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Recently, numerous musculoskeletal robots have been developed to realize the flexibility and dexterity analogous to human beings
and animals. However, because the arrangement of many actuators is complex, the design of the control system for the robot is
difficult and challenging. We believe that control methods inspired by living things are important in the development of the
control systems for musculoskeletal robots. In this study, we propose a muscle coordination control method using attractor
selection, a biologically inspired search method, for an antagonistic-driven musculoskeletal robot in which various muscles
(monoarticular muscles and a polyarticular muscle) are arranged asymmetrically. First, muscle coordination control models for
the musculoskeletal robot are built using virtual antagonistic muscle structures with a virtually symmetric muscle arrangement.
Next, the attractor selection is applied to the control model and subsequently applied to the previous control model without
muscle coordination to compare the control model’s performance. Finally, position control experiments are conducted, and the
effectiveness of the proposed muscle coordination control and the virtual antagonistic muscle structure is evaluated.

1. Introduction

Human beings and animals move flexibly and dexterously by
controlling their musculoskeletal system with the brain. To
understand and imitate the flexible and dexterous motion
of human beings and animals, several musculoskeletal robots
have recently been developed. The primary driving mecha-
nism in musculoskeletal robots is a tendon-driven assembly
using motors [1, 2] or pneumatic artificial muscles (PAMs).
In particular, using PAMs as actuators enables flexible move-
ment of the musculoskeletal robot compared with conven-
tional robots that use motors because the compressibility
and low viscosity of air provide compliance and rapid con-
traction. The extremely high power-to-weight ratio of the
PAM is also good for flexible and dynamic motion.

The musculoskeletal robot comprises antagonistic-
driven systems. An antagonistic-driven system includes two
or more actuators for joint movement. The actuators are

antagonistically arranged around one link, and their out-
put characteristics and arrangements are, for the most
part, symmetrical.

Many studies have proposed the musculoskeletal robots
comprising this simple antagonistic system, and various con-
trol methods (e.g., PID control, neural network, and fuzzy
logic) have also been proposed for musculoskeletal robots
[3–8]. However, the drive system of our musculoskeletal
robot [9] differs from a simple antagonistic-driven system
because the output characteristics and the arrangements of
the actuators of the robot are not symmetrical.

This robot has two kinds of PAM actuators, a monoarti-
cular muscle that drives one joint and a polyarticular muscle
that drives multiple joints consecutively. Therefore, the
mechanism that drives each joint is not symmetrical. Fur-
thermore, the actuators are not arranged symmetrically,
although each actuator is antagonistically arranged around
each link. Since each actuator is not arranged symmetrically
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and the sensors for measuring each joint angle are not
arranged, design of the control system for the robot is more
difficult and challenging.

Honda et al. [9, 10] proposed a biologically inspired con-
trol method using muscle coordination for the robot. They
hypothesized that human beings use the synergies between
antagonistic muscle pairs when joints move, and they defined
two parameters, the antagonistic muscle ratio and the antag-
onistic muscle activity, as the key parameters in human mus-
cle coordination. The parameters are computed by a PID
controller [10] and are implemented to control the angle of
the robot’s joints.

Although good control performance was obtained for
one joint, the controller did not work well for multiple joints
of the robot [9]. An adaptive method that dynamically and
adaptively searches the parameters for muscle coordination
was required because PAMs have time variance, compliance,
high hysteresis, and nonlinearity. In general, this search
problem can be formulated as a combinatorial optimization
problem of minimizing an object function subject to the
search variables, which requires a precise model (object
function) in advance, but system identification against an
asymmetrically antagonistic-driven PAM system having
nonlinear dynamics is difficult.

As an alternative to such a model-based theoretical
approach, we believe that heuristic control methods
inspired from living things are important for the control
of the musculoskeletal robot. The musculoskeletal struc-
tures of human beings and animals are antagonistic-driven
systems. They are also asymmetrically antagonistic-driven
systems because monoarticular muscles and polyarticular
muscles are arranged around various joints. Human beings
and animals move flexibly by controlling their various
muscles dexterously.

Recent research about the mechanisms of living things
indicates that a biological system behaves flexibly using noise
[11]. Escherichia coli (E. coli) cells usually prefer to switch to
an adaptive attractor using noise to survive better in a new
external environment after the environmental conditions
have been changed. This adaptive behavior of the E. coli cells
is known as attractor selection [12]. The novel control
method based on the attractor selection has been proposed
and applied to a signal-control method for traffic networks
[13], network management [14, 15], android motion genera-
tion [16], robot navigation and locomotion [17–19], robotic
arm control [20–22], and endoscopic surgery [23].

The control method was described by a stochastic differ-
ential equation, input variables for the network systems or
robots were computed by solving the equation, and the sys-
tems accomplished the tasks without the dynamics and
model of the systems and environments. Since the attractor
selection is conducted adaptively using noise in the systems
or environments, the control method is robust for changes
of tasks and environments. Attractor selection was applied
to an asymmetrically antagonistic-driven musculoskeletal
robot (Figure 1) with muscles arranged asymmetrically
[24]. From the control experiment, the position of the tip of
the robot was moved to the desired position by searching
pressure for four PAMs individually using the attractor

selection. The control time had to be more than 100 s to
accomplish tasks. Therefore, modification of the control
method is required to accomplish tasks quickly.

In this study, we propose a novel muscle coordination
control method for the asymmetrically antagonistic-driven
musculoskeletal robot using the attractor selection. The pri-
mary difference between the previous method [24] and the
proposed one is that the proposed method introduced a vir-
tual antagonistic muscle structure as a muscle coordination
control model. Instead of individually and directly searching
the PAM pressure in the actual asymmetric antagonistic
muscle structure, the new method indirectly searches pres-
sure for actual PAMs via a virtual symmetric antagonistic
muscle structure.

First, muscle coordination control models of the mus-
culoskeletal robot were built using virtual antagonistic mus-
cle structures with a virtually symmetric arrangement of
muscles. Next, the attractor selection was applied to the
control model and also applied to the previous control
model without the muscle coordination to compare control
performance. Finally, position control experiments were con-
ducted, and the effectiveness of the proposed muscle coordi-
nation control applied attractor selection and the virtual
antagonistic muscle structure was evaluated.

2. Materials and Methods

2.1. Purpose: Control of the Position of an Asymmetrically
Antagonistic-Driven Musculoskeletal Robot. In this study, a
five-fingered robot hand (Figure 1(a)) inspired by the right
hand of a human being was used, and the position of the
tip of the index finger of the robot hand was controlled as a
musculoskeletal robot. Figure 1(b) shows the structure of
the index finger. It has a three-degrees-of-freedom mecha-
nism that is formed by four links (a distal phalange, an inter-
mediate phalange, a proximal phalange, and a metacarpal)
and three joints (distal interphalangeal (DIP), proximal
interphalangeal (PIP), andmetacarpophalangeal (MP)). Four
PAMs are used: one actuator on the intermediate phalange,
one on the proximal phalange, and two on the metacarpal
for flexion and extension. The actuator for extension
(referred to as the “extensor”) is a polyarticular muscle in
which wire covers all joints. Therefore, the number of actua-
tors for flexion and extension is not symmetrical.

Let Pe, PMPf , PPIPf , and PDIPf be the pressure supplied
to the muscles A, B, C, and D, respectively, in Figure 1.
The subscript “e” indicates the extensor, “MPf” indicates
the flexor (the actuator for flexion) for driving the MP joint,
“PIPf” indicates the flexor for driving the PIP joint, and
“DIPf” indicates the flexor for driving the DIP joint, and they
are calculated as follows:

Pe = Pmax · xe, 1

PMPf = Pmax · xMPf , 2

PPIPf = Pmax · xPIPf , 3

PDIPf = Pmax · xDIPf , 4

2 Applied Bionics and Biomechanics



where xe ∈ 0, 1 , xMPf ∈ 0, 1 , xPIPf ∈ 0, 1 , and xDIPf
∈ 0, 1 are the normalized search variables and Pmax is

the maximum pressure supplied to the actuator. Since the
actuators of the robot hand break if a pressure of more than
0.2MPa is supplied, the value of Pmax is set to 0.19MPa.

2.2. Muscle Coordination Hypothesis. Honda et al. suggested
the hypothesis that muscle coordination of human beings is
a coordination of antagonistic muscles (the extensor and
flexor) [9, 10]. They express the ratio of the coordination
using two parameters, the antagonistic muscle ratio (Ar)
and antagonistic muscle activity (Ac). The Ar is the value
that regulates the ratio of pressure (Pe and P f ) between
the antagonistic muscle e (the extensor) and f (the flexor).
Ar is calculated between 0 and 1 and is defined as follows:

Ar = Pe
Pe + P f

5

Ac is the sum of pressure for the extensor e and the flexor
f and is calculated by

Ac = Pe + P f 6

In this study, Ac is always set to the maximum pressure
for driving joints sufficiently. That is,

Ac = Pmax 7

Pressures Pe and P f are calculated from (5), (6), and (7).

Pe = Pmax · Ar, 8

P f = Pmax · 1 −Ar 9

Equations (8) and (9) show that the pressures of the
extensor and the flexor are determined by searching for the
normalized variable Ar ∈ 0, 1 . Figure 2(a) shows the princi-
ple of muscle coordination using the antagonistic muscle
ratio Ar and antagonistic muscle activity Ac.

2.3. Two Types of Virtual Antagonistic Muscle Structures.
Four actuators were used in the musculoskeletal robot: the
polyarticular muscle was used as the extensor and three
monoarticular muscles were used as the flexor (Figure 1(b)).
To calculate the pressure for each actuator based on the
muscle coordination hypothesis, two methods that make
the total number of extensors and flexors match virtually
are proposed.

The first method is composed as follows. The virtual
antagonistic muscle structure (Figure 2(b)) is composed so
that the number of extensors is increased from one to three
extensors. Next, Ar is applied to each antagonistic muscle
to drive each joint. Hence, Ar is described as ArMP, ArPIP,
and ArDIP, and the pressures for the extensor and the flexor
at each antagonistic muscle for driving each joint are denoted
as PMPe, PMPf , PPIPe, PPIPf , PDIPe, and PDIPf . The pressures are
calculated as follows:

PMPe = Pmax · ArMP, 10

PPIPe = Pmax · ArPIP, 11

PDIPe = Pmax · ArDIP, 12

PMPf = Pmax · 1 −ArMP , 13

PPIPf = Pmax · 1 −ArPIP , 14

PDIPf = Pmax · 1 −ArDIP 15

Finally, Pe that applies to the real extensor on the real
form (Figure 2(d)) is calculated using

Pe =
1
3 PMPe + PPIPe + PDIPe 16

The second method is distinguishable in the following
ways. First, the other virtual antagonistic muscle structure
(Figure 2(c)) reduces the number of flexors to one. Next, Ar
is applied to the virtual antagonistic muscle structure, and
the pressures Pe for the virtual extensor and P f for the virtual
flexor are calculated using (8) and (9). Here, P f is the total

(a)

(b)

Figure 1: Control target and purpose. (a) Our five-fingered
robot hand (right photograph) and pneumatic artificial muscles
(PAMs) (left photographs) used as the actuator of the robot hand.
These muscles are the McKibben actuator made in SQUSE Inc.
and are driven by supplied compressed air (bottom-left pictures).
(b) The structure of the index finger of the robot hand (the image
and the closed photograph in the inset). The position of the tip of
the index finger is controlled as a musculoskeletal robot. Various
muscle lengths shown in (a) are arranged on the links of the index
finger (they are also arranged for other fingers). The muscles A
and B are of the same length. The muscle C is shorter than muscle
A or B, and the muscle D is the shortest of all muscles on the
finger. Each joint is driven from 0 deg (maximum extended state)
to 90 deg (maximum flexed state).
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pressure for the three real flexors (PMPf , PPIPf , and PDIPf ) and
is defined as P f ≤ Pmax. Finally, P f is distributed to the three
real flexors on the real form (Figure 2(d)). Two distribution
ratios (DrMP and DrPIP) are used, and the pressure for the
three real flexors is calculated by

PMPf = P f · DrMP, 17

PPIPf = P f − PMPf · DrPIP, 18

PDIPf = P f − PMPf + PPIPf 19

Pressure for the real extensor is the same as that for the
virtual extensor and is calculated using (8).

2.4. Attractor Selection Model. Let us consider the combi-
natorial optimization problem of minimizing an object
function U x subject to the search variable x ∈ X1, X2,… ,
XN , where Xi is a feasible solution (an attractor) and N
means the number of attractors. Rather than seek an opti-
mal solution, we try to quickly find good approximate
solutions. To accomplish this, our study uses the revised
attractor selection model, which has been generalized as
a stochastic differential equation [24]:

d
dt

x t = f x t · Activity t + 1 −Activity t · η t ,

20

where t is time, x is the search variable or state ( ∈ 0, 1 for
our case), the value Activity ∈ 0, 1 is the degree of accom-
plishment of the task, η is assumed as noise, and f x is the
function that makes x converge to a suitable attractor. Typi-
cally, the function f can be represented as f x = −∂U x /∂x
if the objective function U x is known precisely in advance.

This model searches for a solution (the attractor) that
successfully accomplishes the task using noise, and the Acti
vity makes the behavior of the total system change. Notice
that as Activity increases, the term f x · Activity becomes
more dominant in (20) and the state transition becomes
more deterministic. Consequently, state x tends to be
entrained into a suitable attractor, where it remains despite
the persistent noise. By contrast, decreasing the Activity
increases the dominance of the noise η, thereby flattening
the potential landscape. In this scenario, the transition
becomes more probabilistic, like a random walk, and x is
driven away from the attractor.

The function f x can be designed freely, even if the
objective function U x is unknown or not precisely
described. Two elements are required. The value of x must
converge to the attractors, and the xmust remain at a suitable
attractor. To satisfy these elements, f x is defined as follows:

f x ≡ 〠
N−1

i=0

k2d
Xi − x 2 + k2w

⋅
Xi − x
Xi − x

, 21

where Xi is the ith attractor, N is the number of attractors, kd
is the power that attracts x, and kw is the range in which the
attractor’s power kd is effective.

2.5. Employing the Attractor Selection to Determine the
Pressure Supplied to Each Actuator. The selection of the
attractor is employed to determine the pressure supplied to
each actuator. The three methods used to determine the pres-
sure using attractor selection are presented as follows.

The first method uses the real musculoskeletal structure
(Figure 2(d)) and directly calculates the four pressures by
searching for the four variables (xe, xMPf , xPIPf , and xDIPf )
using the attractor selection. We refer to this as a pressure
search-type controller. The pressure supplied to each actua-
tor is calculated by (1), (2), (3), and (4). This method is the
same as reported in our previous method in [24].

The second method uses the first virtual antagonistic
muscle structure (Figure 2(b)). It searches for the three ratios
(ArMP, ArPIP, and ArDIP) using the attractor selection and
supplies the pressure to each actuator using (10), (11), (12),
(13), (14), (15), and (16). We refer to this as an Ar search-
type controller.

The third method uses the second virtual antagonistic
muscle structure (Figure 2(c)). It searches for the Ar value
and the two distribution ratios (DrMP and DrPIP) using the
attractor selection and then supplies the pressure to each
actuator using (8), (9), (17), (18), and (19). This is referred
to as an Ar and Dr search-type controller.

Figure 2: Muscle coordination and two types of virtual antagonistic
muscle structures. (a) Principle of the muscle coordination using the
antagonistic muscle ratio Ar and the antagonistic muscle activity
Ac. When Ar is 0 (left picture), the pressure for the flexor is high
(P f = Ac) and the extensor is low (Pe = 0). When Ar is 0.5 (middle
picture), the pressure for the flexor and the extensor is identical
(P f = Pe = Ac/2). When Ar is 1 (right picture), the pressure for the
flexor is low (P f = 0) and the extensor is high (Pe = Ac). Therefore,
the pressures of the extensor and the flexor are determined by
searching for the normalized variable Ar ∈ 0, 1 . (b) One of the
virtual antagonistic structures. Two muscles are added virtually to
the musculoskeletal system (shown in (d)) to form a symmetrically
antagonistic arrangement on the intermediate phalange and the
proximal phalange. Therefore, the virtual antagonistic structure has
three simple antagonistic muscle structures (inset picture in (b)). (c)
The other virtual antagonistic muscle structure. Two muscles on the
intermediate phalange and the proximal phalange are decreased
virtually from the musculoskeletal robot (shown in (d)), and the
muscles are symmetrically arranged on the metacarpal. Therefore,
the virtual antagonistic structure has one simple antagonistic
muscle structure (inset picture in (c)). (d) The real form of the
musculoskeletal robot that is controlled. The value of Ar (shown in
(a)) is applied to the virtual antagonistic structure (shown in (b)
or (c)) virtually transformed from the musculoskeletal robot (shown
in (d)).
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Notice that the search space for all the variables (xe, xMPf ,
xPIPf , and xDIPf ; ArMP, ArPIP, and ArDIP; and Ar, DrMP, and
DrPIP) ranges from 0 to 1.

3. Experimental Procedures

A control experiment that makes the tip of the index fin-
ger of the musculoskeletal robot (see the bottom-right
inset in Figure 3) move to the desired position was con-
ducted using the above three controllers. Figure 3 depicts
the experiment setup, which comprises the musculoskeletal
robot (SQUSE hand G type, SQUSE Inc.), the control PC
(MDV ADVANCE ST 6300B (MouseComputer Co. Ltd.),
Windows XP, and an Intel Core i7 920 (2.67GHz)), an A/D
converter (AI-1664L-LPE, CONTEC Co. Ltd.), two D/A con-
verters (AO-1616L-LPE, CONTEC Co. Ltd.), a digital output
board (RRY-32-PE, CONTEC Co. Ltd.), a motion capture
system (Nobby Tech. Ltd.), regulators (ITV0030, SMC
Corporation), solenoid valves (S070-5DCO-32, SMC Cor-
poration), and an air compressor (DPP-AYAD, Koganei
Corporation). The sampling frequency was set at 100Hz.
The input signals were voltages generated by the control PC
and were converted to pressures by the regulators. The out-
put signals were the coordinates of the tip position [EX , EY ,
EZ] sensed by the motion capture system. The Euclidean
norm (the distance between the desired position [EXd , EYd ,
EZd] and the tip position) was used as the evaluation index
of the controller. The Euclidean norm is described by l and
computed using

l = EXd − EX
2 + EYd − EY

2 + EZd − EZ
2 22

AndActivity of the attractor selection model is calculated
from 0 to 1 using

Activity = −
l

lmax
+ 1 23

Here, lmax is the maximum value of a norm computed
from the desired position and the tip position on either the
maximum flexion, which is a steady state in which maximum
pressure (0.19MPa) is supplied to all flexors, or the maxi-
mum extension, which is a steady state in which maximum
pressure is supplied to only the extensor of the robot.

Each norm was obtained in advance, and the larger
norm was selected as lmax. Two tasks were conducted in
the experiment. The flexion task involved making the robot
flex to a desired position from an extended state, the exten-
sion task involved extending the robot to a desired position
from a flexed state, and the tasks were changed after a con-
stant time. First, the flexion task was conducted. After a
constant time, the desired position was changed and the
extension task was conducted. The control time was set at
60 s, and the task was changed 30 s after the control was
started. The first position and the desired position were
defined when the robot was in a steady state after constant
pressure was applied to each actuator. Each position was
captured in advance.

In this experiment, the pressure value, represented by
Pe, PMPf , PPIPf , and PDIPf (0.05, 0.15, 0.05, and 0.05, resp.),
was applied to each actuator to determine the desired
position for the flexion task, and 0.15, 0.05, 0.05, and
0.05, respectively, were applied to each actuator to deter-
mine the desired position for the extension task. The ini-
tial values of xe, xMPf , xPIPf , and xDIPf ; ArMP, ArPIP, and
ArDIP; and Ar, DrMP, and DrPIP were set to 0.9, 0.1, 0.1, and
0.1; 0.9, 1.0, and 0.0; and 0.9, 1.0, and 0.0, respectively, and
the noise η was generated between −10 and 10. The parame-
ter values in (21) were set as follows: N = 11, kd = 0 01, kw =
0 01, and Xi = 0 1 × i.

4. Results and Discussion

Figures 4–6 show the results using the pressure search-type
controller, the Ar search-type controller, and the Ar and Dr
search-type controller, respectively. The transition of the
search variables, the pressures supplied to each actuator, the
tip position captured by the motion capture, and Activity of
the attractor selection model were then plotted. In Figure 4,
Activity increased from 3 s and became constant at 0.96.
Therefore, the flexion task was almost accomplished, and
the search variables converged to an attractor. However, the
extension task was not completed. Activity increased from
33s to 35 s and remained at nearly 0.8, but it decreased from
39s and did not reach a high value. The difference in the
accomplishment ratio of the task is caused by the relationship
of pressure between the extensor and the flexor.WhenActivity
increased and became constant in the flexion task, the pressure
on the extensor (Pe) decreased and the pressure on the flexor
responsible for driving the MP joint (PMPf ) increased. There-
fore, the power for the flexion became large, and the robot
flexed toward the desired position. In the extension task, pres-
sures for the extensor (Pe) and pressure for the flexor for driv-
ing theMP joint (PMPf ) increased from 33 s to 35 s. Therefore,
the power for the extension did not increase dramatically,

Figure 3: System overview. Two insets show the system flow
(top-left) and the position of the marker captured by the cameras
in an enlarged view of the robot hand (bottom-right). The marker
is set to the tip of the musculoskeletal robot (the index finger).
The input voltage from the control PC is converted to the
controlled pressures by the regulators, and the musculoskeletal
robot is driven by the pressures supplied to each muscle of the
robot. The position of the tip is measured using the marker
captured by the cameras and is saved to the PC.
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and the robot did not accomplish the extension task. The
difference between the pressure for the extensor and the
flexor is important for achieving the task efficiently.

In Figure 5, Activity increased after 10 s and reached a
constant value of 0.91 at 17 s. The flexion task was close to
being accomplished, but compared with the pressure
search-type controller, the accomplishment ratio was 5%
lower and the control time for accomplishment of the task
was 13 s longer. Therefore, the control was not as good as that
of the pressure search-type controller. In the extension task,
Activity did not attain a high value. Therefore, the extension
task was not accomplished. As a result, the controller did not
work well for the extension task. To efficiently accomplish
the task, it was necessary that the differences between the
pressures for the extensor and the flexors be easily calculated

by the controller because the differences can decrease power
which prevents accomplishment of tasks and can make the
tip position of the robot move quickly to the desired position,
but this controller cannot calculate the differences between
the pressures as well as the pressure search-type controller.
This controller searches for three Ar values independently.
Therefore, each Ar takes on a different value, and the pres-
sure for the flexor does not decrease satisfactorily. Thus, the
power for flexion does not decrease sufficiently, and the
extension task is not accomplished.

In Figure 6, Activity increased greatly and became con-
stant at 0.95 for the flexion task. On the extension task, Activ
ity increased gradually right after the change of the task and
became constant at 0.97. Therefore, the flexion task and the
extension task were accomplished. The Ar and Dr search-
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type controller is, thus, more highly adaptive for tasks than the
pressure search-type controller and theAr search-type control-
ler. Especially, the effectiveness of the Ar and Dr search-type
controller for the extension task was shown. The robot has four
actuators arranged asymmetrically on the extension side and
the flexion side. One actuator is installed on the extension side,
and three actuators are installed on the flexion side. Therefore,
the power for flexion easily becomes large compared with the
power for extension. To make this robot extend sufficiently,
the power for flexion must become small.

In the Ar and Dr search-type controller, the difference
between the power in the flexion and in the extension is
determined easily because the difference between the pres-
sures for the flexor and the extensor is calculated by
searching only one Ar. Therefore, the power for flexion
becomes small, and the robot can sufficiently extend. We

also conducted the different task for the Ar and Dr
search-type controller to show the adaptability of the con-
troller. Figure 7 shows the results of the experiment. We
set four tasks, two flexion tasks and two extension tasks,
which were conducted alternately. The desired position for
each flexion task was different, and each desired position
for each extension task was different. Each task was changed
at the following constant times: 30 s, 60 s, and 90 s after the
control is started. Experimental results show that Activity
became the high value for each task. Therefore, the Ar and
Dr search-type controller displayed good adaptability for
the tasks in the experiments. Thus, it was shown that
the proposed muscle coordination control of the Ar and Dr
search-type controller using the attractor selection facilitated
easy control of an asymmetrically antagonistic-driven mus-
culoskeletal robot with a polyarticular muscle.
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Figure 5: Results using the Ar search-type controller. (a) Plots of the transition of the search variable (ArMP, ArPIP, and ArDIP) and the
attractors (dashed lines). (b) Plots of the transition of the input pressures (Pe, PMPf , PPIPf , and PDIPf ). (c) Plots of the trajectory of the tip
of the robot on the flexion task (top-left) and the extension task (top-right) and the transition of the Activity (bottom). Cyan arrows,
green arrows, and black arrows show the direction of the movement, the MP joint position, and the value of Activity, respectively.
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5. Conclusions

This work demonstrated a muscle coordination control of an
asymmetrically antagonistic-driven musculoskeletal robot
using attractor selection which is a biologically inspired
search method.

First, muscle coordination control models of the musculo-
skeletal robot were built using virtual antagonistic muscle
structures with a virtually symmetric arrangement of muscles,
and the calculation methods of the input pressure for PAMs of
the musculoskeletal robot with and without muscle coordina-
tion were shown. Next, the attractor selection was applied to
both the muscle coordination control model and to another
control model without the muscle coordination to compare
the control performance. Finally, position control experiments

were conducted, the effectiveness of the proposed muscle coor-
dination control applied to the attractor selection was demon-
strated, and it was also shown to be faster and more robust to
accomplish the task by generating control commands virtually
assuming a symmetrical and simpler metastructure rather than
providing a control command according to the actual complex
(asymmetric) antagonistic muscle structure.

Based on the virtual antagonistic muscle structure pro-
posed in this research, we may be able to build a musculo-
skeletal robot that achieves a more complicated task faster
by devising how to give noise [25] and adaptively updating
the attractor structure [21]. In future work, the muscle coor-
dination control method, using the attractor selection, will be
applied to the multifingered robot hand formed by increasing
the number of musculoskeletal robots (i.e., robot fingers).
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Figure 6: Results using the Ar and Dr search-type controller. (a) Plots of the transition of the search variable (Ar, DrMPf , and DrPIPf ) and the
attractors (dashed lines). (b) Plots of the transition of the input pressures (Pe, PMPf , PPIPf , and PDIPf ). (c) Plots of the trajectory of the tip of the
robot on the flexion task (top-left) and the extension task (top-right) and the transition of the Activity (bottom). Cyan arrows, green arrows,
and black arrows show the direction of the movement, the MP joint position, and the value of Activity, respectively.
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Furthermore, the effectiveness of the control method will be
investigated for asymmetrically antagonistic-driven muscu-
loskeletal robots, which have entirely different arrangements
of muscles compared with our musculoskeletal robot.

The muscle coordination control method using attractor
selection can be applied not only to musculoskeletal robots
but also to human hands. Therefore, the control method will
be applied to rehabilitation using functional electrical stimu-
lations (FESs) [26, 27] as a novel approach to controlling
human hands.
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