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Adipose tissue is an attractive stem cell source for soft and bone tissue engineering applications and stem cell therapies. The
adipose-derived stromal/stem cells (ASCs) have a multilineage differentiation capacity that is regulated through extracellular
signals. The cellular events related to cell adhesion and cytoskeleton have been suggested as central regulators of differentiation
fate decision. However, the detailed knowledge of these molecular mechanisms in human ASCs remains limited. This study
examined the significance of focal adhesion kinase (FAK), Rho-Rho-associated protein kinase (Rho-ROCK), and their
downstream target extracellular signal-regulated kinase 1/2 (ERK1/2) on hASCs differentiation towards osteoblasts and
adipocytes. Analyses of osteogenic markers RUNX2A, alkaline phosphatase, and matrix mineralization revealed an essential role
of active FAK, ROCK, and ERK1/2 signaling for the osteogenesis of hASCs. Inhibition of these kinases with specific small
molecule inhibitors diminished osteogenesis, while inhibition of FAK and ROCK activity led to elevation of adipogenic marker
genes AP2 and LEP and lipid accumulation implicating adipogenesis. This denotes to a switch-like function of FAK and ROCK
signaling in the osteogenic and adipogenic fates of hASCs. On the contrary, inhibition of ERK1/2 kinase activity deceased
adipogenic differentiation, indicating that activation of ERK signaling is required for both adipogenic and osteogenic potential.
Our findings highlight the reciprocal role of cell adhesion mechanisms and actin dynamics in regulation of hASC lineage
commitment. This study enhances the knowledge of molecular mechanisms dictating hASC differentiation and thus opens
possibilities for more efficient control of hASC differentiation.

1. Introduction

Mesenchymal stem cells (MSCs) are multipotent adult stem
cells that give rise to osteoblasts, adipocytes, and chondro-
cytes in vitro. MSCs can be harvested from multiple adult
tissues, for example, bone marrow, adipose tissue, dental
tissues, and umbilical cord [1].MSCs derived from fat tissue,
adipose-derived stromal/stem cells (ASCs), are increasingly

used in regenerative medicine due to their desirable
immunomodulatory properties and ease of harvest [1].
Regulation of MSC differentiation has been extensively
studied, but the research has been mainly conducted with
the bone marrow mesenchymal stem cells (BMSC) of human
or rodent origin. Although the central transcription factors
and signaling pathways are conserved between cell types
and species, the extrapolation of these previous results to
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human ASCs cannot be made without reservation. It has
been discovered that MSCs of different species are not fully
comparable regarding their differentiation potential [2, 3]
or immunosuppressive capacity [4]. Additionally, the differ-
entiation potential of MSCs has been shown to vary even
within species depending on the harvest site [5]. Thus, there
is a need for in vitro studies elucidating the molecular mech-
anisms regulating differentiation potential specifically in
human ASCs.

Self-renewal and differentiation of mesenchymal stem
cells are tightly regulated by signals from the surrounding
environment. Especially signals that regulate cell adhesion
and cytoskeletal arrangements have been suggested to be
important regulators of MSC differentiation [6]. Cells grow
and function in association with extracellular matrix (ECM)
components and respond to a wide range of external signals
by converting their morphology, behavior, and fate decision
accordingly [7–9]. One of the most important response
mechanisms is based on the function of transmembrane
adhesion receptors of the integrin family and integrin-
based focal adhesion (FA) complexes. FAs work in the
regulation of cytoskeletal networking and cellular signaling
through a central mediator, focal adhesion kinase (FAK)
[10]. FAK signaling functions through autophosphoryla-
tion of tyrosine 397 that induces interaction of FAK with
Src, a nonreceptor tyrosine kinase that stabilizes as a
response of this interaction and further phosphorylates
other tyrosines of FAK. This leads to full activity of both
kinases and subsequent activation of numerous intracellular
pathways [11]. In mesenchymal stem cells (MSCs), FAK
signaling is interconnected with various pathways includ-
ing mitogen-activated kinases (MAPKs) and Rho-family
GTPases RhoA, Rac, and Cdc42 [12].

The regulation of the cell cytoskeleton and morphology is
primarily controlled by the RhoA-ROCK pathway [13],
which sustains the integrity of the cytoskeleton by stimulat-
ing actomyosin contractility [14, 15]. ROCK isoforms are
protein serine/threonine kinases that phosphorylate sub-
strates such as myosin light chain (MLC) phosphatase to
drive the assembly of the actin cytoskeleton [13]. The
RhoA-ROCK signaling is also an important regulator of stem
cell commitment [7, 16–18], and the cell shape determined
by RhoA function has been proposed to be a major switch
between adipogenic and osteogenic differentiation of human
MSCs (hMSCs) [7]. In addition, ROCK signaling is related
to the substrate stiffness-driven lineage commitment of
MSCs through mechanosensing of the microenvironment
via interplay with integrin-FAK signaling [19].

MAPK pathway component extracellular signal-
regulated kinase 1/2 (ERK1/2) is linked to vital cellular
functions such as proliferation, survival, apoptosis, motil-
ity, transcription, metabolism, and differentiation [20].
ERK1/2 has been shown to be a downstream effector of
FAK-mediated signaling in MSCs [18, 21]. It has also
been suggested as a mechanosensing protein, regulated
by the RhoA-ROCK-mediated actin dynamics in hMSCs
[22–24]. ERK1/2 activity is linked to the expression of
osteogenic markers in hASCs [25]. However, the role of
ERK signaling in the adipogenic differentiation fate differs

depending on the experimental design and the cell type
studied [25–28].

In previous studies, the cellular mechanisms of adhesion
and cytoskeletal arrangements have been studied in multiple
cell types and varying experimental conditions and configu-
rations. In this study, our objective was to clarify the role of
these mechanisms in the differentiation fate decision of
adipose tissue-derived stem cells. The current study carefully
analyzed the significance of FAK, ROCK, and ERK1/2
proteins in the adipogenic and osteogenic differentiation of
hASCs. The key results demonstrated the reciprocal regula-
tion of FAK and ROCK signaling in the interface of hASC
osteogenesis and adipogenesis. Our results also consistently
indicated that in hASCs, ERK1/2 activity is required for the
full osteogenic and adipogenic potential. As a conclusion,
our results suggested that ERK1/2 activation together with
cell adhesion and actin regulation by FAK-RhoA-ROCK
signaling are fine tuning regulators of hASC fate decision.
This investigation enhanced the understanding of the
signaling mechanisms governing stem cell commitment and
gave insight for future development of in vitromodels, tissue
engineering constructs, and stem cell therapies.

2. Materials and Methods

2.1. Cell Isolation and Culture. The study was carried out in
accordance with the Ethics Committee of the Pirkanmaa
Hospital District, Tampere, Finland (ethical approval
R15161). The hASCs were isolated from adipose tissue
samples of six female donors (age, 44± 11 years, donor
information in Table S1) with a written informed
consent of the donors. Isolation of the stem cells was
performed as described previously [29]. The isolated
hASCs were maintained and expanded in human serum
containing basic culture medium (BM) (composition in
Table 1) and passaged after reaching 70–80% confluence.

2.2. Flow Cytometric Analysis of Surface Marker Expression.
The cells were identified as MSCs by flow cytometry
(FACSAria; BD Biosciences, Erembodegem, Belgium) at
passage 1 to confirm the MSC immunophenotype of the
cells. Cells were single stained using monoclonal antibodies
against CD3-PE, CD14-PE-Cy7, CD19-PE-Cy7, CD45R0-
APC, CD54-FITC, CD73-PE, CD90-APC (BD Biosciences,
Franklin Lakes, NJ, USA), CD11a-APC, CD80-PE, CD86-
PE, CD105-PE (R&D Systems, Minneapolis, MN, USA),
CD34-APC, and HLA-DR-PE (ImmunoTools, Friesoythe,
Germany). The FACS analysis was performed on 10,000 cells
per sample and positive expression was defined as fluores-
cence level greater than 99% of the comparable unstained
cell sample.

2.3. Osteogenic and Adipogenic Differentiation Cultures.
Human ASCs were seeded into CellBIND polystyrene plates
(Corning Inc., Corning, NY, USA) in BM prior to the
experiments. Osteogenic and adipogenic inductions were
initiated on the following day by introducing the osteogenic
medium (OM) and adipogenic medium (AM) to the cells
(compositions in Table 1). 0.25mM IBMX (3-isobutyl-1-
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methylxanthine; Sigma-Aldrich, Saint Louis, MO, USA)
was added to the adipogenic differentiation cultures upon
first change of culture media. 5 nM Dexamethasone
(DEX; Sigma-Aldrich) was applied to OM when used.
Fresh differentiation media were applied to the cells twice
a week during the experiments. As a control, the hASCs
were cultured in BM condition. The experiments were
conducted at passages 3–5.

2.4. Small Molecule Inhibitors. BM, OM, and AM were
supplemented with small molecule inhibitors targeted to
FAK, ROCK, and ERK1/2 proteins and added to the cell
cultures. FAK and ROCK signaling were inhibited using
PF-562271 (Selleck Chemicals, Houston, Texas, USA)
and Y-27632 (Selleck Chemicals), respectively. Inhibition
of ERK1/2 activation was conducted with PD98059 (Calbio-
chem/EMD Millipore, Billerica, Massachusetts, USA) which
is a specific inhibitor of ERK1/2 upstream kinase mitogen-
activated protein kinase 1 (MEK1). BM, OM, and AM
conditions without the inhibitors were used as controls.
Fresh media supplemented with the inhibitors were applied
to the cells twice a week during the experiments.

2.5. Live/Dead Staining. The viability of the hASCs seeded
260 cells/cm2 in 24-well plate and cultured 7 days in BM,
OM, or AM and left untreated (control) or treated with
FAK inhibitor PF-562271, ROCK inhibitor Y-27632, or
MEK/ERK inhibitor PD98059 was studied with LIVE/
DEADViability/Cytotoxicity Kit (Molecular Probes; Thermo
Fisher Scientific). The viable cells (green fluorescence)
and dead cells (red fluorescence) were imaged using an
Olympus microscope (IX51, Olympus) equipped with a
fluorescence unit and camera (DP30BW, Olympus) with
4x magnification.

2.6. Fluorescence Staining of the Actin Cytoskeleton. The
hASCs were cultured 7 days in BM, OM, or AM and
left untreated (control) or treated with 2μM FAK inhib-
itor PF-562271, 15μM ROCK inhibitor Y-27632, and
30μM MEK/ERK inhibitor PD98059. The cells were
fixed and permeabilized with 4% PFA (Sigma-Aldrich)

supplemented with 0.1% Triton X-100 for 15min at
RT. Blocking was done with 1% bovine serum albumin
(BSA; Sigma-Aldrich) for 1 h at +4°C. For actin staining,
the cells were incubated in tetramethyl-rhodamine B
isothiocyanate- (TRITC-) conjugated phalloidin (P1951;
Sigma-Aldrich) for 45min at RT followed by 4′,6-diami-
dino-2-phenylindole (DAPI, Sigma-Aldrich) staining to
visualize the nuclei.

2.7. Cell Proliferation and Quantitative Analysis of Alkaline
Phosphatase Activity. Cell proliferation of control and
inhibitor-treated hASCs (seeded 260 cells/cm2 in 24-well
plate) was assessed with CyQUANT cell proliferation assay
(Molecular Probes; Thermo Fisher Scientific, Waltham,
MA, USA) after 7 and 14 days of culture as described previ-
ously [29, 30]. The activity of alkaline phosphatase (ALP)
was analyzed from the same cell lysates as cell proliferation
as described previously [29].

2.8. Alizarin Red Staining and Quantification of
Mineralization. The cells (seeded 260 cells/cm2 and cultured
with control and inhibitor conditions) were stained with
Alizarin Red (AR) after 14 and 21 days of culture for the anal-
ysis of mineralization. The staining was done as described
previously [31]. Briefly, the cells were fixed with 70% ethanol,
stained with 2% Alizarin Red S (pH4.1–4.3; Sigma-Aldrich),
and photographed after three washes with water and one
with ethanol. Quantitative results were obtained by extract-
ing the dye with 100mM cetylpyridinium chloride (Sigma-
Aldrich) for 3 hours and measuring the absorbances of the
samples at 544 nm.

2.9. Oil Red O Staining. hASCs (seeded 260 cells/cm2 in 24-
well plate) were cultured in BM, OM, and AM supplemented
with inhibitor molecules for 21 days and stained with Oil Red
O (ORO) staining, which indicates lipid droplet formation,
as described previously [29]. Following ORO stain, the
hASCs were counterstained with DAPI (Sigma-Aldrich; dilu-
tion 1 : 2000) for 5 minutes before the last washing steps.
Fluorescence microscope images were taken with an

Table 1: Culture media compositions.

Component BM OM AM Manufacturer

Dulbecco’s Modified Eagle Medium/Ham’s
Nutrient Mixture F-12 (DMEM/F-12)

Thermo Fisher Scientific, Waltham, MA, USA
GlutaMAX 1% 1% 1%

Insulin — — 100 nM

Human serum (HS) 5% 5% 5% PAA Laboratories GmbH, Pasching, Austria

Penicillin/streptomycin 1% 1% 1% Lonza, Basel, Switzerland

L-Ascorbic acid 2-phosphate — 200μM —

Sigma-Aldrich, Saint Louis, MO, USA

β-Glycerophosphate — 10mM —

Dexamethasone (DEX) — 5 nM 1μM

Pantothenate — — 17μM

Biotin — — 33μM

3-Isobutyl-1-methylxanthine (IBMX) — — 0.25 M
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Olympus microscope (IX51, Olympus, Tokyo, Japan)
equipped with a fluorescence unit and a camera (DP30BW,
Olympus).

2.10. Quantification of Lipid Formation. Lipid formation was
quantified based on image analysis of samples stained with
ORO and DAPI. Image quantification was performed with
a custom analysis pipeline designed for CellProfiler (version
2.1.1, 64-bit Windows; http://www.cellprofiler.org [32]).
Lipid maturation was assessed by applying a 10μm diameter
threshold for lipid droplet clusters. See Supplemental Mate-
rials for a detailed description of the analysis pipeline.

2.11. qRT-PCR. The quantitative real-time reverse transcrip-
tase polymerase chain reaction (qRT-PCR) analysis was
performed after 7 and 14 days of culture (hASCs seeded
3160 cells/cm2 in 6-well plate) as described previously [33].
The expressions of human runt-related transcription factor
2a (RUNX2A), human adipocyte fatty acid-binding protein
(FABP4 or AP2), and human leptin (LEP) were normalized
with the expression of human acidic ribosomal phosphopro-
tein P0 (RPLP0). Gene sequences and accession numbers
are presented in Table 2.

2.12. Western Blotting and Immunodetection. Human ASCs
(seeded 3160 cells/cm2 in 6-well plate) were starved for 24
hours in BM, OM, or AM containing 1% human serum
before the 7d inhibitor-supplemented culture, which was also
conducted in starvation media. Samples lysed with 2X
LAEMMLI sample buffer were analyzed with Western
blotting (WB) as described earlier [34]. Briefly, samples were
separated with SDS electrophoresis and transferred into
polyvinylidene fluoride membrane (0.2μm PVDF Single
application; Bio-Rad, Hercules, CA, USA). Membrane was
blocked with 5% milk in Tris-buffered saline supplemented
with 0.05% Tween 20 (Sigma-Aldrich). Membranes were
incubated with primary antibodies followed by secondary
antibody incubation and chemiluminescence detection
(ECL PrimeWestern Blotting Detection Reagent; GE Health-
care, Little Chalfont, UK) and visualized with Chemi DocMP
System (Bio-Rad). Antibodies and dilutions are presented
in Table 3.

2.13. Statistical Analysis. All results are represented as
mean and standard deviation (SD). Statistical analyses were

conducted using GraphPad Prism 5 (La Jolla, CA, USA).
Statistical differences between the inhibitor-treated sam-
ples and the respective controls were tested using the
nonparametric Mann–Whitney test followed by Bonfer-
roni post hoc test. Statistical differences with p < 0 05 were
considered significant. Detailed information of the biolog-
ical and technical replicates used in statistical analysis is
given in Table S2.

3. Results

3.1. Characterization of hASCs. Surface marker expression of
hASCs was analyzed by flow cytometry. The hASCs were
characterized as MSCs due to positive expression of CD73,
CD90, and CD105; lack of CD3, CD11, CD14, CD19,
CD45, CD80, CD86, and HLA-DR expression; and moderate
expression of CD34 and CD54 (Table S3).

3.2. Inhibition of FAK, ROCK, and ERK1/2 Activity Reduces
Proliferation of hASCs. Cell proliferation capacity was
evaluated in BM, OM, and AM with gradient concentrations
of FAK, ROCK, and ERK inhibitors PF-562271, Y-27632,
and PD98059, respectively. CyQUANT assay indicated that

Table 2: The primer sequences and accession numbers for qRT-PCR.

Gene 5′-Sequence-3′ Product size (bp) Accession number

AP2
Forward GGTGGTGGAATGCGTCATG

71 NM_001442
Reverse CAACGTCCCTTGGCTTATGC

LEP
Forward ACAATTGTCACCAGGATCAATGAC

73 NM_000230
Reverse TCCAAACCGGTGACTTTCTGT

RPLP0
Forward AATCTCCAGGGGCACCATT

70 NM_001002
Reverse CGCTGGCTCCCACTTTGT

RUNX2A
Forward CTTCATTCGCCTCACAAACAAC

62 NM_001024630.3
Reverse TCCTCCTGGAGAAAGTTTGCA

bp: base pair.

Table 3: Primary and secondary antibodies used in Western
blot analysis.

Antibody
type

Antibody
Host
species

Dilution Incubation

Primary Anti-β-actin1 Mouse 1 : 2000 RT, 2 h

Primary Anti-FAK2 Rabbit 1 : 1000 +4°C, overnight

Primary Anti-p-FAK2 Rabbit 1 : 1000 +4°C, overnight

Primary Anti-ERK21 Rabbit 1 : 1000 RT, 2 h

Primary Anti-p-ERK1/22 Rabbit 1 : 2000 +4°C, overnight

Primary Anti-MLC2 Rabbit 1 : 800 +4°C, overnight

Primary Anti-p-MLC2 Rabbit 1 : 800 +4°C, overnight

Secondary
Anti-rabbit

IgG2 Goat 1 : 2000 RT, 1 h

Secondary
Anti-mouse

IgG1 Goat 1 : 2000 RT, 1 h

1Santa Cruz Biotechnology, Dallas, Texas, USA. 2Cell Signaling Technology,
Danvers, Massachusetts, USA.
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the inhibitors have a regulatory function on cell proliferation
(Figure 1(a)). The cell numbers were reduced dose
dependently in the inhibitor-treated conditions compared
to the control conditions. Despite a decrease in the cell
number as a response to increased inhibitor concentrations,
adherent cells remained viable with a negligible amount of
dead cells (Figure 1(b)), as assessed with the LIVE/DEAD
method. In addition to the inhibitor function on cell number,
the inhibitor treatment also affected the typical fibroblast-like
morphology of hASCs. Based on the immunofluorescence
staining of actin cytoskeleton (Figure 2), ROCK inhibition
caused the most prominent changes to the morphology of
the hASCs. Y-27632 treated cells appeared spindle-like in
OM and AM media, and the cells in OM had formed a
network of star-shaped cells with long extensions.

3.3. FAK, ROCK, and ERK1/2 Functions Are Essential to
hASC Osteogenesis. The early osteogenic differentiation
potential of hASCs cultured in BM, OM, and AM in the

presence or absence of the FAK, ROCK, and ERK inhibitors
was assessed by quantitative real-time reverse transcriptase
polymerase chain reaction analysis of the bone associated
marker gene RUNX2A (Figure 3(a)) and by quantitative
activity assay of ALP (Figure 3(b)) which is an early marker
of osteogenesis [35]. At 7 days of culture, RUNX2A expres-
sion was markedly upregulated in the OM condition but
downregulated by the addition of all studied inhibitors. How-
ever, statistical analyses were not done due to the low sample
number. The enzymatic activity of ALP was the most prom-
inent in the OM control medium after two weeks of culture,
and addition of the inhibitors reduced the enzymatic activity
dose dependently. ALP activation was markedly lower in BM
and AM conditions, yet a similar trend in the inhibitor
effect was seen.

Deposition of calcium phosphate mineral is characteristic
to the maturation of osteoblasts and hence, late osteogenic
differentiation capacity was studied by Alizarin Red staining
protocol after 14 and 21 days of culture. Strong staining for
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Figure 1: Cell viability and proliferation after 7 and 14 days of culture in response to inhibition of FAK, ERK1/2, and ROCK signaling.
(a) hASCs were cultured 7 or 14 d in BM, OM, and AM supplemented with FAK, ERK1/2, and ROCK inhibitors. The inhibitor effect
on proliferation was studied in each culture condition separately by comparing the different inhibitor concentrations with the untreated
medium control. Significance level 5%, designated with an asterisk (∗). FAK, ERK, and ROCK inhibitors: N = 12 (independent biological
replicates from 4 donors). (b) Representative fluorescence images of LIVE/DEAD-stained hASCs. hASCs were cultured in BM, OM, or AM
supplemented with the abovementioned inhibitors. Cell viability was analyzed with LIVE/DEAD assay at 7 d. Green dye represents living
cells, red dye dead cells. Scale bar 1.0mm. BM: basic medium; OM: osteogenic medium; AM: adipogenic medium.
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mineralization of the ECM occurred in the OM control
medium at 21 d, as indicated by the quantitative analysis
and the corresponding red-stained samples (Figure 3(c)).
Mineral accumulation was significantly weakened in the
inhibitor-supplemented OM conditions. BM and AM,
lacking the osteogenic agents, were not able to support
matrix mineralization. Although the inhibitors caused statis-
tically significant reduction of mineralization in BM and AM
conditions, the absolute values in the control conditions were
too low to have any relevance for the mineralization. 2-week
culture period was too short for mineral formation in the
studied conditions.

3.4. Inhibition of FAK and ROCK Enhance Adipogenic
Outcome of the hASCs. Adipogenic differentiation was
analyzed in terms of the expression profiles of adipogenic
marker genes AP2 [36] and LEP [37] (Figure 4). As expected,
the expression of adipogenic marker genes was most elevated
in the hASCs cultured in AM. Based on our results, FAK
inhibition increased the expression of AP2 at both time
points in all culture conditions. FAK inhibition also upregu-
lated LEP in OM condition at both time points, but in AM,
LEP expression was only induced at day 14. Inhibition of
the Rho-ROCK signaling using Y-27632 led to enhanced
AP2 expression but had an opposite downregulating effect
on LEP in AM condition. ERK inhibition, on the other hand,
augmented AP2 expression at 7 d but downregulated AP2 on
14 d. Moreover, ERK inhibition also repressed LEP expres-
sion at both time points in AM condition suggesting that
inhibition of ERK predominantly had a repressing effect on
these adipogenic marker genes. Statistical analyses were not
done due to the low sample number.

To further study adipogenic differentiation of the hASCs,
accumulation of lipid droplets was analyzed after three weeks
of culture with a fat-soluble diazol dye Oil Red O (ORO),
Figure 5(a) [38]. We also quantified the lipid accumulation

by creating and optimizing a CellProfiler pipeline to analyze
ORO-stained fluorescence images. We analyzed both total
lipid droplet area in the cultures (Figure 5(b)) and the area
of lipid droplet clusters exceeding 10μm diameter limit
(Figure S1) to visualize the ongoing adipogenic
differentiation and maturation of adipocytes which is
distinguished by the increasing number of lipid droplets as
well as the enlargement of the individual fat vacuoles [39].
Lipid droplet cluster areas over 10μm in diameter were
further normalized with cell nuclei number to obtain results
representative of the single-cell level (Figure 5(b)).

Interestingly, FAK inhibitor treatment significantly
increased the proportion of large LDs in OM condition. In
AM conditions 0.5μMFAK inhibitor treatment also elevated
lipid formation. However, the quantitative results showed
that 2μM FAK inhibitor led to a reduced area of LDs in
AM condition. ROCK inhibition resulted in increased
adipogenesis on both culture and single-cell level in OM
and AM conditions. ERK inhibition reduced the area of
ORO-stained LDs in the culture, also when normalized with
the cell number.

3.5. Western Blot Analysis of the Inhibitor Functionality and
Cross Talk between Signal Pathways. The functionality of
small molecule inhibitors was confirmed by WB analysis of
hASCs cultured in starvation media (Figure 6 and Figure S2).
The ratio of phosphorylated and unphosphorylated forms
of these proteins was analyzed with semiquantification of
the band intensities using ImageJ software [40] (Figure 6(b)).
Based on the visual inspection and the semiquantified results,
the level of the target protein phosphorylation was clearly
decreased by the specific inhibitory molecules confirming the
inhibitor functionality.

Furthermore, our results pointed out that FAK, ROCK,
and ERK inhibitors affected also other studied phosphopro-
teins and basal protein levels indicating a prospective cross

Control FAK 2 �휇M ROCK 15 �휇M ERK 30 �휇M

BM

OM

AM

Figure 2: Immunofluorescence staining of actin cytoskeleton and nuclei. hASCs were treated with 2μM FAK, 15μM ROCK, or 30μM ERK
inhibitors, and the cytoskeleton was stained with phalloidin (red) and nuclei with DAPI (blue) at day 7. Scale bar 100 μm. BM: basic medium;
OM: osteogenic medium; AM: adipogenic medium.
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Figure 3: Osteogenic differentiation of hASCs in BM, OM, and AM culture conditions supplemented with FAK, ERK, and ROCK inhibitors.
(a) The cells were cultured in BM, OM, or AM supplemented with 2 μM FAK, 40 μMERK, or 15 μMROCK inhibitors in addition to medium
controls. RUNX2A expression was analyzed with qRT-PCR at 7 d. FAK and ROCK: N = 5 (independent experiments, 5 donors), ERK: N = 3
(independent experiments, 3 donors). (b) ALP activity was analyzed with ALP assay at 7 d and 14 d. The ALP absorbance values were
normalized with corresponding CyQUANT results, and the results are presented relative to the 7 d BM sample. Significance level 5%,
designated with an asterisk (∗). FAK, ERK, ROCK: N = 9 (independent biological replicates from 3 donors). (c) Matrix mineralization was
analyzed with AR staining after 14 d and 21 d of culture. Quantitative results of AR staining are presented as graphs and corresponding
representative images of the stained wells (21 d, area 1.9 cm2) are presented below; bright red dye represents mineral. Significance level 5%.
FAK, ROCK: N = 18 (independent biological replicates from 6 donors, control condition values of the graphs are the same since the
experiments were conducted at the same time), ERK: N = 15 (independent biological replicates from 5 donors). BM: basic medium; OM:
osteogenic medium; AM: adipogenic medium; ALP: alkaline phosphatase; AR: Alizarin Red.
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talk between signaling pathways. For instance, FAK
inhibition had a modest decreasing effect on p-ERK1/2 in
OM condition and FAK inhibitor also reduced ROCK
downstream target p-MLC2 in BM and AM conditions.
ROCK inhibition had a complementary decreasing effect on
FAK phosphorylation in OM conditions, and also ERK inhi-
bition decreased p-FAK levels in OM and AM conditions.

4. Discussion

Despite the fact that hASCs are already used in clinical
treatments, the knowledge of the regulatory mechanisms of
hASC differentiation originates from research done with
varying cell types of human and nonhuman origin. Our
aim was to carefully analyze the significance of cell adhesion
and cytoskeleton in hASC osteogenic and adipogenic
differentiation by using small molecular inhibitors for central
proteins in cell adhesion and cytoskeletal dynamics.

Previous studies have noted the importance of FAK
signaling in the osteogenic potential of hMSCs [18, 21, 41].
Our results support these findings by showing that the
expression of the osteogenic marker gene RUNX2A, the
enzymatic activity of ALP, and eventually mineralization

were distinctly decreased as a result of FAK inhibition in
OM condition. In the presence of higher amounts of
inhibitor, the cells failed to deposit virtually any mineral,
presumably because of the decreased cell number. Role of
FAK in the adipogenic differentiation has been investigated
mainly with rodent cells and with diverging experimental
setups [42–44]. Li and Xie [42] reported that firm adhesion
is required for osteogenesis whereas morphological change
accompanied with calpain-mediated cleavage of FAK is
essential for preadipocytic differentiation and final matura-
tion of adipocytes. On the contrary, a more recent in vivo
study by Luk and coworkers [44] showed that the adipocyte
survival was decreased by FAK knockout. We discovered that
in human ASCs, inhibition of FAK activity induced expres-
sions of adipogenic marker genes AP2 and LEP in OM and
AM conditions. Moreover, the CellProfiler analysis and
normalized lipid droplet values revealed that FAK inhibition
significantly induced lipid droplet maturation in OM condi-
tion, and 0.5μM concentration had moderately inducing
effect in AM as well. However, the total lipid droplet area in
the culture was reduced with FAK inhibition, likely due to
the decreased number of adherent cells, since the inhibition
also affects the cell adhesion sites. These results together with
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Figure 4: Expression of adipogenic marker genes AP2 and LEP in hASCs treated with FAK, ERK, and ROCK inhibitors. The hASCs were
cultured in BM, OM, or AM supplemented with 2 μM FAK, 40 μM ERK, or 15 μM ROCK inhibitors in addition to medium controls. AP2
and LEP expressions were analyzed with qRT-PCR. The expression of AP2 and LEP are normalized with the expression of the
housekeeping gene RPLP0, and the results are presented relative to the 7 d BM sample. FAK and ROCK: N = 5 (independent experiments,
5 donors), ERK: N = 3 (independent experiments, 3 donors). BM: basic medium; OM: osteogenic medium; AM: adipogenic medium.
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previous findings suggest that weakening of the adhesion is
needed to guide the differentiation towards adipogenic
lineage, whereas too robust disruption in the adhesion affects
the survival of the cells. Our results support the role of FAK
signaling as a central regulator of the differentiation fate
of hASCs.

FAK signaling works in cooperation with Rho-ROCK
signaling to regulate cytoskeletal dynamics and cell morphol-
ogy [18, 19]. We found out that both ROCK and FAK
inhibition suppresses phospho-MLC2 suggesting that the
actin tension is regulated by FAK-ROCK-MLC signaling
cascade. Additionally, ROCK inhibition was shown to reduce
phospho-FAK levels. Presumably diminished actin tension

by ROCK inhibition affects upstream FA assembly and thus
levels of FAK protein activation. These findings indicate a
bidirectional regulation between actin assembly and cell
adhesion mechanisms in hASCs. In addition to the coopera-
tion of FAK and ROCK signaling, Rho-ROCK pathway itself
has been shown to be an important regulator of the balance
between osteogenesis and adipogenesis in MSCs [7, 13–15].
In the present study, we found out that the functionality of
the ROCK signaling cascade was required in the commit-
ment of hASCs to the osteoblastic lineage since inhibition
of ROCK signaling caused a dose-dependent decrease of
RUNX2A expression, reduced ALP activity, and hindered
the mineral formation. Our results showed that ROCK
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Figure 5: ORO staining of hASCs and quantification of lipid accumulation from ORO-stained fluorescence images. (a) Representative ORO-
and DAPI-stained fluorescence images of FAK, ERK, and ROCK inhibitor-treated hASCs at 21 d. Human ASCs were stained with ORO for
intracellular lipid accumulation followed by nuclei staining with DAPI. Fluorescence images were taken with Alexa546 for ORO (red) and
DAPI (blue) filters. Scale bars 100 μm. (b) ORO-stained samples of FAK, ERK, and ROCK inhibitor-treated hASCs were imaged with
fluorescence microscope using Alexa546 and DAPI filters and analyzed with a custom analysis pipeline designed for CellProfiler.
Quantitative ORO graph presents the area of all stained LDs as percentages of the total image area. Normalized ORO graph describes LD
formation on the single cell level: the area of LD clusters over 10μm in diameter is normalized with the corresponding nuclei count.
Significance level 5%, designated with an asterisk (∗). FAK, ROCK: N = 13 – 16 (images from 2 donors), ERK: N = 19 – 21 (images from 3
donors). BM: basic medium; OM: osteogenic medium; AM: adipogenic medium; ORO: Oil Red O; LD: lipid droplet.
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inhibition efficiently suppressed the phosphorylation of
MLC2, which is involved in actin filament bundling [13].
Thus, hindered actin filament bundling and the disruption
of the actomyosin contractility might have led to the
observed inhibition of the osteogenesis in our study. Osteo-
genic differentiation of hMSCs has been demonstrated even
without soluble differentiation factors with patterning of
the culture platform [7, 45, 46] denoting the importance of
the cell shape in the differentiation process. We discovered
that the morphology of hASCs was clearly affected by the
ROCK inhibitor. Y-27632-treated hASCs appeared spindle-
like stellar cells in OM and AM conditions when observed
during the culture. These cytoskeletal modifications corre-
sponded to the hindered osteogenic course and likely turned
the regulatory switch towards adipogenesis. Indeed, the
analysis of the adipogenic gene expression and lipid forma-
tion revealed that inhibition of ROCK reciprocally induced
substantial adipogenic differentiation in AM but also in the
OM condition. These results strongly demonstrate that
actin cytoskeleton is an important regulator driving the
switch between the osteogenic and adipogenic course of
hASC differentiation.

ERK has been suggested to be a mechanosensing protein
downstream FAK-Rho-ROCK signaling axis guiding the
differentiation fate of hMSCs [23, 24]. In this study, we saw
that the inhibition of FAK and ROCK phosphorylation
affected phospho-ERK levels suggesting that ERK is regu-
lated in cooperation by the cell adhesion mechanisms and
the contractility of the actin cytoskeleton. Interestingly,
ERK inhibition also slightly reduced phospho-FAK levels in
OM and AM conditions with a currently unknown mecha-
nism. ERK1/2 activity has been linked to the expression of
osteogenic markers in hASCs [25] and previous studies have
noted that ERK inhibition obstructs osteogenesis in hMSCs
[25, 28, 47]. The present study also showed that inhibition
of ERK1/2 activation efficiently and dose dependently
inhibited the ALP activity and mineral deposition and
downregulated RUNX2A expression in OM condition. Addi-
tionally, ERK1/2 has been suggested to have a regulatory role
on MSC adipogenesis, though it has remained contradictory
whether the role is activatory or inhibitory [25–28]. ERK1/2
pathway has been suggested to work as a molecular switch
between adipogenic and osteogenic lineage commitment of
BMSCs when cultured with osteogenic supplements [28].
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Figure 6: Intracellular protein activation at day 7 as a response to FAK, ROCK, and ERK inhibition. hASCs were cultured 7 days in BM, OM,
and AM media containing 1% human serum supplemented with 15 μM ROCK inhibitor, 2μM FAK inhibitor, or 30μM ERK inhibitor. (a)
Representative WB results of immunoblotted p-FAK, FAK, β-actin, p-ERK(1/2), ERK 2, p-MLC2, and MLC2. (b) Semiquantified WB results
representing the ratio of phosphorylated and basal form of FAK, ERK, and MLC2 proteins. BM: basic medium; OM: osteogenic
medium; AM: adipogenic medium.
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On the other hand, a more recent study of Xu and coworkers
[23] suggested that ERK1/2 is a positive regulator of the
hBMSC adipogenesis. Our results consistently indicated that
ERK1/2 activity is required for the full osteogenic but also
adipogenic potential of hASCs. Inhibition of ERK activity
reduced the expression of adipogenic marker genes and lipid
accumulation. To our knowledge, this is the first study where
ERK inhibition is shown to diminish hASC adipogenesis in
both osteogenic and adipogenic culture conditions. Although
the proteins investigated in this study are interconnected, the
role of ERK in the hASC differentiation was not parallel with
the switch-like regulation of FAK and ROCK pathways.
However, the mechanism of ERK signaling in adipogenesis
needs to be further studied.

5. Conclusions

This study set out to determine the significance of cell
adhesion and cytoskeletal modifications regulated by FAK
and ROCK signaling and their downstream target EKR1/2
for adipogenic and osteogenic differentiation potential of
hASCs. The results show that ERK1/2 pathway plays a crucial
positive role in both osteogenic and adipogenic courses of
hASC differentiation, whereas FAK and ROCK work as
molecular switches since they function as positive regulators
of osteogenesis but negative regulators of adipogenesis. The
investigation of these signaling proteins at the molecular level
also highlights the interesting interconnection of FAK,
ROCK, and ERK1/2 signaling in hASCs and implicates the
complex interplay between these crucial regulators of
differentiation fate. This study confirms the molecular
mechanisms of cell adhesion and actin tension in human
ASCs and gives us tools to modify and guide the cell
proliferation and differentiation in stem cell-based applica-
tions and therapies.
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