
Sequence analysis

In silico read normalization using set

multi-cover optimization

Dilip A. Durai1,2,3 and Marcel H. Schulz1,2,*

1Cluster of Excellence on Multimodal Computing and Interaction, Saarland University, Saarbrücken 66123,

Germany, 2Department of Computational Biology and Applied Algorithmics, Max Planck Institute for Informatics,

Saarbrücken 66123, Germany and 3Saarbrücken Graduate School of Computer Science, Saarland University,

Saarbrücken 66123, Germany

*To whom correspondence should be addressed.

Associate Editor: Bonnie Berger

Received on June 19, 2017; revised on March 16, 2018; editorial decision on April 11, 2018; accepted on April 18, 2018

Abstract

Motivation: De Bruijn graphs are a common assembly data structure for sequencing datasets. But

with the advances in sequencing technologies, assembling high coverage datasets has become a

computational challenge. Read normalization, which removes redundancy in datasets, is widely

applied to reduce resource requirements. Current normalization algorithms, though efficient, pro-

vide no guarantee to preserve important k-mers that form connections between regions in the

graph.

Results: Here, normalization is phrased as a set multi-cover problem on reads and a heuristic algo-

rithm, Optimized Read Normalization Algorithm (ORNA), is proposed. ORNA normalizes to the

minimum number of reads required to retain all k-mers and their relative k-mer abundances from

the original dataset. Hence, all connections from the original graph are preserved. ORNA was

tested on various RNA-seq datasets with different coverage values. It was compared to the current

normalization algorithms and was found to be performing better. Normalizing error corrected data

allows for more accurate assemblies compared to the normalized uncorrected dataset. Further, an

application is proposed in which multiple datasets are combined and normalized to predict novel

transcripts that would have been missed otherwise. Finally, ORNA is a general purpose normaliza-

tion algorithm that is fast and significantly reduces datasets with loss of assembly quality in be-

tween [1, 30]% depending on reduction stringency.

Availability and implementation: ORNA is available at https://github.com/SchulzLab/ORNA.

Contact: mschulz@mmci.uni-saarland.de

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

With increasing throughput and decreasing prices of modern

sequencers, the generation of high coverage sequencing datasets has

become routine. This has spurred the development of a number of

different approaches for the de novo assembly of genomes and

transcriptomes (Miller et al., 2010; Moreton et al., 2016). However,

assembling a large genome or a transcriptome is a resource-

intensive task.

Due to the large size of the datasets one particular line of re-

search has focused on making data structures for de novo assembly

more space-efficient for one or several datasets as applied to genome

and metagenome sequencing (Chikhi et al., 2016; Pell et al., 2012).

Another approach called compressed genomics deals with finding a

compressed representation of the dataset to speedup computations,

which was successfully applied to read alignment and SNP calling

(Berger et al., 2013; Loh et al., 2012).

VC The Author(s) 2018. Published by Oxford University Press. 3273

This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0/),

which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact

journals.permissions@oup.com

Bioinformatics, 34(19), 2018, 3273–3280

doi: 10.1093/bioinformatics/bty307

Advance Access Publication Date: 18 April 2018

Original Paper

https://github.com/SchulzLab/ORNA
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/bty307#supplementary-data
Deleted Text: ; Chikhi <italic>et<?A3B2 show $146#?>al.</italic>, 2016
Deleted Text: Loh <italic>et<?A3B2 show $146#?>al.</italic>, 2012;
https://academic.oup.com/

Here, we investigate how data reduction approaches affect

the performance of non-uniform RNA-seq datasets for the task of

de novo transcriptome assembly. This is an important problem as

current assembly methods, which rely on the de Bruijn graph

(DBG), consume a lot of main memory (Grabherr et al., 2011;

Robertson et al., 2010; Schulz et al., 2012). However, it is also an

interesting question from the perspective of information theory.

Which parts of the data are actually being used by the assembler?

A simple approach to remove sequencing errors and reduce data

size is to trim read suffixes and prefixes that are of low quality. This

generally leads to decreased assembly performance (MacManes,

2014; Mbandi et al., 2014) and does not address the high redun-

dancy of current read datasets. Other approaches allow the efficient

correction of sequencing errors in RNA-seq datasets, which general-

ly leads to an improved assembly performance (Le et al., 2013; Song

and Florea, 2015), albeit at increased runtime because the data has

to be error corrected (EC) first.

A direct approach to remove redundancy is to cluster reads

according to sequence similarity using algorithms like CD-HIT (Fu

et al., 2012) and remove highly similar reads in the clusters. Though

recent improvements have been made for clustering assembled tran-

scripts (Srivastava et al., 2016), clustering hundred millions of reads

before assembly is still challenging.

Another widely used approach, in particular in combination

with assembly, has been ‘digital normalization’ (Diginorm; Brown

et al., 2012), implemented in the khmer package (Crusoe et al.,

2015). Diginorm uses a min-count-sketch data structure to estimate

k-mer abundance while streaming through the read dataset. Using a

user-selected abundance threshold t, reads are removed once their

median k-mer coverage goes beyond t. An idea similar to this is

Trinity’s in silico normalization (TIS) which is a part of the Trinity

assembler package (Haas et al., 2013). For each read in the dataset,

TIS computes the median coverage of the k-mers in the read. If the

median coverage is less than the desired coverage, the read is always

kept. Otherwise, it is kept with a probability which is equal to the

ratio of the desired coverage and the median coverage. Additionally,

a read is removed if the ratio of SD of k-mer coverage to the average

k-mer coverage of the read is higher than a cutoff. The recently

developed NeatFreq algorithm (McCorrison et al., 2014) clusters

the read into bins based on median k-mer frequency.

The advantage of k-mer coverage based normalization is 3-fold: (i)

reads with high redundancy are removed leading to reduced memory

and runtime requirements for the assembly, (ii) erroneous reads may

be removed as part of the process and (iii) normalization is fast and

consumes only a fraction of the memory an assembler would take.

This essentially lowers the computational complexity of the assembly

problem as it was shown that often a large part of the data can be

removed, without significantly affecting assembly performance (Brown

et al., 2012; Haas et al., 2013). However, previous algorithms do not

give any certainty on preserving important parts of the data containing

useful k-mers. Reads that contain low-abundant but important k-mers

may be removed. This might result in losing connections in the DBG

and hence a fragmented assembly might be generated. This is especially

problematic for sequencing datasets with non-uniform coverage, like

RNA-seq and metagenomics.

Here, the Optimized Read Normalization Algorithm (ORNA) is

suggested based on the idea that reads are reduced without losing

the DBG backbone (unweighted nodes and edges) and relative node

abundances are preserved in the reduced dataset as compared to the

original DBG. Given a set of n reads, where each read consists of m

k-mers, read normalization is phrased as a set multi-cover (SMC)

optimization problem on reads. In this work, a Oðnm log ðnmÞÞ

time heuristic algorithm is suggested that is shown to work well in

practice. Analysis of normalized and EC data reveal that better

assemblies can be produced with significant savings in runtime and

memory consumption. The software is freely available at https://

github.com/SchulzLab/ORNA under an MIT license.

2 Materials and methods

2.1 Problem formulation
A dataset R ¼ fr1; r2; . . . ; rng is a set of n reads where each read is a

sequence of DNA bases of fixed length s. Each read consists of a set

of short words (k-mers) of length k. Most of the de novo assemblers

start by constructing a DBG. k-mers obtained from all the reads in

R are considered as vertices. Two vertices are connected by an edge

if they overlap by k – 1 bases. Each edge is identified by a unique

label l of length kþ1, such that the source vertex is a prefix of l and

the destination vertex is a suffix of l. Since the labels are also gener-

ated from the reads in the dataset, each read r 2 R can be considered

as a set of m ¼ s� k labels, i.e. r ¼ ðl1; l2; . . . ; lmÞ, where li is a

kþ1-mer obtained from the ith position in read r.

The objective of a normalization algorithm is to reduce the data

as much as possible without having significant impact on the quality

of the assembly produced. Since an assembly is produced by travers-

ing paths in the DBG, it may be worthwhile that a new DBG build

from the normalized dataset preserves all the (unweighted) nodes

and edges of the original graph. Further, normalization should

maintain the relative difference of abundance between k-mers to re-

solve complex graph structures.

Here, we suggest to phrase read normalization as a SMC prob-

lem, defined as follows:

Instance: A dataset R of n reads, a set of k þ 1-mers (defined as

labels) L obtained from R such that [r2R r ¼ L and a weight

wl � 1 for every l 2 L. Note that, each read r 2 R is considered

here as a set of labels.

Valid solutions: R0 � R such that [r2R0 r ¼ L and 8l 2 L; abund

ðl;R0Þ � wl where abundðl;R0Þ denotes the number of occur-

rences of l in R0.
Objective: Minimize jR0j.

This SMC formulation seeks to find the smallest set of reads,

that covers all labels and satisfies all label weights wl. The SMC

problem was shown to be a NP-hard problem (Chekuri et al., 2012).

A common approximation approach for the SMC problem, is the

following greedy approach: an element in the universe is termed as

active if it has not yet been covered by any of the selected sets. Cost-

effectiveness of a set, to be considered for selection, is measured in

terms of the number of active elements present in the set. The algo-

rithm would iterate over sets and select the one which is the most

cost-effective. In the scope of this work, each read represents a set of

labels. Thus, a data structure has to be maintained that holds the

reads in an order starting from the one which has the largest number

of active labels. This order has to be updated after every iteration.

Thus, given a dataset containing n reads, the greedy approach would

take Oðn2m logðnmÞÞ time, where m is the number of labels in a

read. The estimate is under the assumption that the reads are sorted

by cost-effectiveness using a binary heap or a similar data structure,

which is not efficient enough for the large datasets considered here.

2.2 ORNA
In this work, a different heuristic algorithm based on a greedy read

selection strategy is used, in which the ordering of reads based on

3274 D.A.Durai and M.H.Schulz

Deleted Text: ; Grabherr <italic>et<?A3B2 show $146#?>al.</italic>, 2011
Deleted Text: is
Deleted Text: Mbandi <italic>et<?A3B2 show $146#?>al.</italic>, 2014,
Deleted Text: &hx201D;
Deleted Text: &hx201D;
Deleted Text:)
Deleted Text: (
Deleted Text: standard deviation
Deleted Text: threefold
Deleted Text: ,
Deleted Text: error corrected
Deleted Text: s
https://github.com/SchulzLab/ORNA
https://github.com/SchulzLab/ORNA
Deleted Text: F
Deleted Text: <italic>de Bruijn</italic> graph (
Deleted Text:)
Deleted Text: Set <?A3B2 thyc=10?>Multi-Cover<?thyc?> (
Deleted Text:)
Deleted Text: 2.2 ORNA

cost-effectiveness is ignored to save runtime. The approach is sum-

marized in algorithm 1. A setR of n reads and a k-mer size k is given

as input. Each read inR consists of m labels. Since each edge label is

a kþ1-mer, all the possible k0 ¼ kþ 1-mers are obtained from the

reads and are stored in a bloom filter using the BuildBloom (R; k0)

function (line 3). This functionality is implemented using the GATB

library (Drezen et al., 2014), which uses the BBHash algorithm for

building a minimal perfect hash function (Limasset et al., 2017)

after counting the k-mers with the DSK algorithm (Rizk et al.,

2013). k-mer counting and storing the information requires Oðnm

logðnmÞÞ time. A counter array NodeCounter is maintained for each

entry in the bloom filter and is initialized to zero (line 5). This oper-

ation requires OðnmÞ time.

The dataset is then iterated and each read in the dataset is

checked whether it contains a k0-mer that needs to be covered. This

is done by first collecting a set V 0 of all the k0-mers in the read using

the ObtainKmersðr; k0Þ function (line 8). For each k0-mer in V 0, the

corresponding weight is calculated using the ObtainWeight function

(line 11). The node counter for the k0-mer is then checked and incre-

mented if its current value is less than the given weight (line 12–15).

A read is accepted if it contains at-least one k0-mer for which the

corresponding counter is incremented otherwise it is rejected (line

17–19). Steps 7–20 require OðnmÞ time. All the accepted reads then

denote the normalized dataset Rout obtained from R. The overall

time complexity of the algorithm is Oðnm log ðnmÞÞ.
An important parameter for the algorithm is the weight for each

k0-mer. A naive way to decide the weight for each k0-mer is to set the

same value for each. A DBG based assembler uses k-mer abundance

information to resolve irregularities in the graph such as bubbles

and tips. This information is also used for RNA-seq data to decide

which transcripts should be reported. Hence, it is important to re-

tain the relative difference in abundance between k-mers, which can-

not be achieved with a fixed weight for all k0-mers. Therefore, each

k0-mer has its own weight wk0 , which is defined as:

8k0 2 V 0;wk0 ¼ d logbðabund ðk0;RÞÞe; (1)

where abund ðk0;RÞ is the abundance of k0 in R. b is the base of the

logarithm function and is given by the user.

2.3 Normalization for paired-end data
For paired-end (PE) datasets ORNA is run in two passes. As in the

single end mode, the dataset is iterated sequentially and only one

pair is evaluated at a time. In the first pass, reads of a pair are

checked for their acceptance. The pair is accepted only if both the

reads of the pair satisfy the acceptance condition, i.e. there is at least

one k0-mer in both the reads which needs to be covered in the nor-

malized dataset. If only one read of the pair is satisfying the condi-

tion then the pair is marked, otherwise the pair is rejected. The

counter for the k0-mers of marked pairs are not incremented at this

point. Thus, the first pass might leave some k0-mers not covered in

the normalized dataset. To cover such k0-mers, in the second pass,

the marked pairs are again checked for acceptance and a pair is

accepted if one of the reads satisfies the acceptance condition.

2.4 Data retrieval and normalization
Seven different datasets were used for the analyses shown in this

work. Two datasets were downloaded from the SRA database-

Brain dataset (Barbosa-Morais et al., 2012, SRR332171) which con-

sists of 147 M PE reads with read length 50bps and hESC dataset

(Au et al., 2013, SRR1020625) which has 142 M PE reads with

length 50 bps. The datasets were EC, unless otherwise stated, using

SEECER version 0.2 (Le et al., 2013) with default parameters.

Further, a combined dataset of 883 M reads of length 76 bps was

obtained by concatenating five ENCODE datasets: 101 M PE reads

from hESC (GSM758573), 192 M PE reads from AG04450

(GSM765396), 207 M PE reads from GM12878 (GSM758572),

165 M PE reads from A549 (GSM767854) and 216 M PE reads

from HeLa (GSM767847). The datasets were then normalized using

ORNA (v0.2), Diginorm (v2.0) and TIS (v2.4.0) with parameter set-

tings (see Supplementary Tables S1– S3 for parameter settings).

2.5 Transcriptome assembly and evaluation
To analyse the quality of the assembly produced from the reduced

datasets, three DBG based de novo assemblers–Oases (Schulz et al.,

2012, version 0.2.08), TransABySS (Robertson et al., 2010, version

1.5.3) and Trinity (Grabherr et al., 2011, version 2.4.0) were used.

The assemblers were run with default parameters except the k-mer

parameter of TransABySS and Oases. TransABySS was run using a

single k-mer size (k¼21). Oases was run using multiple k-mer sizes

(k¼21 to k¼49 with an increment of 2) and the assemblies

obtained from all k-mer sizes were merged using the Oases merge-

script.

The assembled transcripts were evaluated using the REF-EVAL

program, which is part of the Detonate (Li et al., 2014, version

1.11) package, which is explained briefly. First, a true assembly for

each dataset (Brain and hESC) was estimated, which estimated all

regions from the reference transcript sequences (Ensembl) over-

lapped by reads. Second, the true assembly was bidirectionally

aligned against the generated assemblies using Blat (Kent, 2002, ver-

sion 36) and nucleotide precision and recall was obtained. REF-

EVAL then reports the F1 score, which is the harmonic mean of the

nucleotide precision and recall, as a measure of assembly accuracy.

To measure the assembly contiguity, the assembled transcripts were

aligned against a reference genome using Blat and the overlap

was matched against annotated Ensembl transcripts downloaded

from the Ensembl database (Cunningham et al., 2015, version 65).

Algorithm 1 SMC based approach for read normalization

1: Input: Reads R, kmer size k

2: k0 ¼ kþ 1

3: V¼BuildBloom(R; k0)

4: t¼NumberOfkmers(V)

5: NodeCounter[1. . .t] 0

6: Rout ¼ /
7: for all r 2 R do

8: V 0 ¼ObtainKmers(r,k0) " V0 � V

9: flag¼0

10: for all v 2 V 0 do

11: w¼ObtainWeight(v, R)

12: if NodeCounter(v)<w then

13: NodeCounter(v)¼NodeCounter(v)þ1

14: flag¼1

15: end if

16: end for

17: if flag ¼¼ 1 then

18: Rout ¼ Rout [r

19: end if

20: end for

21: Output: Reads Rout

Set multi-cover based normalization 3275

Deleted Text: -
Deleted Text: -
Deleted Text: -
Deleted Text: ,
Deleted Text: paired-end (
Deleted Text:)
Deleted Text: error corrected
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/bty307#supplementary-data
Deleted Text: -
Deleted Text: ere
Deleted Text: Set multi-cover

The number of Ensembl transcripts that were fully assembled by at

least one distinct assembled transcript was obtained and termed as

full-length transcripts.

For the analysis of the combined dataset, ORNA was used for

normalization. The goal of the analysis was to determine how many

transcripts are missed by assembling individual datasets, but are

assembled using the combined datasets. All assemblies for this

experiment were run with TransABySS (k¼21). The assembly

generated by using all datasets was termed combined assembly.

Individual dataset assemblies were clustered with the combined

assembly using CD-HIT-EST (Fu et al., 2012, v4.6.4-2015-0603).

Similar sequences were clustered together (sequence identity¼
99%). Hence, if a transcript in the combined assembly is also

assembled by any of the individual datasets, then it would be clus-

tered with the sequences assembled from that dataset. All clusters

which contained only the sequences from the combined assembly

were termed as missed clusters and the longest sequence of the

cluster was considered a missed transcript. Aligned missed tran-

scripts were compared to annotations from Ensembl (Cunningham

et al., 2015, version 65) and GENCODE (Harrow et al., 2012,

version 17).

2.6 Correlation analysis
Further, gene expression values of all RNA-seq datasets for Ensembl

transcripts were obtained using Salmon (Patro et al., 2017, v0.8.2).

The k-mer parameter was set to 21 for quantification. Salmon pro-

vides quantification results at transcript level. To obtain the quanti-

fication at gene level, Transcripts Per Million (TPM) values of all

the transcripts for a gene were summed. Spearman’s rank correl-

ation values between original and reduced datasets were computed

using the statistical computing language R (R Development Core

Team, 2008, version 3.1.1).

3 Results

3.1 Comparison to established normalization

algorithms
The task of a read normalization algorithm is to remove the max-

imum number of reads without compromising the quality of the as-

sembly produced. Most of the de novo assemblers start by building

a DBG using a fixed/variable k-mer size and generate assemblies by

traversing paths in the graph. In order to maintain assembly quality,

ORNA was designed to: (i) retain all nodes and their connections in

the DBG and (ii) retain the relative abundance difference between

k-mers in the reduced dataset.

Diginorm and TIS normalization base their decision on the

k-mer abundance distribution within individual reads. A read might

get removed if the median abundance of k-mers present in the read

exceeds a certain threshold. Hence a k-mer having low abundance,

if present among high abundance k-mers in the read, is also

removed. For instance, Figure 1 shows a toy DBG. Nodes in the

graph represent k-mers and the abundance of each node is repre-

sented as a number inside the node. If the desired median abundance

is 10 then read r1 covering node A, C, E and G would be removed

since the median abundance of k-mers in r1 is 20. Although, this

strategy may potentially remove erroneous k-mers, it might also re-

sult in the loss of true k-mers which form connections between

nodes in the graph. For instance, removal of read r1 in the above ex-

ample would remove the k-mer corresponding to node E (dashed

node). Hence, the connection between node C and node G is lost,

which possibly results in a fragmented assembly.

ORNA retains all the kmers from the original dataset. In this

work, all the assemblies used for evaluation are generated by con-

structing a DBG, which uses a k-mer size of 21 (except for Trinity

which always uses k-mer size 25). Hence the size of the edge label

would be kþ1. Figure 2a shows the retention of 22-mers in reduced

versions of the brain dataset by ORNA, Diginorm and TIS.

Diginorm and TIS loose 2–10% of the 22-mers. ORNA considers

the normalization problem as a SMC problem. The set of all pos-

sible edge labels (of length kþ1) serves as the universe. A single

read is considered as a set of kþ1-mers and a dataset is considered

as a collection of such sets. ORNA selects the minimum number of

reads, which is required to cover all the elements of the universe a

certain number of times. Hence, all edge labels from the original

dataset are retained.

ORNA maintains the relative difference of abundance between

k-mers. A de novo assembler generally uses the k-mer abundance in-

formation to resolve erroneous graph structures like bubbles and

tips, among other things. For instance, in Figure 1, assume that a

bubble is formed by nodes C, D, E and F. An assembler would re-

move this by converting the less abundant path B-D-F-G to the

higher abundant path B-C-E-G. Hence, it is important to maintain

the relative abundance difference between the k-mers. ORNA uses

the logb of the abundance of the connection (kþ1-mer) in the

original dataset. This results in large reduction of highly abundant

k-mers and little to no reduction of lowly abundant k-mers, main-

taining relative abundance differences. Figure 2b and c show the

comparison of Spearman’s rank correlation values obtained between

TPM values of the reduced and unreduced brain and hESC dataset,

respectively. It can be seen that in all cases, the correlation is either

similar or higher for ORNA reduced datasets as compared to using

Diginorm and TIS for reduction. This indicates that for any % of re-

duction ORNA is able to better maintain the relative abundance of

k-mers in genes compared to Diginorm and TIS.

Comparison of assembly performance. As mentioned in the

above section a read normalization algorithm should not comprom-

ise on the quality of the assembly produced. But which quality meas-

ure should be used to evaluate the assemblies produced from the

normalized datasets? REF-EVAL is a widely used program to evalu-

ate transcriptome assemblies (Li et al., 2014). For a given read set it

estimates the accuracy of assembly using nucleotide-level F1 scores.

The nucleotide F1 score judges an assembly by comparing its cover-

age of nucleotides with the reference, but it does not measure assem-

bly contiguity (see Materials and methods Section). To achieve this,

the number of reconstructed full-length transcripts, as determined

by aligning the assembled transcripts to a reference sequence and

comparing it with the existing gene annotation is used in this work,

see Materials and methods Section. The total number of full-length

transcripts obtained by running the assembler on the original unre-

duced dataset is considered as complete. The performance of a

Fig. 1. A toy DBG with one traversing read shown denoted r1. Nodes in the

DBG represent k-mers, numbers inside nodes represent the abundance of the

corresponding k-mer in the data. Dashed node represents the k-mer, which

will be lost if r1 is removed

3276 D.A.Durai and M.H.Schulz

Deleted Text: Trinity&hx2019;s <italic>in-silico</italic>
Deleted Text: (TIS)
Deleted Text:)
Deleted Text: -
Deleted Text: set multi-cover
Deleted Text:)

normalization algorithm is measured in terms of % of complete. For

example, if assembling an unreduced dataset produces 2000 full-

length transcripts and assembling a normalized dataset produces

1000 full-length transcripts, then it is considered that normalized

data achieved 50% of complete. A normalization algorithm A is

better than an alternative algorithm B if A achieves a higher % of

complete with a similar or higher percentage of reads reduced

compared to B.

Performance of ORNA was compared against TIS and Diginorm,

with effective k-mer value 22 on two different datasets, except for

assemblies with Trinity were the effective k-mer value was 26.

Notably, the different parameters of the three algorithms behave quite

different with respect to the number of reads reduced in a data-

dependent manner. Therefore, the parameters of all algorithms were

varied to obtain various normalized datasets. These normalized data-

sets were then assembled using TransABySS and Trinity. A more chal-

lenging test is to use a multi-kmer based assembly strategy, where

several DBGs are built for different k-mer sizes. Here, Oases was used

to produce merged assemblies with DBG’s built with k-mers 21–49.

First, the overall assembly quality in terms of nucleotide F1

scores was measured for each assembly using REF-EVAL. It was

observed that with higher read reduction values, the nucleotide re-

call obtained from the corresponding assemblies reduced, but was

balanced out by an increase in nucleotide precision (Supplementary

Figs S1 and S2). Hence, for different normalization parameters, the

nucleotide F1 scores were found to be stable and similar to each

other although the amount of data reduction varied substantially.

Table 1 compares the average F1 scores obtained from assemblies

generated for various normalization parameters. In most of the

cases, ORNA has slightly better F1 scores as compared to other nor-

malization algorithms, except for Oases assemblies of the brain

dataset, where TIS performed best. For a similar percentage of re-

duction, assemblies generated from ORNA reduced datasets were

found to have a better F1 score than Diginorm and TIS reduced

datasets in most setups (Supplementary Fig. S3). Notably, ORNA

average F1 scores were better (in three cases) or showed a reduction

of less than 0.05 compared to the F1 score obtained with the unre-

duced dataset. This might be due to the fact that ORNA retains all

k-mers from the original dataset and thus shows little to no loss for

the F1 scores calculated on nucleotide level.

However, as mentioned above, the F1 score does not capture as-

sembly contiguity and hence the amount of assembled known full-

length transcripts was investigated. Figure 3 compares the amount

of read reduction (x-axis) against the assembly performance as % of

complete (y-axis). For all the cases, it is observed that the quality of

the assembly degrades as more reads are being removed from the

dataset with the exception of hESC data assembled with Trinity. For

Brain (Fig. 3a–c), all normalization algorithms perform similar at a

lower percentage of reduction (60–80%). But at a higher percentage

of reduction (80–90% for brain), the assembly performance for

Diginorm and TIS reduced datasets degrades much faster than the

assembly of ORNA normalized datasets. In other words, assemblies

produced by ORNA reduced datasets retain equally many or more

full-length hits for all assemblers tested. For the hESC dataset, the

results were assembler-specific. A similar performance as before was

observed for assemblies of hESC using TransABySS (Fig. 3d). But

for Trinity assemblies, some of the reduced datasets gave rise to

more full-length assemblies compared to the original dataset, with a

slight advantage of TIS and Diginorm compared to ORNA (Fig. 3e).

For Oases hESC assemblies, TIS was performing better than the

other two approaches. This behavior was in contrast to the observa-

tions made from the F1 score analysis, where ORNA reduced data-

sets was always performing better. It was found that the nucleotide

precision of ORNA reduced hESC datasets were better than

Diginorm and TIS (Supplementary Fig. S2) for Oases and Trinity

assemblers. But the nucleotide recall, a measure similar to the num-

ber of full-length hits was either similar or worse for ORNA reduced

datasets. Since, the F1 score is the harmonic mean of precision and

recall, the smaller values of recall for ORNA got mitigated by the

larger improvements in precision. The difference in performance be-

tween Oases, Trinity and TransABySS assemblies from the hESC

(a) (b) (c)

Fig. 2. Comparison of k-mer information retained by ORNA, Diginorm and TIS. (a) Represents percentage of unique k-mers retained compared to the original

brain dataset (x-axis) for various levels of reduction (y-axis) by the three algorithms. (b) and (c) Represent Spearman’s rank correlation values for TPM values

obtained by quantifying expression of Ensembl genes using the unreduced and reduced brain dataset and hESC dataset, respectively

Table 1. Comparison of average F1 scores using REF-EVAL

Method Brain hESC

Oases TransABySS Trinity Oases TransABySS Trinity

unreduced 0.402 0.441 0.414 0.304 0.577 0.621

ORNA 0.404 0.440 0.421 0.302 0.582 0.616

Diginorm 0.411 0.418 0.419 0.280 0.578 0.601

TIS 0.419 0.437 0.413 0.283 0.579 0.599

Notes: Each entry in a cell denotes the average of F1 scores obtained by

assembling brain and hESC datasets normalized by the three algorithms

(ORNA, Diginorm and TIS) in the rows. Averages are taken over results

obtained with several parameters for each algorithm. The F1 score obtained

for the original (unreduced) dataset is shown in the first row. Columns denote

the assembler used. The highest F1 score obtained comparing all reduction

methods is highlighted per assembler.

Set multi-cover based normalization 3277

Deleted Text: -
Deleted Text: see
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/bty307#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/bty307#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/bty307#supplementary-data
Deleted Text: [
Deleted Text: (
Deleted Text:]
Deleted Text: &hx0025;-
Deleted Text: &hx0025;-
Deleted Text: ere
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/bty307#supplementary-data

dataset underlines that data reduction shows varying effects on as-

sembly contiguity depending on the assembler used. Although one

should note that the differences are within a few percent according

to the %of complete metric used here and the overall trend behaves

similar for all reduction approaches on hESC data.

For evaluating the PE mode, ORNA was run with k-mer value of

22 on the PE brain dataset and was compared against the PE mode

of TIS and Diginorm (Supplementary Table S2). Normalized data-

sets were then assembled using TransABySS with k-mer size 21. A

similar trend to the single-end mode was observed (Supplementary

Fig. S4). At a higher percentage of reduction, the assembly perform-

ance of TIS and Diginorm normalized data degraded faster than the

performance of ORNA normalized data.

Comparison of resource requirements. ORNA stores k-mers in

bloom filters (Salikhov et al., 2014; implemented in the GATB li-

brary) making it runtime and memory efficient. Table 2 shows the

comparison of memory and runtime required by ORNA against

those required by Diginorm and TIS for brain, hESC and the com-

bined dataset (see Methods) with k-mer value 22. For the calcula-

tions, normalized datasets were chosen to have similar read

counts. ORNA and TIS were also run using one and 10 threads

each. Diginorm is not parallelized. All the algorithms were run on

a machine with 16 GB register memory (RDIMM) and 1.5 TB

RAM. It can be observed that ORNA generally consumes less than

half the memory and runtime required by TIS for a similar per-

centage of reduction. This is true for both the single and multi-

threaded versions. A nice property of Diginorm, is that the user

can set the memory used by tuning the number of hashes and the

size of each hash. A low number of hashes would reduce the

runtime of Diginorm but increases the probability of false positive

k-mers. A higher number of hashes reduce false positives but

Diginorm takes longer. In this work, two different parametriza-

tions, denoted as Diginorma and b, were considered. The first uses

less and the second a similar amount of memory compared

to ORNA. In both cases, ORNA has an advantage of runtime

over Diginorm. Similar results were also observed for PE mode

(Supplementary Table S4). While Diginorm’s memory can be flex-

ibly set, we note that ORNA uses much less space than the assem-

bly of the reduced dataset itself, therefore not restraining the

workflow.

(a) (b) (c)

(d) (e) (f)

Fig. 3. Comparison of assemblies generated from ORNA, Diginorm and TIS reduced datasets. Each point on a line corresponds to a different parametrization of

the algorithms. The amount of data reduction (x-axis) is compared against the assembly performance measured as % of complete (y-axis, see text). (a) and (d)

Represent TransABySS assemblies (k¼ 21) applied on normalized brain and hESC data, respectively. (b) and (e) Represent Trinity assemblies (k¼ 25) and (c) and

(f) represent Oases multi-kmer assemblies applied on normalized brain and hESC data, respectively

Table 2. Runtime (in minutes) and memory (in GB) required by different normalization algorithms

Method Brain (147 M–20.1 GB) hESC (142 M–13.2 GB) Combined (883 M–98.1 GB)

%Reduced Time [min] Mem [GB] %Reduced Time[min] Mem [GB] %Reduced Time[min] Mem [GB]

ORNA 83.3 104 (41) 6.62 (5.57) 63.90 58 (21) 6.16 (6.11) 81.4 740 (314) 32.9 (33.01)

Diginorma 81.86 110 3.13 61.63 115 3.13 80.37 760 12.51

Diginormb 81.51 135 6.26 62.59 126 6.26 79.31 2158 34.3

TIS 83.92 160 (95) 20.39 (20.19) 62.16 145 (127) 13.54 (13.53) 82.04 1859 (783) 95.19 (96.09)

Notes: Time and memory as obtained by running with 10 threads are shown in brackets (if possible). Note that the memory of Diginorm can be set by the user.

For comparison it is set such that it uses less or similar memory than ORNA denoted as Diginorm a and b, respectively. The percent of reads reduced by each

method (% reduced) is shown in the first column for each dataset. The total number of reads (in millions) and the file size (in GB) of the original dataset is shown

in brackets next to the dataset.

3278 D.A.Durai and M.H.Schulz

Deleted Text: paired-end
Deleted Text: paired-end
Deleted Text: paired-end
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/bty307#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/bty307#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/bty307#supplementary-data
Deleted Text:)
Deleted Text: (
Deleted Text: s
Deleted Text: paired-end
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/bty307#supplementary-data

3.2 Combined error correction and normalization

generates fast and accurate de novo assemblies
As ORNA retains all the k-mers from the original dataset, useless or er-

roneous k-mers are also retained. As Figure 4a shows, running ORNA

on the corrected brain data reduces more reads compared to the uncor-

rected data and leads to an improvement in assembly performance,

tested with Oases multi-k assemblies. For a similar % of reduction, the

EC data leads to more full length assemblies. This suggests that it is im-

portant to error correct the data before normalization with ORNA.

For a given dataset, assembly can be performed on–(i) the original

dataset, (ii) EC dataset, (iii) EC and normalized dataset. Figure 4b

and c show the maximum memory and runtimes required by applying

these different strategies to the brain dataset. As seen from Figure 4b,

memory required to assemble the uncorrected brain dataset is quite

high. This is because of erroneous k-mers that complicate the graph as

well as the high redundancy in the dataset. Memory is reduced by

nearly 20% after error correction. It is further reduced by nearly 80%

when the EC data is normalized using ORNA and then assembled.

Runtime required to assemble a high coverage dataset is generally

high (Fig. 4c). Error correcting the data improves the assembly but

increases the runtime of the entire process. Normalizing EC data and

then assembling it reduces the runtime by nearly 40% but still gener-

ates a high number of full length transcripts. Interestingly, for three

ORNA parameters (b¼1.3, 1.5, 1.7) the assembly quality (in terms

of number of full length transcripts) is better than assembly of the un-

corrected data with much lower time and memory consumption. For

more stringent parameters (b >1.7) the quality degrades due to a high

% of reduction. Note that it is likely that similar conclusions could be

made using Diginorm or TIS as normalization method. Thus in com-

bination, error correction and normalization of RNA-seq data can be

considered as potent pre-processing steps to an assembly procedure.

3.3 Finding novel transcripts by joint normalization of

large datasets
Another important application of RNA-seq assembly methods is to

find novel, unknown transcripts in well-annotated genomes by ana-

lyzing dozens of datasets of specialized tissues, e.g. in cancer (White

et al., 2014). The common routine in these works is to assemble each

RNA-seq dataset individually. It can be argued, that instead of run-

ning the assemblies on the individual datasets, a combined dataset

may allow to assemble transcripts that are not well covered in an indi-

vidual dataset. But combining datasets increases the size of the dataset

and thereby increases the resource requirements. Hence, the dataset

has to be normalized first to remove redundancy. In this work, five

diverse RNA-seq datasets were concatenated to form a combined

dataset of 883 M reads. The combined dataset was assembled using

TransABySS and a total of 5201 full length hits were obtained.

Assembling the combined dataset required 357 GB of RAM and took

73h to produce the final assembly. ORNA reduced the combined

dataset to 163 M reads. Assembling the reduced dataset using

TransABySS resulted in 4821 full length hits. A memory of 28 GB

and a runtime of 25 h were required to assemble the reduced dataset.

The assembly generated from the reduced combined dataset was

then used to obtain missed transcripts. Note that missed transcripts

refer to the transcripts, which were only assembled from the com-

bined reduced dataset and not the individual datasets, see Materials

and methods Section. The missed transcripts were aligned against

the genome and compared against Ensembl annotations to estimate

the number of full-length transcripts that have been missed by the in-

dividual assemblies. The biotypes of the full-length transcripts were

obtained from Ensembl and GENCODE. Overall 381 missing pro-

tein coding transcripts were obtained by assembling the combined

datasets. Along with these, 22 long non-coding RNAs, 49 non-

coding RNAs and 15 pseudogenes are also part of the missed tran-

scripts. Similar results may be obtained with Diginorm or TIS, albeit

only ORNA guarantees that no k-mer information is lost.

4 Discussion and conclusion

This work presents ORNA, a SMC optimization-based algorithm to re-

duce the redundancy in NGS data without losing any k-mer informa-

tion important for DBGs. This is done by approximating the minimal

number of reads required to retain all k-mers from the original dataset.

By generating k-mer specific normalization weights, ORNA is able to

retain the relative abundance difference between k-mers. This is import-

ant as various assemblers for non-uniform sequencing datasets use the

abundance information to resolve complex graph sub-structures.

ORNA, when tested on multiple datasets, is able to reduce up to 85%

of the data and still able to maintain nearly 80% of useful transcripts.

The performance of ORNA was compared against two

well established normalization algorithms–Diginorm and TIS nor-

malization. Brain and hESC datasets reduced by these three

algorithms were assembled using Oases, Trinity and TransABySS.

The assembled transcripts were then evaluated using the REF-EVAL

component of DETONATE. In general, assemblies generated from

ORNA reduced datasets were having a similar or higher F1 score

as compared to Diginorm and TIS reduced datasets. Concerning

the amount of full-length assemblies, ORNA reduced datasets

(a) (b) (c)

Fig. 4. Oases assembly performance using ORNA on the brain dataset. (a) ORNA normalization on uncorrected (dashed line) and error corrected (EC, solid line)

data. The points on the curve represent how many full length transcripts (y-axis) have been assembled at a particular percent of reduction (x-axis). (b) Analysis of

memory required (x-axis) by different assembly strategies namely–assembling uncorrected data (cross), assembling EC data (circle) and assembling EC and nor-

malized data (rectangle). (c) Analysis of runtime (x-axis) required by the three strategies

Set multi-cover based normalization 3279

Deleted Text:)
Deleted Text: error corrected
Deleted Text: -
Deleted Text: error corrected (
Deleted Text:)
Deleted Text: error corrected
Deleted Text:)
Deleted Text:)
Deleted Text: error corrected
Deleted Text:)
Deleted Text: error corrected
Deleted Text: ,
Deleted Text:
Deleted Text: rs
Deleted Text: rs
Deleted Text: as
Deleted Text: C
Deleted Text: set multi-cover
Deleted Text: -
Deleted Text: Trinity&hx2019;s <italic>in-silico</italic>
Deleted Text: (TIS)

performed better than Diginorm and TIS reduced datasets on the brain

data. For hESC data, the results were heterogeneous and depended on

the assembler used. This behaviour was corroborated by the F1-score

results for hESC data, where the nucleotide recall of Oases assemblies

from ORNA reduced datasets were smaller compared to TIS and

Diginorm. There might be several factors such as the distribution of

kmers in the original dataset and the heuristic approaches used by the

assemblers, which might explain these variations.

As throwing away data may show unexpected results, the same par-

ameter of a normalization algorithm may lead to variable reduction val-

ues for different datasets. Currently, there is no clear way how to set

these parameters given the data at hand. A recent work has shown how

to optimize k-mer values for multi-kmer assembly (Durai and Schulz,

2016). Such an automatic selection procedure for the k-mer value used

for normalization would be worthwhile as well.

Despite the previously shown advantage of assembly runtime

and memory after read normalization, it was investigated how com-

bining and normalizing many datasets can generate novel tran-

scripts. Intuitively, low-coverage transcripts will never be assembled

or even detected in a single sequencing run. However, once many of

these experiments are combined the coverage may be sufficient for

assembly. It was illustrated that combining five diverse datasets led

to the full-length assembly of more than 400 transcripts that would

have been missed otherwise. This suggests that novelty detection

approaches, e.g. in cancer samples could use that strategy to com-

bine and normalize all datasets.

Variation in the performance of ORNA, when different

measures are used, underlines the fact that ORNA is a heuristic

algorithm that can be tuned further for better results. At the mo-

ment, ORNA works best when the input data is EC. As it focuses on

retaining all the k-mers from the original dataset, any erroneous

k-mer which escapes the filter of error correction is retained. Zhang

et al., 2015 observed that error correction before applying Diginorm

to a dataset improved assembly performance. An extra filtering cri-

teria like the quality score can also be incorporated to remove erro-

neous k-mers or to improve the ordering of the reads.

As a conclusion, this work suggests a SMC based approach for

removing read redundancy in large datasets and shows an improve-

ment over the current normalization methods, in particular for single

k-mer transcriptome assemblies. Although ORNA was only applied

on RNA-seq data, the algorithm can also be applied for other non-

uniform datasets from metagenomics or single-cell sequencing. The

software is freely available at https://github.com/SchulzLab/ORNA.

Funding

This work was supported by the Cluster of Excellence on Multi-modal

Computing and Interaction (EXC284) of the German National Science

Foundation (DFG); and International Max Planck Research School for

Computer Science, Saarbrücken.

Conflict of Interest: none declared.

References

Au,K. et al. (2013) Characterization of the human ESC transcriptome by hy-

brid sequencing. Proc. Natl. Acad. Sci. USA, 110, E4821–E4830.

Barbosa-Morais,N. et al. (2012) The evolutionary landscape of alternative

splicing in vertebrate species. Science, 338, 1587–1593.

Berger,B. et al. (2013) Computational solutions for omics data. Nat. Rev.

Genet., 14, 333–346.

Brown,C. et al. (2012) A reference-free algorithm for computational normal-

ization of shotgun sequencing data. ArXiv e-prints.

Chekuri,C. et al. (2012) On the set multicover problem in geometric settings.

ACM Trans. Algorithms, 9, 1–17, 1–9.

Chikhi,R. et al. (2016) Compacting de bruijn graphs from sequencing data

quickly and in low memory. Bioinformatics, 32, i201–i208.

Crusoe,M. et al. (2015) The khmer software package: enabling efficient nu-

cleotide sequence analysis. F1000 Res., 4:900.

Cunningham,F. et al. (2015) Ensembl 2015. Nucleic Acids Res., 43,

D662–D669.

Drezen,E. et al. (2014) GATB: genome assembly & analysis tool box.

Bioinformatics, 30, 2959.

Durai,D. and Schulz,M. (2016) Informed k mer selection for de novo tran-

scriptome assembly. Bioinformatics, 32, 1670.

Fu,L. et al. (2012) CD-HIT: accelerated for clustering the next-generation

sequencing data. Bioinformatics (Oxford, England), 28, 3150–3152.

Grabherr,M. et al. (2011) Full-length transcriptome assembly from RNA-Seq

data without a reference genome. Nat. Biotechnol., 29, 644–652.

Haas,B. et al. (2013) De novo transcript sequence reconstruction from

RNA-seq using the Trinity platform for reference generation and analysis.

Nat. Protocols, 8, 1494–1512.

Harrow,J. et al. (2012) GENCODE: the reference human genome annotation

for The ENCODE Project. Genome Res., 22, 1760–1774.

Kent,W. (2002) BLAT—the BLAST-like alignment tool. Genome Res., 12,

656–664.

Le,H. et al. (2013) Probabilistic error correction for RNA sequencing. Nucleic

Acids Res., 41, e109.

Li,B. et al. (2014) Evaluation of de novo transcriptome assemblies from

RNA-Seq data. Genome Biol., 15, 553.

Limasset,R.G. et al. (2017) Fast and scalable minimal perfect hashing for mas-

sive key sets. ArXiv e-prints.

Loh,P.R. et al. (2012) Compressive genomics. Nat. Biotechnol., 30, 627–630.

MacManes,M. (2014) On the optimal trimming of high-throughput mRNA

sequence data. Front. Genet., 5, 13.

Mbandi,S.K. et al. (2014) A glance at quality score: implication for de novo

transcriptome reconstruction of Illumina reads. Front. Genet., 5, 17.

McCorrison,J. et al. (2014) NeatFreq: reference-free data reduction and cover-

age normalization for De Novo sequence assembly. BMC Bioinformatics,

15, 357.

Miller,J. et al. (2010) Assembly algorithms for next-generation sequencing

data. Genomics, 95, 315–327.

Moreton,J. et al. (2016) Assembly, assessment, and availability of de novo

generated eukaryotic transcriptomes. Front. Genet., 6, 361.

Patro,R. et al. (2017) Salmon provides fast and bias-aware quantification of

transcript expression. Nat. Methods, 14, 417–419.

Pell,J. et al. (2012) Scaling metagenome sequence assembly with probabilistic

de Bruijn graphs. PNAS, 109, 13272–13277.

R Development Core Team. (2008) R: A Language and Environment for

Statistical Computing. R Foundation for Statistical Computing, Vienna,

Austria, ISBN 3-900051-07-0.

Rizk,G. et al. (2013) DSK: k-mer counting with very low memory usage.

Bioinformatics, 29, 652–653.

Robertson,G. et al. (2010) De novo assembly and analysis of RNA-seq data.

Nat. Methods, 7, 909–912.

Salikhov,K. et al. (2014) Using cascading Bloom filters to improve the memory

usage for de Brujin graphs. Algorithms Mol. Biol., 9, 2.

Schulz,M. et al. (2012) Oases: robust de novo RNA-seq assembly across the

dynamic range of expression levels. Bioinformatics (Oxford, England), 28,

1086–1092.

Song,L. and Florea,L. (2015) Rcorrector: efficient and accurate error correc-

tion for Illumina RNA-seq reads. GigaScience, 4, 48.

Srivastava,A. et al. (2016) RapMap: a rapid, sensitive and accurate

tool for mapping RNA-seq reads to transcriptomes. Bioinformatics,

32, i192.

White,N. et al. (2014) Transcriptome sequencing reveals altered long inter-

genic non-coding RNAs in lung cancer. Genome Biol., 15, 429.

Zhang,Q. et al. (2015) Crossing the streams: a framework for

streaming analysis of short DNA sequencing reads. Peer J. PrePrints,

3, e890v1.

3280 D.A.Durai and M.H.Schulz

Deleted Text: 5
Deleted Text: ,
Deleted Text: error corrected
Deleted Text: set multi-cover
https://github.com/SchulzLab/ORNA

	bty307-TF1
	bty307-TF2

