both DE in phase transition and in expression level with-

in Phase II, in both datasets.

We ran such analyses for 10 times, each time randomly

selected 5% of the cells are removed. We observe that at least

5 out of the 10 times, the P-values from MAST show significant

discordant. On the other hand, SC2P shows great consistence

in all cases. The scatterplots for all 10 runs are provided as

Supplementary Figure S9. We further perform additional analyses

by removing 10, 20 and 50% cells. Each analysis is run 10 times.

In each scenario, we compute the Pearson’s correlation coeffi-

cients of P-values before and after removing cells. The distribu-

tions of the correlation coefficients from MAST and SC2P are

presented in Supplementary Figure S10. In all scenarios, SC2P has

much higher correlations than MAST, indicating better robust-

ness. These results show that compared to MAST, SC2P is much

more robust to outlier cells, benefited from our method for esti-

mating transcription phases.

A B C

Fig. 4. DE detection in human brain data, for astrocytes and oligodendrocytes comparison. Genes with FDR<0.05 from the statistical tests are deemed DE.

(A) Recovery of known marker genes among top ranked DE genes; (B) Overlaps of DE genes in both forms from MAST and SC2P; (C) Assessment of type I error

control based from permutation

Fig. 5. Robustness of DE detection. Figures show comparison of P-values

from testing DE using all cells in the dataset or a subset with 5% cells ran-

domly removed, in the human brain data (neurons versus oligodendrocytes).

Form 1 (phase transition) and Form 2 (magnitude difference in phase II) DE

are compared separately
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3.4.3 Simulation

We conduct simulation studies to further compare the DE detection

performances from MAST and SC2P. The simulated data are gener-

ated based on the human brain data so that they mimic the real data

characteristics. The detailed simulation procedures and results are

presented in Supplementary Material Section 8 and Supplementary

Figures S13–S15. Overall, the simulation results are consistent with

the real data results: SC2P are MAST provide comparable gene

ranks, but SC2P is more sensitive due to better statistical inference.

3.4.4 Comparison with DESeq2

DESeq2 (Love et al., 2014) is a very popular tool for detecting DE

genes in bulk RNA-seq data. Though it is not specifically designed

for scRNA-seq, it is worth exploring its performance in scRNA-seq

DE detection. We ran DESeq2 on the brain and T2D datasets and

compared its performance with other methods. The results are pre-

sented in Supplementary Material Section 9 and Supplementary

Figures S16–S20. In terms of recovering known marker genes,

DESeq2 fell below the group of better performers (SCDE, MAST

and SC2P) but was better than BPSC. DESeq2 tended to identify

many more genes as DE at any FDR cutoff ranging from 1% to

20%, at a cost of inflated type I error. Though DESeq2 could dis-

cover many genes that were identified by SC2P or MAST or both, its

observed type I error was much greater than nominal type I error,

meaning it identified many more false positives than expected. In

addition, since DESeq2 tests for the mean expression difference be-

tween groups, it does not reveal whether the form of DE involves

phase transition. Overall, these drawbacks make DESeq2 undesir-

able for DE analysis for scRNA-seq data.

3.5 Computational performance
SC2P provides excellent computational performance. We profiled

the times required for different methods to run DE analyses. All

profiling was done on a MacBook pro laptop with i7 2.7 GHz CPU

and 16 G RAM. When there are 100 cells in each group, SC2P takes

63.3 s, MAST takes 211.8 s and BPSC takes 3167.6 s. SCDE recom-

mends to run on multiple cores. On a single core, it did not finish

after five hours. So we focus on the comparison between SC2P and

MAST. Table 1 summarizes the times (in seconds) required for dif-

ferent numbers of cells. Overall, SC2P is 2-3 times faster than

MAST.

4 Discussion

Transcription is a complex process that is usually divided into three

phases, including initiation (in higher eukaryotes, this is followed by

the pause and release from pause of RNA Pol II), elongation and ter-

mination (Venkatesh and Workman, 2015). These steps are under

regulation in various extent. The initiation, for example, involves in-

tricate cooperation of multiple complexes in the disassembly of

nucleosomes that creates a nucleosome-depleted region (NDR)

which makes the DNA accessible to Pol II. Maintaining the NDR

also allows multiple rounds of transcription to take place. Once ini-

tiated (and released from the pause), multiple factors affect the

elongation speed, hence the production rate of RNA transcripts. The

number of transcripts of a particular gene depends on both the pro-

duction and degradation rate. Real-time measurements of transcrip-

tion activity, taken from fluorescence in situ hybridization (FISH) in

individual cells, indicate that genes transition between inactive and

active states of transcription (Dar et al., 2012; Raj et al., 2006). The

transition from inactive to active state leads to pulsatile expression

patterns often referred to as bursting. As a result, we observe, in

scRNA-seq data, gene expression counts that exemplify two modes

of regulation: one mode that accounts for a binary transition from

an inactive phase (Phase I) into an active, high expression phase

(Phase II) and another mode that accounts for a regulation of the ex-

pression level within Phase II.

With bulk RNA-seq, the average expression of a large popula-

tion of cells is measured, masking the heterogeneities among cells.

scRNA-seq makes it possible to understand the transcriptional vari-

ation at the single cell level, providing evidence of bimodal expres-

sion regulation. However, the detection of DE has either remained

as a comparison of the mean expression (Trapnell et al., 2014; Vu

et al., 2016), or with arbitrary cut off for expression phases. In this

work, we advocate that the DE test in scRNA-seq should be per-

formed in both modes: phase transition and magnitude tuning. To

achieve that, a vital first step is to accurately estimate the phases of

expression for all genes in all cells. We present evidence that there

are differences in overall detection rate among cells, and this is posi-

tively correlated with but different from the non-zero percentage

(Supplementary Figs S10 and S11). This simple but effective method

provides DE identification with increased sensitivity without

sacrificing specificity, as well as greatly improved robustness.

Furthermore, the results provide better interpretation of the DE

regulation mechanism.

The excess of zero counts in scRNA-seq data is observed widely,

though the source of these zero counts is debated. Some treat zero as

unexpressed (Finak et al., 2015), others consider the zeros as tech-

nical dropouts and use imputation to recover the unobserved expres-

sion (Huang et al., 2017; Lin et al., 2017; Zhu et al., 2016). There

are definitely technical dropouts, especially in low depth sequencing.

On the other hand, the genome accessibility varies among cells

(Buenrostro et al., 2015; Thurman et al., 2012) and transcription is

certainly not active throughout the entire genome in a given cell.

Therefore, we believe that both biological and technical reasons con-

tribute to observed zero counts. Since scRNA-seq measures the

quantity of RNA in a cell, not the transcription activity itself, even

in inactive phase, there are RNA molecules already transcribed and

not completely degraded. This is consistent with data from FISH

experiments, in which cells without active transcription sites have

fewer but non-zero reporter mRNA (Raj et al., 2006). Thus we

argue that zero counts (as well as very low counts) are ‘lack of evi-

dence’ for active transcription.

Existing threshold-based methods for phase determination fail to

properly account for important data characteristics, including the

variation of Phase I counts across cells. A major contribution of our

method is providing data-driven thresholds that account for tech-

nical and biological factors, and both the cell- and gene-specific

characteristics in the determination of expression status. Our current

model only considers gene-specific factors in Phase II, while treating

the Phase I parameters as if they were the same across genes. This is

a choice for computational simplicity, as the variability due to

Poisson counting at low counts makes it difficult to identify small

difference in the Poisson rate. However, as public data accumulates,

we will be able to observe a gene’s expression over a wide variety of

conditions and in very large sample sizes. With multi-experiment

Table 1. Time (in seconds) required for MAST and SC2P

# cells 100 200 500 1000 2000 5000

MAST 211.8 297.4 476.9 756.6 1214.6 2897.9

SC2P 63.3 85.7 160.0 285.3 574.4 1704.4
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databases we will be able to extend the model to estimate gene-

specific patterns in both phases. Our long term goal is to establish

gene-specific priors for both phases to accurately infer DE in cell-

and gene-specific context. Such work on large scale databases have

been presented on microarray platforms (McCall et al., 2011,

2014), which we predict will be greatly improved by single cell

level data.

We model Phase II expression with a LNP distribution, instead

of Gamma-Poisson (negative binomial), which is the most common

choice for bulk RNA-seq data (Anders and Huber, 2010; Love et al.,

2014; Robinson and Smyth, 2007; Wu et al., 2013). The Gamma

distribution is often a choice of mathematical convenience and it is

very similar to lognormal when the dispersion parameter is small,

which is usually the case in bulk RNA-seq, since the expression level

is an average over a large collection of cells. When the dispersion is

small, both the dispersion parameter in the Gamma distribution and

the parameter r2 in the lognormal distribution correspond to the

square of the biological coefficient of variation (BCV) (Wu et al.,

2013). However, when the CV is large and often exceeding 1

(Supplementary Material, Section 1), it would force the Gamma dis-

tribution to be extremely skewed and have a mode at 0, and lose its

flexibility in shape. Using lognormal distribution to model the true

expression rate not only allows better flexibility, but also allows

easy extension to accommodate more complex study designs, such

as mixed effects and nested design, by using existing methods for lin-

ear models on the log transformed data.

The datasets we tested do not use unique molecular identifiers

(UMIs) (Islam et al., 2014; Kivioja et al., 2012), which are addition-

al barcodes added to RNA transcripts before amplification. In UMI

data, reads that map to a gene and share the same UMI are counted

as originating from the same transcript, thus UMI data have

much lower counts. Additional error correction of the UMIs in pre-

processing may be necessary, and different normalization strategy is

recommended (Stegle et al., 2015). These factors complicate the as-

sessment of DE detection, and we have not included such compari-

son in this paper. The lower count level in UMI data makes it more

difficult to decompose the two latent phases. At this stage, the cur-

rent methods including SC2P may not work well for UMI data, or

data with low depth sequencing, in terms of detecting DE in the

form of phase changes.
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