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Abstract

Here we present a mathematical model of movement in an abstract space representing states of
cellular differentiation. We motivate this work with recent examples that demonstrate a continuum
of cellular differentiation using single cell RNA sequencing data to characterize cellular states in a
high-dimensional space, which is then mapped into R? or R? with dimension reduction techniques.
We represent trajectories in the differentiation space as a graph, and model directed and random
movement on the graph with partial differential equations. We hypothesize that flow in this space
can be used to model normal and abnormal differentiation processes. We present a mathematical
model of hematopoeisis parameterized with publicly available single cell RNA-Seq data and use it
to simulate the pathogenesis of acute myeloid leukemia (AML). The model predicts the emergence
of cells in novel intermediate states of differentiation consistent with immunophenotypic
characterizations of a mouse model of AML.
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1. Introduction

The recent advance of single cell RNA sequencing (scRNA-Seq) technologies has enabled a
new, high-dimensional definition of cell states. In contrast to conventional gene expression
analyses based on measuring the average levels in a tissue or given cell population, single
cell analysis captures the cellular heterogeneity and provides resolution at the level of
individual cells within the tissue or cell population. This level of resolution coupled with
genome wide gene expression provides an unprecedented opportunity to quantitatively probe
cellular behavior, cellular variation and dynamics in a wide range of biological contexts.
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There are on the order of 20,000 protein encoding genes that compose the transcriptome,
which constitute a R2% %% dimensional space. Therefore, the configuration of the
transcriptome at a point in time can be represented as a coordinate vector in space. When a
cell expresses genes, it “moves” in this high-dimensional gene expression phenotype space.
Over time, the sequence of locations in the space of a given cell creates a trajectory.
Dimension reduction techniques are commonly used to map the larger space into a lower

dimensional space, for instance, R? or R?, at which point the cells are clustered based on a
similarity metric and recategorized. This process has revealed a continuum of cell
phenotypes, with intermediate states connecting canonical cell states. The most prominent
example of this process is in hematopoietic cell differentiation.

Normal hematopoiesis is long thought to occur through stepwise differentiation of
hematopoietic stem cells following a tree-like hierarchy of discrete multipotent, oligopo-tent
and then unipotent lineage-restricted progenitors (Figure 1A). The classical model of
hematopoiesis considers differentiation as a stepwise process of binary branching decisions,
famously represented as a potential landscape by Waddington (Waddington 1957). However,
this model is based on bulk characterization of prospectively purified immunophenotypic
cell populations. Recent advances in sScRNA-Seq technologies now allow resolution of
single cell heterogeneity and reconstruction of differentiation trajectories which have been
applied to a number of different cellular systems, from hematopoiesis to breast endothelial
cell differentiation (Hamey et al. 2016; Velten et al. 2017; Bach et al. 2017; Nestorowa et al.
2016a).

These efforts have led to the new view that hematopoietic lineage differentiation occurs as a
continuous process, which can be mapped into a continuum of cellular and molecular
phenotypes (Figure 1B). Hematopoietic malignancies such as acute myeloid leukemia
(AML) arise from dysregulated differentiation and proliferation of hematopoietic stem cells
and progenitor cells upon accumulation of oncogenic genetic mutations and/or epigenetic
alterations. Therefore, characterizing disordered hematopoiesis based on discretely defined
phenotypic populations can be challenging. Moreover, “discrete” phenotypic cell
populations are in fact highly heterogeneous in terms of functional capacity and gene
expression profiles. It is now possible to view pathologic hematopoiesis through a
continuum of cellular and molecular phenotypes and capture the heterogeneity,
differentiation plasticity and dysregulated gene expression associated with malignant
transformation.

This new view of biology forces us to reconsider the mathematical approaches we use to
model cell states and behaviors. Instead of building mathematical models which identify
discrete cell populations and assign mathematical rules for their evolution and interactions,
we may now consider a continuum of cellular states, and model movement between these
states in aggregate as a flow of mass on a structured graph. Modeling differentiation in this
manner reduces the number of parameters and thus the complexity of the mathematical
model by representing many cell populations and states in a single variable. At the same
time this increases biological resolution of the system by characterizing an infinite number
of sub-states in a continuum representation. Here we consider a model of hematopoietic cell
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differentiation and associated disorders as a flow and transport process in a continuous
differentiation space as a test system for a more general approach of modeling the temporal
evolution of a continuum of cell states.

This manuscript is structured as follows: first, we review the state of the art of dimension
reduction methods that are used to construct and define hematopoietic differentiation spaces
that can be represented as graphs, including a review of Schienbinger et al.’s method for
modeling transport on a graph from reduced dimension gene expression data (Schiebinger et
al. 2017). Then we introduce our partial differential equation (PDE) model of flow and
transport on a graph, and illustrate the model on simple “Y” shaped graph with symmetric
and asymmetric differentiation. We then calibrate our model to a graph (Figure 3)
constructed from publicly available ScRNASeq data of normal hematopoiesis. Finally, we
use our model to simulate abnormal hematopoietic cell differentiation processes observed
during the pathogenesis of AML, a form of aggressive hematologic malignancy. We
conclude with a brief discussion of prior literature on modeling differentiation as a
continuum, and the limitations and potential future applications of this modeling approach.

2. Construction of a differentiation continuum

2.1

In order to describe the entire modeling process, in this section we briefly describe methods
for reducing the dimension of high dimensional sScRNA-data, before reviewing pseudotime
reconstruction techniques, and conclude this section by examining a technique from
Schiebinger et al. (2017) for construction of a directed graph that represents hematopoietic
differentiation space. While the focus of this paper is not dimension reduction techniques or
pseudotime reconstruction, we summarize some of these techniques that are most relevant to
our modeling approach, without advocating for one over another. We should emphasize that
this is a review of already existing algorithms; the novel work begins in Section 3. The
relationship between time and pseudotime within a mathematical model of cell
differentiation is analogous to the relationship between age structured and stage structured
models in ecology. Cell differentiation data yield information about cells at various stages of
differentiation, but generally do not provide time-specific data. A pseudotime model is one
that considers the differentiation stage of a cell population instead of the time in which a cell
is in a certain state.

In Figure 2, we lay out the steps required for going from high dimensional data to
construction of the PDE model. Section 2.1 will review various dimension reduction
techniques, including a more thorough discussion of the technique used in our application,
diffusion mappings. Section 2.2 summarizes techniques such as Wishbone and Wanderlust,
that are available for pseudotime reconstruction given dimension reduced data. And finally,
Section 2.3 will give an overview of the technique presented in Schiebinger et al. (2017) for
construction of a directed graph that indicates how cell populations evolve in pseudotime.

Dimension reduction techniques

A broad range of techniques have been developed to provide insight into interpretation of
high dimensional biological data. These techniques provide a first step in our approach to
modeling the evolution of cell states in a continuum and play a critical role in characterizing
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differentiation dynamics. We note that the application of different data reduction techniques,
clustering methods, and pseudotime ordering on the same data set will produce different
differentiation spaces on which to build a dynamic model. We will use one particular
dimension reduction approach as an example, but our framework allows one to select from a
variety of approaches. In this section we provide a brief description of a subset of such
techniques to give the reader a sense of the field.

Several techniques have been developed to interpret the high-dimensional differentiation
space, including principal component analysis (PCA), diffusion maps (DM) and t-distributed
stochastic neighbor embedding (t-SNE). Each of these methods map high-dimensional data
into a lower dimensional space. As discussed in this section, different techniques produce
different shapes and differentiation spaces, and so some techniques are better suited to
certain data sets than others. For instance, one commonly used dimension reduction
technique is principal component analysis (PCA), a linear projection of the data. While PCA
is computationally simple to implement, the limitation of this approach lies in its linearity -
the data will always be projected onto a linear subspace of the original measurement space.
If the data shows a trend that does not lie in a linear subspace—for instance, if the data lies
on an embedding of a lower-dimensional manifold in Euclidean space that is not a linear
subspace —then this trend will not be e ciently captured with PCA (Khalid, Khalil, and
Nasreen 2014).

In contrast, diffusion mapping (DM) and t-stochastic neighbor embedding (t-SNE), as well
as a variant of t-SNE known as hierarchical stochastic neighbor embedding (HSNE), are
non-linear dimension reduction techniques. t-SNE, introduced by Maaten and Hinton (2008)
is a machine learning dimension reduction technique that is particularly good at mapping
high dimensional data into a two or three dimensional space, allowing for the data to be
visualized in a scatter plot.

Given a data set in R": X = {xl,xz, ...xn}, we can transform the Euclidean distances between

two points into a probability distribution. Intuitively, this distribution gives the probability
that data point x;is a neighbor of point x; where the probability of being a neighbor of x;
has a Guassian distribution (Maaten and Hinton (2008)):

—(| X=X .”2)/252
e J

4

Yk#i€

The t-SNE algorithm aims to find a map from the data set to two or three dimensional
Euclidean space that minimizes the Kullback-Leibler divergence between the probability
distributions in the original and reduced space. This optimization problem is often solved
using gradient descent methods.

In van Unen et al. (2017), a new technique for examining high dimensional mass cytometry
data, known as hierarchical stochastic neighbor embedding (HSNE) is presented. Mass
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cytometry allows for the examination of several cellular markers on samples made up of vast
quantities of cells. These data sets are truly “big” in the sense that they are very large (a
sample for each cell) as well has high-dimensional. Therefore, pre-existing dimension
reduction techniques are not optimal for mass cytometry data. HSNE, as suggested by its
name, is hierarchical by nature, allowing for refinement in the level of detail. HSNE
ultimately constructs a hierarchy of subsets of the dataset X

2 n

X=313$ DD,

The hierarchy begins with the data set itself (X = Szl). A weighted A-nearest neighbor (KNN)

graph is constructed on the data set, and individual points, or “landmarks” are selected from
each node on the graph to represent the data set at the next, coarser, level, 2. This process
is repeated as desired. These subsets can each be embedded in lower dimensional space.
This hierarchical embedding scheme allows the user to view the data at different resolutions,
from a broad overview (level ") to a more refined understanding of cell types associated
with markers (intermediate levels). Starting with a certain subset 6 ¢ &°, the user is able to

“drill in” to the data by selecting a subset 6 ¢ &* ~ ! Thus, HSNE is an approach that is
useful for data that requires different levels of detail at different scales. An illuminating
graphical representation of the HSNE process can be found in van Unen et al. (2017), Figure
1.

Diffusion maps work by taking advantage of the relationship between heat diffusion and
random walk Markov chains. Let X be a data set of size n. The diffusion map algorithm
begins by considering a kernel function on pairs of data points; this function must be
symmetric and nonnegative. The Gaussian kernel

is one popular choice. Similar to the conditional probability defined in (1), the kernel A(x, )
is used to specify the probability of going from xto yin one step of a random walk on the
data, found by normalizing the kernel to ensure the random walk probabilities integrate to 1:

N k(xy)
p(x,))— Zy;éxk(x’y)

By letting the number of steps in this random walk go to infinity, we can consider the
stationary distribution p;of the Markov chain. This stationary distribution is used to
formulate a new metric on the data space, known as the diffusion distance:

drpr) = T [lpden) = ppu))

ueX

2
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Intuitively speaking, the diffusion distance between two points will be low if there are many
paths in the random walk that connect them, and high if there are few. Because it is
computationally expensive to repeatedly compute the diffusion distance between each pair
of points, it is easier to map data points to a new Euclidean space using the function

¢:X — R" defined as:

The Euclidean distance in this space, known as the Diffusion Space, is then equivalent to the
Diffusion Distance in the data space. It can be demonstrated that the linearly independent
eigenvectors of the diffusion matrix (the transition matrix associated with the
aforementioned Markov Chain) form a basis for the diffusion space. Therefore, by opting to
keep the k-eigenvectors corresponding to the & largest eigenvalues, we obtain a map from
the original data to a A~dimensional subspace of the diffusion space that most e ciently
captures the structure of the data; this map is called the diffusion map. A more in depth
explanation can be found in Coifman et al. (2005).

Each of these dimension reduction methods has strengths and weaknesses depending on the
question(s) being asked of the data. Moreover, each method will produce a distinctly
different shape in the lower dimensional representation. Therefore, the choice of dimension
reduction technique is a critical step in analyzing any high-dimensional data set. For the
purpose of analyzing cell transition probabilities and inferring trajectories within the reduced
space, Nestorowa et al. (2016a) and others have chosen to use diffusion mapping to analyze
cell differentiation.

2.2. Pseudotime ordering of differentiation states

For data without temporal information, pseudotime methods are available to infer a sequence
of biological states from single time point data. Diffusion mapping can be used to infer a
“diffusion pseudotime” (Haghverdi et al. 2016; Nestorowa et al. 2016a). In particular,
Haghverdi et al. (2016) develops an e cient diffusion pseudotime approach by rescaling the
diffusion components by a weighted distance in terms of the eigenvalues, derived by
considering a random walk according to a transition matrix that specifies the probability of
transitioning from any single cell to another in an infinitesimal amount of time. Alternative
pseudotime approaches include Wishbone (Setty et al. 2016) that uses shortest paths in a k-
nearest neighbor (kNN) graph constructed in diffusion component space to construct an
initial ordering of cells, TASIC (Rashid, Kotton, and Bar-Joseph 2017) that is able to
incorporate time information and identify branches and incorporate time information in
single cell expression data by considering it as developmental processes emitting expression
profiles from a finite number of states, and Monocle (Qiu et al. 2017b,a) that fits a principal
graph (Mao et al. 2015) and uses a reversed graph embedding technique which
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simultaneously learns a low dimensional embedding of the data and a graphical structure
spanning the dataset.

Finally, when the data are collected at multiple time points, the transition rates between the
nodes can be obtained after partitioning the cell data. For instance, Schiebinger et al. (2017)
employs graph clustering (Levine et al. 2015; Shekhar et al. 2016) and optimal transport
methods to understand the dynamics in the reduced space of cell data. We describe the
optimal transport (OT) method in an effort to provide a clear distinction between the OT
algorithm and our modeling approach.

2.3. Optimal transport

Schiebinger et al. (2017) have proposed a model and algorithm for constructing a directed
graph oriented in pseudotime given temporal data. The optimal transport algorithm itself is a
classical problem studied in the mathematical area of Transportation Theory, which aims to
optimally transport and allocated resources given certain cost functions. Schiebinger et al.
(2017) apply this theory to a time series of reduced dimension single cell gene expression
profiles. The time series is made up of a sequence of samples {5, ..., Sp}, at different times

tifor i€ {1, ..., n}. Suppose that each sample consists of points in R™. A distribution ﬁt‘ is
1

defined by each sample S;. For each set A ¢ R
B =7 Y 6(A)
t |Si| XES;

Where &, represents a Delta Distribution centered at x:

lxeA

WA =10 xga

Together, as a sequence, these inferred distributions [ﬁt‘] form what is known as an
4
“empirical developmental process.” The goal is then to determine, as closely as possible,
what the true underlying Markov developmental process P, is by examining what are known
as transport maps between pairs ﬁit and @t . A transport map for a pair (@t ,ﬁt) isa
' ' i-1

i—1 i

distribution 7 defined on R™ x R™ such that @t_ and @t_ are the two marginal distributions

i—1 i

of 7. Thus, given a function ¢(x, )) that represents the cost to transport some unit mass from
xto y, the goal is to minimize
ffR R sy

subject to
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a(x, )dx = &
./R’” i1

a(-.ydy= P
/Rm ‘i

Schienbinger et al. further refine this algorithm by including a growth term in their transport
plan to allow for cellular proliferation between time points. This differs from the classical
optimal transport algorithm in that the classical optimal transport algorithm is formulated
with conservation of mass in mind. Optimal transport can thus be used to estimate the
ancestors and descendants of a set of cells. Cells are clustered using the Louvain-Jaccard
community detection algorithm on the reduced dimension gene expression data in 20
dimensional space. Schienbinger et al. thus identified 33 cell nodes, which were then used as
starting populations from which developmental trajectories could be analyzed. These can be
thought of as nodes on a graph visualized with force-directed layout embedding, and edges
represent the motion in pseudotime.

In the following section, we assume that the first two steps in Figure 2 have been completed
by one of the methods described above. In other words, we start with samples in high-
dimensional space, we map the data to a lower dimensional space, and then we produce
pseudotime trajectories in this lower dimensional space. In the final step, we model the
differentiation process in continuous (pseudo)-time and (reduced-dimensional) space using
partial differential equations.

3. Modeling on the differentiation continuum

To illustrate our modeling technique, we assume that we have constructed a simple branched
manifold or graph situated in the differentiation space. This graph is not a set of discrete
nodes, rather, the graph and its edges represent a continuum of canonical states and
intermediate states of differentiation. Assuming that the graph and the temporal evolution on
the graph is obtained by any one of the various data analysis techniques summarized in
Section 2 including optimal transport (Schiebinger et al. 2017), diffusion pseudotime
methods (Haghverdi et al. 2016; Nestorowa et al. 2016a; Haghverdi et al. 2016), Wishbone
(Setty et al. 2016), TASIC (Rashid, Kotton, and Bar-Joseph 2017), and Monocle (Qiu et al.
2017b,a), we develop a PDE model that describes the dynamics in this differentiation
continuum. Cell differentiation models in the continuous space have been developed in
(Gwiazda, Grzegorz, and Marciniakczochra 2012; Doumic et al. 2011) that extends the
discrete multi-compartment models (Lander et al. 2009; Lo et al. 2008; Marciniak-Czochra
et al. 2009; Stiehl and Marciniak-Czochra 2011).

3.1. PDE model on a graph

Let us define the graph G obtained in the differentiation continuum space. We comment that
although we can consider a cell distribution on the actual reduced space, we further reduce
our model on a graph that makes it convenient to employ the biological insights from the

n
classical discrete models. The node set of G is denoted as {vk}kv_ . where 7, is the total
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number of nodes, and the edge of the graph connecting in the direction from the ~th to the /
th node as e;; We also introduce an alternate description of the graph with respect to the
edge, that is more convenient for describing the PDE model. If the total number of nontrivial

e

_ , With the index mapping /: 7 — {1....n,} on the set of nontrivial

n
edges is 77, we take {ek}k

n
edges (i, j) € .7, and the end points in the direction of cell transition as {ak}ke_ 1and

n n
{bk}k‘"= 1,respectively. We remark that uZ"z Hapby) = {vk}kV= v
We denote ¢(x, 9 as the cell distribution on the graph G at the differentiation continuum
space location x € G and time (or pseudotime) £ Thus, we follow the dynamics of the cell
density at x € G. We annotate the cell distribution on each edge e as u(x, §) such that

n
u(x, 1) = {uk(x, t)}ke: | and model the cell density by an advection-diffusion-reaction equation

(Evans 2010) as
ou D, (x) du
k 0 k 0 k _
W = — a(Vk(x)uk) + Rk(x)uk + ma(wk(x)ﬁ , X E ek = akbk, (2)

where xis a one dimensional variable parameterized on each edge e, from a,to by The
advection coeffcient Vi(x) models the cell differentiation and the transition between the
different cell types, that is, the nodes. The transition rate per unit time (e.g., day™1) or
pseudotime can be taken as V4(x) computed using the periods of cell differentiation. For
instance, V4(x) can be computed by smoothly interpolating the speed of cell differentiation

from the multi-compartment discrete models as Vj(x) = Vi o = ¢(ci, cj), where ¢, is the

differentiation rate of cell type v, and ¢ is an interpolation functionl

Cell proliferation and apoptosis can be modeled by the reaction coeffcient Rx(x). Similar to
V if only the proliferation at the discrete cell types are available, we interpolate as

R0 =Ry o = d)(rl., rj), where 7, is the growth rate at node v, In addition to natural

proliferation and apoptosis, this term can also model abnormal tumorous cell growth or the
effect of targeted therapy by localized Gaussian or Dirac-delta functions centered at the
location of the corresponding cell type on the graph.

The diffusion term represents the instability on the phenotypic landscape of the cells that
should be taken account into when modeling the macroscopic cell density. In particular, we
consider the diffusion term in Eq. (2) in such form that is appropriate to model the dynamics
on a graph that is reduced from a higher-dimensional narrow domain. It involves two

IThe interpolation function can be taken, for instance, as a linear function as ¢(Ci’ Ci) = (c/. - cl.)(x - ak)(bk - ak) + Cpr where k=

K/, j). This assumes that the cell property changes linearly in terms of thedistance in the diffusion component space (Doumic et al.
2011; Gwiazda, Grzegorz, and Marciniak-czochra 2012). In addition, the values of V/(n,/)(x) near x = vpwill take into account of the
ratio of cells that branch out to different cell types v while the values of Vy(j 7)(x) consider the ratio of cells that are flowing in from
different cell types v;.
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parameters Dy(x) and wy(x) describing the magnitude of cell fluctuation and the width of the
narrow domain around the edge, respectively. Considering the phenotypic fluctuation of the
cell density as a random process subject to Brownian motion with magnitude o, the diffusion
term becomes Dy = o and wy = 1 (Evans 2010). In addition, the width or the area of the
cross section of the narrow domain that is vertical to the projecting edge can be taken as
wy(x), which is called Fick-Jacobs equation considering deterministic PDEs (Zwanzig 1992;
Valero Valdes and Herrera Guzman 2014) and can be similarly derived for stochastic PDEs
(Cerrai and Freidlin 2017; Freidlin and Hu 2013). w(x) can be measured as the length of
maximal fluctuation in the vertical direction along the graph.

In addition to the governing equation on the edges, the boundary condition at the nodes are
critical when describing the dynamics on the graph. The boundary condition on the cell fate
PDE model can be classified into three types, the initial nodes that do not have inflow

n
N, = [vk ¢ uf: 1 {bj], k=1,.., nv],e.g., stem cells, the final nodes without outflow

n
N, = [vk 2 uji 1 {aj},k =1, ...,nv],e.g., most differentiated cells, and the intermediate

nodes,

On the intermediate nodes v, € N 7, mixed boundary conditions can be imposed to balance
the cell inflow and outflow as

Z ‘%l[i,n](”’bl[i,n])z Z *%I[n,j](”’al[n,j])’ )
Gnes (nj)esg

where B 0 = m j](x)u(x) -Dy; j](x)%wl[i’ j]u(x)‘XI[i | and biti is the right end
point of the edge between nodes 7and . Similarly, A ] is the left end point of the edge

between nodes n7and j. In addition, continuity conditions are taken as Dirichlet boundary
conditions as

u(b][l.’n])=u(a1[n,j]), for all(i,n) € 7, (n, j) € 7.

for a fixed 7. The cell outflow boundary conditions on the final nodes v, € Nzare imposed
as reflecting boundary conditions

B 1 < \u, by =0,
e s 1[i, n] ( I[t,n])

and Ubyi q) = Ubyy,q) for all (7, 1) and (4, 1) in 7. Similarly this can be imposed on the

initial nodes v, € N, as %u(dl[n j]) =a,(nj)€FOr u(al[n,j]) =a(n,j) € 7 depending on
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whether the model describes the cell inflow flux or a prescribed density.In particular, the
prescribed value when ay, ;) represents the density of stem cell, one can model the
discrete stem cell state as a separate ODE and impose its solution as the boundary condition
at arp,) (Doumic et al. 2011; Gwiazda, Grzegorz, and Marciniak-czochra 2012). This
approach makes it possible to distinguish the stem cell proliferation into the division that
remains as stem cell and the one that differentiates to a matured cell.

3.1.1. Example on a Y shaped graph—To illustrate our approach, we apply the PDE
model given in (Eqg. 2) to a simple Y shaped graph. This example is motivated by cell
differentiation data that reveals multiple branching procedures in the continuous space
(Haghverdi, Buettner, and Theis 2015; Velten et al. 2017; Moris, Pina, and Arias 2016; Rizvi
et al. 2017), therefore we assume the simplest case that the differentiated cells have two
different cell fates with one branching. For instance, assume that the cell data projected onto
the first two diffusion components, DC1 and DC2, are as in Figure 4A and the temporal
direction of cell differentiation is from left to right, as indicated by the arrows in the figure.
We define the Y shaped graph with four nodes v; = (-1, 0), v, = (0, 0), 3= (1, 1), and v,
=(1, -1), and three edges ¢, = €12 = V"2 = €12,3) = V2"3 and e; = €j.4) ="' This

corresponds to the set of nontrivial edges .7 = {(1,2), (2,3), (2,4)} and index mapping /on #
as /(1,2)=1, /2, 3) =2, and /2, 4) = 3, that yields the end points of the edges a,and by as
n=a, v=bh=a=a n=b, and vy = b. For simplicity, we assume that the edges are
straight lines and parametrize the variables on each edge as &;(x) = (x 1, 0), &(x) = (x, X),
and e3(x) = (x, —X), so that x € [0, 1]. When there is possibility for confusion, we use
subscripts on the x-variables to specify which edge is parametrized. So, for example, x»
parametrizes &. Then, the PDE model on each parametrized edge 4 can be written as

ou, (x) ou,(x) D ou, (x)
(N k k d( k I )

or () ox +2wkawk o0x

We consider the case that the cells transfer from 14 to 5 in n7-=5 unit time, differentiate
into each cell type with proportion pand 1-p, and accumulate at DC1 = 1, where the cells
are fully differentiated2. Here, we simplify the differentiation rate to be constants assuming
that the single branching Y graph lies locally and close enough in the differentiation space
that the differentiation rate does not change. Then,

V()= n—lT V(0 = ln_—T”(1 ~ ), Vi) = %(1 -2, ©)

where V5 and V3 reflect the accumulation at cell types v3 and v4 (x = 1). Also, we assume
that the differentiation process is subject to fluctuations such as trans-differentiation (cross-
lineage) and de-differentiation (stem state reversion) that is modeled as Brownian motion
with a constant variance o so that Dy = 2 = 0.02. Also, the maximal fluctuation in the

2Using the notation in Appendix A, y3=pand y4=1 -p.
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vertical direction of the edge is assumed to be a constant that is independent to xand wq =
2wy = 2wy so that the fluctuation in the vertical direction reduces by half in & and e3. wy
cancels out in the diffusion term in (Eq. 4). Figure 4 plots the two examples of symmetric
differentiation p = 0.5 and asymmetric differentiation p=0.25.

In this example, to demonstrate our model focusing on the cell differentiation and branching,
we assume that the proliferation is zero as R, = 0 (see Appendix A for the detail of modeling
Ry). The boundary type of the nodes are classified, according to our description above, as N,
={wn}, N,={w}and N,={v3 v4} Thus, we impose the g/uing condition as in Eq. (3) at v»,
as

=V, (by)ulpy) + lea%“l(bl) =2 (‘Vk(”k)“k<“k) + DWka%”k(“k)

with continuity conditions ty(6,) = (&) = w3(a3). In addition, an inflow boundary
condition is imposed at 14, and reflecting boundary conditions at the end nodes v5 and v as

ou(by) ous(bs)
! 0x2 0x3

1

ul(al, t) = —%O.OSJZeXp

ty(a, 9 is given to resemble the transition of a certain cell state to fully differentiated cells
from the initial distribution

= 0 The Dirichlet condition of

L2
—(——t) /0.08 =0,and
r

2

X (x+ 1)2
0.08

0.08

,ul.(x,t=0)= LI

Jo.08z P~ =23

u(xt—O)—#ex
1P =0 =508 P

Simulations of this simple model are shown in Figure 4, where densities on edges & and &3
are plotted in different colors. We see that an initial cell distribution concentrated near the
cell state 11 moves to the right as the cells differentiate, branches at v», and becomes
absorbed at the fully differentiated cell states 13 and v4. In the symmetric case, when p= 0.5,
the density is the same on each of the two branches to the right of 15, so that the two curves
are plotted on top of each other. When p = 0.25, the density profile is not symmetric: more
cells move along the upper branch than on the lower branch. This provides a simple
illustration of the mathematical details of our modeling framework, which we apply on more
complicated graph structured derived from data as follows.

4. Simulation results

In this section, we employ the framework developed in section 3.1 to the mouse
hematopoietic stem and progenitor cell data in Nestorowa et al. (2016a). See Appendix A for
details, including the model parameters and simulation codes.

4.1. Model of normal adult hematopoiesis

To calibrate our model, we first apply it to normal hematopoietic cell differentiation

trajectories identified in Nestorowa et al. (2016a). Nestorowa et al. characterize early stages
in hematopoiesis with twelve cell types, shown in Table 1 and Figure 3, including E-SLAM
(CD48-CD150+CD45+EPCR+), long-term HSCs (LT-HSCs), short-term HSCs (ST-HSCs),
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lymphoid-primed multipotent progenitors (LMPPSs), multipo-tent progenitors (MPPs), and
megakaryocyte-erythroid progenitors (MEPS), common myeloid progenitors (CMPs), and
granulocyte-macrophage progenitors (GMPs). We consider these twelve cell types as the
twelve nodes, vy, in our graph, and add 51 edges to model the hematopoietic cell hierarchy
(see Figure 1A) and pseudotime computed in Nestorowa et al. (2016a) (see Figure 5A). This
graph represents a continuum of canonical and intermediate states of hematopoietic
differentiation with nodes and edges, respectively. The spatial variable in our PDE model
represents the differentiation state of the cell.

The colored and labeled clustered cell data and the corresponding graph are shown in Figure
3. The location of the nodes on the graph is not chosen to be identical to the data, but for an
illustrative purpose to represent DC2 and DC1/DC3. The edges are chosen according to the
pseudotime progression from the E-SLAM and HSCs (nodes 1-3) to the progenitor cells
(nodes 9-12).

The parameters of the PDE model of cell differentiation under normal conditions are chosen
to reproduce the distribution of cell types from Nestorowa et al. (2016a) at the initial and
final pseudotime (Figure 5C). Considering the data in Nestorowa et al. (2016a) grouped by
sorting gate of LT-HSC, hematopoietic stem and progenitor cell (HSPC), and progenitor
cells, we denote the subsets of nodes that are representative of each group as .7 = {1,2,3}

for HSC, .7, = {4,...,8} for HSPC, and, .7; = {9, ..., 12} for progenitor cell, where we also
take N, = .7|,N, = .7, and N = .7, The reference distribution is computed by counting the

relative number of cells in each cluster at the initial and final pseudotime. The initial and
final cell distribution is concentrated on nodes 1-3 of .7, and 9-12 of .7, respectively.

The distribution of cells in the remaining states, represented by nodes 4-8 of .7, goes from

0 at time #= 0 to positive at time =2, and reduces at #= 4. We remark that the ratios of the
number of cells in each node are used to compute the advection coeffcients Vi in (Eq. A3),
where we take the drift Vg, 7 from cell type /to another other cell types jto be proportional
to the ratio plotted in Figure 5C. For instance, the outflow from g to nodes 9-12 is taken to
be proportional to the reference distribution at pseudotime #= 4. With the ratios fixed, we
assume a constant parameter that represents the differentiation rate on each node, and find
the values that reproduce the given cell data by simple root finding algorithms such as secant
method. The range of the values are 0 < V< 3. The detailed procedure is explained in
Appendix A.

The diffusion coeffcient is taken as D= Dy = 1072 within the either subsets of nodes
i,j€ .7, 0rij€.7, and Di=1073 on the other edges. The magnitude D= 1072

corresponds to the phenotypic fluctuation of 2.5456 x 1072 in the diffusion space and Dy =
1073 takes into account of the increased average distance between the nodes that yields
smaller diffusion coeffcient due to relatively smaller fluctuation. We assume that the
proliferation of the progenitor cell nodes are a constant as r,=1.3648 at < 2 and r,,=0.4 at
t>2forn e .7, u 75, where the proliferation rate reflects the increment of cell number from

HSC to progenitor cells in the data. Also, the proliferation at the HSC nodes are assumed to
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.. . =) .
be negligible compared to progenitor cellsas r, = r, o EATR 10™~ for n € .7 (Passegué et

al. 2005). See Appendix A for the model parameters and detailed discussion.

For the implementation, we discretize the system using a fourth-order finite difference
method and 100 grid points on each edge, and a third-order Runge-Kutta method in time
with time step 1074, Figure 5C compares the solution to the PDE in the normal condition to
the reference distribution. The initial condition of the PDE is taken as the initial reference
distribution, and we compute the solution up to time #=5. The solution at = 4 is similar to
the reference distribution at final pseudotime. Also, the solution at = 2 is close to the
distribution of the remaining cells excluding the initial and final cells. Figure 5B shows the
cell distribution on the graph from time #= 0 to #= 5. We observe that the support of the cell
density shifts from the initial nodes 1-3 representing HSCs, to nodes 9-12 representing
progenitor cells.

4.2. Acute myeloid leukemia (AML)

AML results from aberrant differentiation and proliferation of transformed leukemia-
initiating cells and abnormal progenitor cells. Parallel to the hierarchy of normal
hematopoiesis, malignant hematopoiesis has also been considered to follow a hierarchy of
cells at various differentiation states although with certain levels of plasticity (see Figure 6).
Given the aberrant differentiation and plasticity associated with the pathology of AML,
modeling in a continuous differentiation space o ers the advantage over discrete models that
all pathological and intermediate cell states can be captured. With our model calibrated to
data obtained from normal hematopoietic differentiation trajectories, we now model the
progression of AML using a genetic knock-in mouse model that recapitulates somatic
acquisition of a chromosomal rearrangement, inv(16)(p13922)(Liu et al. 1993, 1996),
commonly found in approximately 12 percent of AML cases. Inv(16) rearrangement results
in expression of a leukemogenic fusion protein CBFS-SMMHC, which impairs
differentiation of multiple hematopoietic lineages at various stages (Castilla et al. 1999; Kuo
et al. 2006; Kuo, Gerstein, and Castilla 2008).

Our previous studies using the inv(16) AML mouse model demonstrate that expression of
CBFB-SMMHC leukemogenic fusion protein results in expansion of preleukemic
hematopoietic stem and progenitor populations susceptible to transformation into leukemia-
initiating cells which can initiate and propagate AML. Most notable was the increased in
abnormal myeloid progenitors, which had an MEP-like immunopheno-type and a CMP-like
differentiation potential (Kuo et al. 2006). Further separation of myeloid-erythroid
progenitors with additional phenotypic markers (Pronk et al. 2007) show a predominant
increase in pre-megakaryocyte/erythroid (Pre-Meg/E) population (ranging from 5 to 12 fold)
accompanied by impaired erythroid lineage differentiation (Figure 6A)(Cai et al. 2016). This
refined phenotypic Pre-Meg/E population consists partly of the CMP and MEP populations
using conventional markers (Akashi et al. 2000)(Nestorowa et al. 2016a).

The simulation of inv(16) initiated AML pathogenesis is motivated by our previous
observations that AML is preceded by expansion of preleukemic myeloid progenitor cells,
particularly the Pre-Meg/E and MEP-like populations with impaired differentiation. These
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abnormal progenitors are predisposed to subsequent cooperating events necessary to
transform to overt AML (Kuo et al. 2006; Cai et al. 2016; Castilla et al. 1999). To simulate
AML pathogenesis, we increase the proliferation rate of MEP (node 11) by 10 times, that is,
1i11] = 10750rma, o reflect the abnormal expansion of MEP-like cells (ranging from 5 to 12
fold based on previous data) (Kuo et al. 2006; Cai et al. 2016). Here, /;ormaris the value that
is used in the normal condition in section 3.1. Thus, the proliferation is assumed to be
maximal at the MEP node, Rx(v11) and the proliferation of intermediate cells that are
phenotypically close to MEP, that is, Ry;11)(x) near x = v13, also increase. Also, the flow to
the MEP is blocked by taking zero advection coeffcient on the edge that is connected to 111,
i.e., Vii11y(X) = 0. We also lower diffusion by ten as Dy11)(X) = Dporma#L0 to model the
phenotypic fluctuations and imperfect differentiation block involved in AML pathogenesis.
The differentiation block is imperfect because there is a continuum of leukemic cell pheno-
types (states).

In addition, the proliferation rate of LT-HSC and ST-HSC (nodes 3 and 5), that is, 73 and 7,
is increased by 2.5 times as 2.5/,,rma/ (Figure 6B). We model the induction of the
leukemogenic fusion protein CBFS-SMMHC resulting from the chromosome inversion
inv(16) (p13g22) as the “start of AML.” In this murine model of AML, inv(16) is the initial
founder event that results in differentiation block and expansion of abnormal progenitors,
which are predisposed to subsequent cooperating events necessary to transform to overt
AML (Kuo et al. 2006; Cai et al. 2016; Castilla et al. 1999). The approach used here directly
models the sequence of events observed during leukemia initiation. Finally, we denote £/
as the effective time that the aforementioned tenfold proliferation change in MEP and other
abnormal differentiation and proliferations due to AML are observed. The other parameters
except the ones described in this section follows the ones from section 4.1.

Figure 7 shows the total number of cells in each cell type in normal condition and AML
condition starting at £= 4. In normal condition, the CMP, MEP, and LMPP cells dominates
the population after = 4. However, in the AML case, the MEP cells increases up to 100
times of the normal condition after a single psuedotime and dominates the population.
Figure 7C plots the number of cells in each cell type separately, where we can observe the
increasing number of cells not only in MEP, but also the intermediate cell types, 4-8. Figure
8 compares the cell distribution on the graph between the normal and AML case at time =
7. In the AML case, the peak is shown on the edges near MEP cells.

The continuum of intermediate cell types, represented as numbers of cells along the edges of
the graph are plotted in Figure 9. The cell distribution in the normal case at /=1 and £=3
shows the cell population moving on the edges from HSCs to progenitors states. Under
normal hematopoeisis, we observe the flow of cells along the continuum from a stem cell
like state to a progenitor state, with an even distribution of all types of progenitor cells.
However in the AML case, we predict the emergence of novel intermediate cell types,
including a mixed CMP-MPP3 and CMP-MEP cell type. These indeterminate cells may
exhibit phenotypic and/or functional properties of both cell types on either side of the edge
(node 7and/or node ). This cell state may be unstable, phenotypically plastic, may be in an
abnormal state or process of differentiation, or perhaps even undergoing a selection pressure
to induce transformation. Of note, this prediction of a mixed CMP-MEP cell type echoes the
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biological observation that abnormal myeloid progenitors seen during AML progression
exhibit an MEP-like immunophenotype with a CMP-like functional readout (Kuo et al.
2006). This mixed identity/functionality coincides with a strong differentiation block
towards erythrocyte and megakaryocytes (Cai et al. 2016).

This highlights the advantage of modeling pathologic conditions in a continuum of cell
states as the phenotypic properties and the differentiation processes are often abnormal
during pathogenesis. This approach also circumvents the limitations of varying phenotypic
definitions used in different studies in the literature (e.g., MEP vs. Pre-Meg/E) and the
varying degree of heterogeneity within phenotypically defined cell populations in health and
in disease.

We also simulated AML starting at different time points from =1 to ¢= 6. Since our initial
condition assumes that the cells have not yet developed to MEP, the total number of cells is
maximized when the AML occurs after a critical amount of cells have differentiated into an
MEP state. Figure 10 shows the results of model simulations, where we observe that the
number of cells are maximal at later times when AML is started at £= 3. From these
simulations, we infer that the short and long term evolution of AML may depend on the state
and composition of the hematopoietic landscape at the time of AML initiation.

5. Discussion

We present a mathematical model of movement in an abstract space representing states of
cellular differentiation. We represent trajectories in the differentiation space as a graph and
model the directed and random movement on the graph with partial differential equations.
We demonstrate our modeling approach on a simple graph, and then apply our model to
hematopoiesis with publicly available sScRNA-seq data. We calibrate the PDE model to
pseudotime trajectories in the diffusion map space and use the model to predict the early
stages of pathogenesis of acute myeloid leukemia.

A more traditional approach for modeling the process of cell differentiation is to use a
discrete collection of ordinary differential equations (ODESs) that describe dynamics of cells
at ndifferent maturation stages and the transition between those stages, c.f.,Lander et al.
(2009); Lo et al. (2008); Marciniak-Czochra et al. (2009); Stiehl and Marciniak-Czochra
(2011). These discrete models are also referred to as “multicompartmental models,” and are
based on the biological assumption that in each lineage of cell precursors there are discrete
steps in the maturation process that are followed sequentially, c.f., Lord (1997); Uchida et al.
(1993).

This view of the differentiation process being discrete does not capture biological
observations that indicate that cell differentiation is more likely a continuous process, and
that maturation may, in fact, even be decoupled from cell division, c.f., Doumic et al. (2011);
Dontu et al. (2003). A number of mathematical models have been created that aim to capture
the continuous process of cell differentiation (Adimy, Crauste, and Ruan 2005; Pujo-
Menjouet, Crauste, and Adimy 2004; Alarcon et al. 2011; Bélair, Mackey, and Maha y 1995;
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Colijn and Mackey 2005; Doumic-Jau ret, Kim, and Perthame 2010; Doumic et al. 2011;
Gwiazda, Grzegorz, and Marciniak-czochra 2012).

For example, in Doumic et al. (2011), the authors present a model of cell differentiation that
assumes that the dynamics of differentiated precursors can be approximated by a continuous
maturation model. The model is created by extending the multicompartment discrete system
of Marciniak-Czochra et al. (2009). The authors provide a careful comparison that shows
that the continuous structured population model is not a mathematical limit of the discrete
multicompartment model. In particular, the dynamics of the continuous model allow
commitment and maturation of cell progenitors to be a continuous process that can take
place between cell divisions. They do show, however, that there is overlap in model
dynamics with a particular choice of maturation rate. In Gwiazda, Grzegorz, and Marciniak-
czochra (2012), the authors subsequently developed a continuous model that can be viewed
as a generalization that admits both the continuous model of Doumic et al. (2011) and the
discrete model of Marciniak-Czochra et al. (2009) as special cases. In Prokharau, Vermolen,
and Garca-Aznar (2014), the authors develop a PDE-based continuous model of cell
differentiation that allows cells to differentiate into an arbitrary number of cell types. A
particular differentiation trajectory can be determined by any number of parameters, such as
biochemical factors, the current differentiation state, or just by a random variable, so their
approach allows differentiation to be either a deterministic or a stochastic process.

The modeling approach we present differs from previous cell differentiation models in that it
is centered on capturing cell differentiation dynamics that take place within a space that has
been created via a dimension reduction transformation of high dimensional data. Within that
reduced space, our model assumes that maturation and differentiation take place along a
continuous trajectory. (The dimension reduction outcomes on the data sets we tested indicate
that the trajectory will, in fact, be continuous.) Cells can differentiate along an arbitrary
number of paths with an arbitrary number of end states, all of which are determined by the
data set and dimension reduction technique employed. Thus, the reduced differentiation
space is not predetermined, but is generated as a function of the dimension reduction
technique and the data set of interest.

Although methods exist to characterize differentiation trajectories, such as optimal transport
(Schiebinger et al. 2017) and diffusion pseudotime methods (Haghverdi et al. 2016), an
advantage of our approach is the ability to use a mathematical model to predict the outcomes
of abnormal trajectories and to perturb the system mathematically with the model. We use
this advantage of the mathematical model to simulate and explore AML pathogenesis based
on immunophenotypic characterization of a mouse model for inv(16) AML. Our simulation
results are consistent with the evolution of inv(16) driven AML, and predicts dynamics in
canonical cell populations as well as cells in novel, intermediate states of differentiation. The
intermediate cell states such as CMP-MEP seen in our simulation is consistent with previous
observations that CBF8-SMMHC expressing phenotypic MEP cells confer CMP-like
progenitor cell activity (Kuo et al. 2006). Given the phenotypic plasticity and aberrant
differentiation occurring during leukemia evolution, it is particularly informative to model
cell dynamics in a continuum of differentiation space.
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The novelty and power of this modeling approach is the ability to capture and predict
dynamics of many interconnected cell types. We now consider a continuum of cellular
states, and model movement between these states in aggregate by representing many cell
populations and states in a single variable. This approach increases biological resolution of
the system by characterizing an infinite number of sub-states in a continuum representation
and allows us to make predictions with one equation and very few model parameters, which
can be directly calibrated to experimental data, for example with time-series cell
differentiation experiments. These data could be used in place of the inferred pseudotime
methods to construct more realistic differentiation trajectories, as well as estimate
parameters such as the transport rates between locations in the differentiation space. We note
that this is not equivalent to rates of cellular differentiation, since this allows inference of
transition between intermediate states of differentiation which may not be directly calculated
from differentiation assays which rely on specific lineage markers.

A limitation of our approach is that it does not include physical properties of the living
biological system, such as the cellular microenvironment, which is known to play a critical
role in the transformation of cell state and function. Furthermore, we recognize and
acknowledge that cellular state transition dynamics as represented as a projection in a low
dimensional space is an approximation of the dynamics in the original high dimensional
space. Moreover, the dynamics observed and predicted in the lower dimensional space
critically depend on the method of dimension reduction. This logic motivates our use of
diffusion maps as the method to construct the differentiation space.

In addition, our current model assumes that the cell properties of the intermediate cell types
change linearly between the node cell types. Although it is reasonable to assume that the
overall cell properties in the macro scale changes linearly depending on the distance in the
phenotypic space when no other information in between is given, our future work involves
using the expression levels of the intermediate cells that are related to cell dynamics, e.g.,
cell cycle, differentiation, and proliferation, to develop more appropriate models for the
intermediate cells. A limitation of the Nestorowa et al. (2016a) data set is that it includes
only stem and committed progenitor cells, and lacks a population of fully differentiated cells
(e.g. erythrocytes, platelets, B-cells, T-cells, etc.), which yields an incomplete differentiation
trajectory. Although we note that the stem and progenitor cell populations are the leukemia-
initiating cell populations most immediately relevant to the pathogenesis of inv(16) driven
AML Cai et al. (2016). Data sets covering the full spectrum of differentiation trajectory
during normal and abnormal (AML) hematopoeisis will enable modeling of differentiation
blocks occurring at later stages of differentiation.

However, despite these limitations, we contend that this kind of analysis is a critical and
valuable first step towards understanding the evolution of the higher dimensional system,
and that low dimensional approximations have value, particularly when predictions in the
lower dimensional space can be experimentally validated. We postulate that when dynamics
in low dimensional representations are su ciently characterized, they may eventually be used
as a surrogate for high dimensional data, thus reverting the trend of “big data” back down to
more informative “small data.”
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We note that our modeling approach can be applied to any data set or manifold shape. As
more normal and abnormal cellular state transitions are characterized at single cell
resolution, we may apply similar computational and modeling methods to those systems. We
emphasize our modeling approach is general and is not tailored or adapted to hematopoiesis
in particular. Future applications of this approach may be useful to model the effects of
therapies which target specific states of differentiation or the differentiation process itself,
including other hematologic malignancies.
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Appendix A: Model and parameters

Here we present the PDE model and parameter calculations used to produce the results
presented in Section 4. MATLAB files used to generate the figures and results are included
as supplemental files and can be downloaded from the journal website. The cell distribution
u(x, 9 is computed on the graph G as

du, p Dy(x) 0%u,

wrial a(vk(x)uk) + R ()uy, + 2 X Ee oy 5 (Al

51

where uy is the solution projected on the edge e as u(x, 1) = u(x, )|, 0 and {ek}k _

| are the

51 edges connecting the twelve nodes {Vn},],z_ . in Figure 3B. We assume that the edges
are unit length as ¢, = [ak, bk] = [0, 1] and find the coeffcients in (Eq. Al) that are scaled to

the unit length edge.

The total number of cells can be computed as p(r) = 221: i / %, Ddx, and we compute

the number of cells in the 7+th cluster as

a + bk bk
Py = / 2 u(x, ydx + /I +p, W0dx . (A2)
k=1(n, j) 7 a k = 1(i,n) %

Alternatively, since the boundary of the cell types are not distinctive, one can compute it as a
weighted sum along the edges adjacent to the node /7 with linear weight functions such as
o(x) = —x+1and 1 — w(x) along the entire edge.

To obtain the transfer rate between the cell nodes, we assume three discrete psuedotimes at
those three sorted groups starting from LT-HSC to HSPC, and finally to progenitor cells. As
remarked in section 4.1, we consider subsets of nodes /4, = {1, 2, 3} as HSC, L ={4, ..., 8}
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as HSPC, k= {9, ..., 12} as progenitor cell group. This follows the cell data in Nestorowa et
al. (2016b) that is classified with ComBat from the SVA package using the sorting gate of
LT-HSC, HSPC, and progenitor, and then processed with diffusion mapping initialized from
a subpopulation of LT-HSC to the progenitor cells of different lineage of Erythroid,
Granulocyte-macrophage, and Lymphoid. Accordingly, we consider three discrete
psuedotimes considering LT-HSC (#), HSPC (#), and progenitor (%) and compute the
number of cells in each node that is summarized in Table Al. We comment that diffusion
pseudotime is not a physical time unit (i.e. days) and that the differentiation process is
modeled based on the inferred pseudotime trajectories. with the following mapping of
pseudotimes =0, {4 =2, and & = 4. The time mapping procedure can be refined with time
series differentiation assay data. The transfer rates between the nodes are taken from the
ratios at each psuedotime.
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We compute ratio as time independent within the subsets as

Tn iﬁn/ Z ﬁn’ ne]l’
1

that is, y1 = 24245, y, = 66/245, 3 = 155/245 for /, y 4 = 236/370, y5=36/4370, y ¢ =
274370, y7=11/4370, y g = 60370 for h, and yg = 192696, y19 = 223696, y11 = 227696,
y12 = 54/696 for /3. We remark that the transfer rates can be time dependent as (9 if the
data is collected at sequential timepoints, which is one way that the model could be
parameterized.

We take these values as the in and out transfer rate imposed in the advection coeffcient. For
each node, we assume a constant parameter ¢, # 0 that determines the magnitude of the
advection coeffcient, that is, the speed of the cell differentiation.\We take the transfer in rate

atthe node v,,n € .7, as v, n)(bl(l.’ n)) =7, forie .7, and transfer out rate as
Vie, j)(a,(n’ j)) =7 for je.g, +1-Using the fixed transfer rates at the nodes, the advection

coeffcient is linearly interpolated as

Vi, y® = Vi, pleri )+ (Vi b p) = Vi pler. ) thatis,

Vig )™ = yjci+(yicj— yjci)x, ieJS,j€S, (A3

In addition, we apply the weight (1 — x2) to model the accumulation of cells at the
progenitor nodes j € .75,

2\ . .
VI(i,j)(x) = ( Yj ¢+ ( v Cj_ Yj cl.)x)(l —X ) ie ’]2’] S J3,
and take Vl(l.’ j)(x) = 0, for other pairs of nodes. For instance, VI(i, J.)(x) =0,fori,je I, within

the same hierarchy of cells, and the transition between these nodes are only governed by
diffusion. The constant parameter at each node ¢, are taken to reproduce the cell distribution
as in Figure 5 as following,

Ccp=cy=cy= 1.0, ey = 1.2898, cs= 0‘9535’06 =0.9488,
¢y = 0.8060,c8 = 0.8263,09 =C10=¢1=¢2= 1.0, fort < 1
cp=cy=cy= 1.0, ey = 1.7898, cs = 1.4535,06 = 1‘4488,c7 = 1.3060,

cg = 1.3263,C9 = 1.7992,010 = 1.4380,011 = 1.5070,012 =2.6347, fort > -

The values are computed by a simple root finding algorithm such as secant method.

The diffusion coeffcients on the edges are taken as Di(X) = Dy j(X) = 1072 between the
nodes that are within i, j € .7 and i, j € .7, assuming that the perturbation of the cells are in

unit psuedotime in the rescaled edges is in the order of Y222 x 1072 ~ 2.5456 x 10~2, where L
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is the average length of the edges within i, j € .7, and i, j € .7,. Considering that the average

length of the other combinations of (/ /) are increased by threefold, therefore we take Dy

(0 =103,

The proliferation rate is also obtained by the secant method to match the given data in Table
Al at £ and 5. The computed values are r,=1.3648, < £ and r,= 0.4, t= £ for the HSPC
and progenitor cells » € .7, U .75. In addition, the fact that LT-HSC cells proliferate

relatively less than the progenitor cells (Passegué et al. 2005) are imposed as

Ta=T e F,073 x 107~ for n € .7,. The intermediate level of proliferation is linearly

interpolated as

R (x) = Rl(i, j)(x) =r+ (rj — rl.)x, (A4)

assuming that the overall proliferation of intermediate cell states change gradually. If the
time variable is taken as the actual time, the rate in each node can be computed considering
the proportion of proliferating stem cells (5-10%) and cell cycle (36-145 days) (Hao, Chen,
and Cheng 2016; Pietras, Warr, and Passegué 2011). Moreover, the abnormal proliferation of
cancerous cells with cell cycle A and apoptosis of the differentiated cells with rate dat

expression level x* can be modeled with a localized Gaussian function with variance € as

Ry(x) = I“f) exp[—(x — %/ e], and R (x) = — dexp[—(x — X% e], respectively. The choice of

localized Gaussian function assumes that the center x* is location in the diffusion space that
most closely resembles the “prototypical,” or “ideal” cell type identity.

The described parameters are summarized in Table A2.

Table A2.

Summary of the required data and corresponding parameters. In our simulation, Vjand Ry
are estimated from p, in Table Al.

biological meaning and parameters

Vi (%) cell differentiation rate ¢, branching ratio Yk

Ry (%) growth rate 7y
Dy (X) phenotypic fluctuation O Wi

The initial condition is taken by considering the cell data at pseudotime £ with ratios
70 =25/296, 1) = 78/296, 1 = 193/296, 7 = 0 for k=4,..., 12. We remark that this is shown

in Figure 5C. Accordingly, the initial distribution is taken as

2 2
0 —x /0.08+ Y? e—(x— 1) /O.OS’X

wfx.10) = “I(, j)(x’ fo)=1; ¢ Eep
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With this choice, the total number of cells in each node p,(f)) computed as in Eq. (A2) is
similar to the given ratios }/2. The boundary condition defined as in Eq. (3) around the node

Vi that is, at x= by 5 and x= gy, ) becomes

0 0
Z [Vi Satiti,m) ~ iy g, n]] = Z [Yi Caltiin, j) = Piin, 13 Ui, j]}’ (A5)
Gi,n)e g X npes X
with continuity boundary conditions u;, j)(al(n j)) = tty; (byi.m) fOF fixed 7. The condition

P} 9 .
(A5) reduces to Z(i,n)ele[i,n]aul[i, = Z(n’j) e 7 P11 j1 35 "1, /) in Our model

since ;e 7 i = 2w jyes i = Cn

Sensitivity of model parameters

We test the sensitivity of the results with respect to the parameters in the diffusion,
advection, and reaction coeffcient. The values of Dy, V4, and Ry are varied by —10%, —1%,
1%, and 10%, and Figure Al presents the difference in the total number of cells o(3) in
percentage. While it is expected that the total number of cells are sensitive to the reaction
coeffcient, since it governs the proliferation rate, it also strongly depends on the advection
coeffcient as well, particularly in AML condition. On the other hand, the results are less
dependent on the diffusion coeffcient. The number of intermediate cells while varying the
coeffcients are plotted in Figure A2. In particular, we present the dynamics of LT-HSC(3)-
STHSC(5), ST-HSC(5)-MPP1(6), MPP(4)-LMPP(9), and CMP(10)-MEP(11) cells in
normal and AML condition. We observe similar results as in the total number of cells,
however, the overall trend of the dynamics is independent to the variation in the coeffcients.
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R,

Change in the total number of cells p(f) in percentage with respect to the model parameters,
diffusion Dy, advection V}, and reaction Ry We test the cases where the coeffcients change
their values by — 10%, —1%, 1%, and 10%. The results are sensitive to the reaction and
advection coeffcients particularly in AML condition. On the other hand, the results are less
dependent on the di usion coeffcient.
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Number of intermediate cells with respect to the model parameters, diffusion D, advection
V4, and reaction Ry The results are computed by varying the coeffcients by —10%, —1%,

1%, and 10%. Although the result varies from the reference case (0%), the overall trend of
the cell-dynamics are observed to be similar.

Lett Biomath. Author manuscript; available in PMC 2018 September 26.

7



1duosnuepy Joyiny 1duosnuely Joyiny 1duosnuepy Joyiny

1duosnuely Joyiny

Cho et al. Page 27
Appendix B.: Supplementary figures
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Solutions of the PDE model on the Y shaped graph from the initial condition centered at the
left end DC1 = -1 (black line in (a-b)) with diffusion D= 1072 and drift ¢=—0:2 for the
symmetric (top row) and asymmetric cases (bottom row).
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The cell data from (Nestorowa et al. 2016a) is grouped into 12 cell nodes according to 12
commonly sorted HSPC phenotypes including LT-HSC, ST-HSC, and MEP. The center of
mass of each cluster is marked as a red cross and used to establish nodes and edges on the
graph which is then used as a computational domain for our simulations.
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Figure 1.

A) Classic representation of a linear hierarchy of discrete cell states, from long-term
hematopoietic stem cell (LT-HSC), short-term (ST)-HSC, multipotent progenitor (MPP) to
committed common myeloid progenitor (CMP), pre-megakaryocyte/erythrocyte (Pre-
Meg/E) and megakaryocyte-erythroid progenitor (MEP),pre-granulocyte/macrophage (Pre-
GM), granulocyte-macrophage progenitor (GMP), and lymphoid primed-MPP (LMPP),
common lymphoid progenitor (CLP) cells, on down to terminally differentiated cells such as
erythrocytes (E) platelets (PIt), granulocytes (G) macrophages (M), B and T cells. B) The
classical view is contrasted with a nonlinear continuum representation of hematopoietic cell
differentiation states using diffusion map dimension reduction of ScCRNA-Seq data (figure
recreated from data available in Nestorowa et al. (2016a)). Colors representing cell identities
in A) and B) are coordinated. Cell types in B) are a subset of cells represented in A).
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High dimensional data Dimension Reduction

* Nestorowa et. al. .
* Initial pseudotime \
+  Final pseudotime

2

05 0 - 05 N

0
DC2

Construction of Pseudo time PDE model

Figure2.
Flow chart of our modeling process: This chart organizes the steps taken toward constructing

the PDE model. First, high-dimensional data such as single cell RNA-Sequencing (SCRNA-
Seq) are represented in 2- or 3-dimensional space through one of many dimension reduction
techniques. Then, temporal events (pseudotime trajectories) are inferred from the dimension
reduced reduced data. We then use the reduced dimension representation and pseudotime
trajectories to model flow and transport in the reduced space. In Section 2, we summarize
dimension reduction techniques and reconstructing pseudotime trajectories. In Section 4 we
show the results of our modeling. Data is from Nestorowa et al. (2016a).
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DC2

A) For the 12 cell types idenfied in Nestorowa et al. (2016a), the center of mass of each cell
type is used to define a node on an abstracted graph B). Edges between nodes are
constructed based on inferred trajectories on the graph based on diffusion pseudotimes
starting from nodes 1, 2, and 3, to nodes 4-8, then to the progenitor nodes 9-12. The graph
represents a continuum of cell states (edges) that includes identification of canonical cell
states along the continuum (nodes 1-12) (Table 1).
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We use a simple “Y” shaped graph to illustrate our model. A) The graph is defined by four

p =025 (Asymmetric)

Page 34

nodes {vk}:_ | and three edges &) = ey12), & = €y2,3), and &3 = ey 4y Within two

components of a diffusion map (DC1, DC2). The transfer rate from 5 to 13 and 4 is taken
to be proportional to 1 — pand p, respectively. B) The evolution of the cell density solution
from the initial condition (¢= 0) concentrated at the left end, DC1 = -1, to a density
concentrated at the right ends, DC1 = 1, at = 15. In the symmetric case, p= 0.5, the two

branches evolve in the same way; C) in the asymmetric case, p= 0.25, the cell density is

larger at £= 15 on the upper branch, shown in blue, compared to the lower branch, shown in
red.
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Figure5.

A) The cell data colored by pseudotime analysis produced by the Wanderlust algorithm
applied to data mapped to diffusion space in Nestorowa et al. (2016a). The initial point in
pseudotime is taken from the HSC cells and the final pseudotime from the progenitor cells.
B) Cell distribution computed by the PDE model describing normal conditions on the graph
from £=0to = 5. The cells flow from E-SLAM and LT-HSC nodes on the right to the
LMPP, CMP, MEP, and GMP nodes on the other three ends (bottom, top, and left), following
the pseudotime trajectories identified in A). C) Comparison of the cell type distribution
computed by the PDE model described in Eq. (2) and the reference data from Nestorowa et
al. (2016a). The reference distribution (Nestorowa et al.) is computed by clustering the
initial, middle and final pseudotime cells from A) into 12 cell nodes. By considering ¢= 4 as
the final pseudotime in the PDE model, the values of the solution at the nodes agree well
with the reference data.
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Figure®6.

A) Acute myeloid leukemia (AML) is a cancer of aberrant differentiation and proliferation
of hematopoietic progenitor cells. Previous studies demonstrated that expression of inv(16)
leukemogenic fusion protein CBFS-SMMHC results differentiation block at multiple
hematopoetic stages along with expansion of preleukemic stem/progenitor cells and
abnormal myeloid progenitors, including CMP, Pre-Meg/E and MEP. These preleukemic
stem/progenitor cells and abnormal myeloid progenitors are susceptible to malignant
transformation into leukemia-initiating cells that drive and sustain AML pathogenesis. B)
Schematic illustration of AML pathogenesis in the differentiation continuum. To simulate
inv(16) driven AML, the proliferation /4(x) connecting the nodes 3, 5, and 11 is increased
and the flow toward the node 11, Vi(x) and Dy(x) for k= K/, 11) is blocked.
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Total number of cells in each node up to £= 7 in A) normal condition and B) AML
pathogenesis. The AML simulation is started at #= 4. Compared to the normal case, cells in
MEP, LT-HSC, and ST-HSC increase as well as other cell types. Figure C) compares the
number of cells between the normal and AML case for each cell type individually.
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Figure 8.
The cell distribution on the graph in a logg scale, comparing the normal and AML

conditions at £= 7. The AML condition shows increased density on the edges near the MEP
state (node 11) at #=7.
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Figure.
The continuum of cell states can be visualized as the density of cells along the 51 edges of

the graph (rows) connecting node / (left) to node 7 (right) for all nodes / /. Cell distribution
(logyp scale) on the edge comparing the normal condition and AML. In addition to an
accumulation of MEP cells, novel intermediate cell states emerge resulting from the
differentiation block and increased proliferation rate resulting from AML. These novel cell
states are indicated with white arrows and generally fall between the CMP, MPP, and MEP
canonical cell states. The presented edges in the first row (¢ <4) are lexicographically
ordered with respect to the left end (&) to visualize which nodes are the differentiating cells
departing from and with respect to the right end () in the second row (> 4) to visualize
which nodes are the arriving cells differentiated into.
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Figure 10.
A) Cell distribution on the graph at =7 for AML occurring at different times, Zapy = 1, 2,

4, and 6. MEP (11) blows up when AML occurs after = 2. The dominating intermediate
cells are also distinct. B) Relative total number of cells when AML occurs at Z4,44, = 1t0
tapn = 6 compared to the normal case (dashed line) up to time #= 7. The total number of
cells is maximized when AML occurs at 44 = 3.
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Index of cell identities and labels. Long- and short-term hematopoietic stem cells (LT-HSC, ST-HSC);

Table 1.

Page 41

multipoent potent progenitors (MPP), lymphoid-primed multipotent progenitors; common myeloid progenitors

(CMP); megakaryocyte-erythroid progenitors (MEP); granulocyte-macrophage progenitors (GMP).

Cell identitiesand labels

ID Célltype ID Cell type
1 E-SLAM 7 MPP2

2 L-S+K+ CD34- 8 MPP3

Flk2+ CD48-CD150+

3 LT-HSC 9 LMPP

4 MPP 10 CMP

5 ST-HSC 11 MEP

6 MPP1 12 GMP
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