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Elena Popugaeva,1 Ekaterina Pchitskaya,1 and Ilya Bezprozvanny1,2

Abstract

Significance: Calcium (Ca2+) hypothesis of Alzheimer’s disease (AD) gains popularity. It points to new
signaling pathways that may underlie AD pathogenesis. Based on calcium hypothesis, novel targets for the
development of potential AD therapies are identified.
Recent Advances: Recently, the key role of neuronal store-operated calcium entry (nSOCE) in the development
of AD has been described. Correct regulation of nSOCE is necessary for the stability of postsynaptic contacts to
preserve the memory formation. Molecular identity of hippocampal nSOCE is defined. Perspective nSOCE-
activating molecule, prototype of future anti-AD drugs, is described.
Critical Issues: Endoplasmic reticulum Ca2+ overload happens in many but not in all AD models. The nSOCE
targeting therapy described in this review may not be universally applicable.
Future Directions: There is a need to determine whether AD is a syndrome with one critical signaling pathway
that initiates pathology, or it is a disorder with many different signaling pathways that are disrupted simulta-
neously or one after each other. It is necessary to validate applicability of nSOCE-activating therapy for the
development of anti-AD medication. There is an experimental correlation between downregulated nSOCE and
disrupted postsynaptic contacts in AD mouse models. Signaling mechanisms downstream of nSOCE which are
responsible for the regulation of stability of postsynaptic contacts have to be discovered. That will bring new
targets for the development of AD-preventing therapies. Antioxid. Redox Signal. 29, 1176–1188.
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Introduction

Alzheimer’s disease (AD) is the age-related brain dis-
order that causes progressive neurodegeneration pre-

dominantly in the cortical and hippocampal brain regions.
The major hallmarks of AD are the progressive impairment
of memory storage and accumulation of fibrillary amyloid
plaques in patient’s brains. AD has two forms: sporadic AD
(SAD) with currently unknown reasons for emergence and
familial AD (FAD) caused by genetically inherited mutations
in either amyloid precursor protein (APP), or presenilin 1
(PS1) or presenilin 2 (PS2) proteins (12, 49, 50, 59). The main
risk factor for AD is the advanced age. First symptoms of
FAD start to appear in patients *50 years old. This is in
contrast to SAD cases, which emerge in much older age, *70

and later. FAD is a small portion of total AD cases—*1–2%.
Information about FAD-causing mutations is used for gen-
eration of transgenic animal models of AD. Since manifes-
tation of SAD and FAD is similar, there is hope that
successful treatment of FAD may lead to SAD-relevant
therapeutics. Future investigations and clinical trials will
shed light on this question.

There are many hypotheses of AD pathogenesis: the oldest
one is the cholinergic hypothesis (11), the dominant one is the
amyloidogenic hypothesis (51), and also popular is the tau
hypothesis (67). Recently, amyloidogenic hypothesis has
been transformed to the oligomer hypothesis or soluble beta-
amyloid (Ab) hypothesis (41). It differs from the classical
amyloid hypothesis by positing that the proximal neurotoxins
in AD are soluble oligomers of Ab, rather than Ab in the form
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of amyloid aggregates. However, so far none of these hy-
potheses has brought successful drugs to prevent the AD
pathogenesis. Recently, calcium hypothesis of AD has started
to gain popularity. It states that calcium signaling mishand-
ling in neurons occurring at early disease stages is the key
event triggering synaptic dysfunction and neurodegeneration
(4). Development of new powerful and precise calcium im-
aging techniques enabled extensive research in this field, and
new intriguing data recently appeared. This review is devoted
to description of calcium signaling pathways disrupted dur-
ing AD with particular emphasis on endoplasmic reticulum
(ER) calcium channels and store-operated calcium entry.
Based on the calcium hypothesis, novel targets for the de-
velopment of AD-preventing therapies are suggested, and
their applicability to the treatment of AD cases is discussed.

Ca2+ hypothesis of AD

The calcium (Ca2+) hypothesis of brain aging was first for-
mulated in 1982. In 1989 and 2017, the hypothesis was revised
to introduce new data and outline questions which needed to be
answered in the future (4, 63). Calcium hypothesis of AD is
connected with other hypotheses in the field since changes in
calcium signaling are likely to be secondary to deleterious
actions of Ab oligomers in neurons, disruption of presenilin
(PS) functions, defects in mitochondria dysfunction, and
aging-related changes.

There is a growing body of evidence that dysregulation in
signaling pathways that handle Ca2+ plays a major role in the
initiation of AD pathogenesis. Ca2+ is a second messenger that
is involved in many if not all cellular processes of neuronal
life. Calcium can enter the neuron from extracellular space via
membrane-embedded Ca2+-permeable channels. Among them
are voltage-gated Ca2+ channels (VGCCs), nonspecific cation
channels N-methyl-D-aspartate receptors (NMDARs), and
transient receptor potential channels (TRPCs).

Neurons have intracellular Ca2+ stores such as ER and mi-
tochondria. Ca2+ can be released from ER via inositol tri-
sphosphate receptor (InsP3R) and ryanodine receptors (RyanR)
(14). Mitochondria can shape intracellular calcium signaling,
mainly via Ca2+ sequestering mechanism (97). Ca2+ uptake into
mitochondria plays an important role in neuronal physiology
by stimulating mitochondrial metabolism and increasing mi-
tochondrial energy production. Excessive Ca2+ entry into mi-
tochondria can lead to opening of a permeability transition pore
(PTP) and may lead to apoptosis (111). How these calcium
entry pathways affected during AD will be discussed later.

First symptoms start to appear in patients 70–80 years old
for SAD. For genetically inherited familiar form of AD, first
symptoms may appear already at 50 years of age. The human
brain has protective mechanisms that fight with the disease
until middle age or later. However, with age the capacitance
of such mechanisms gets lower, and at certain moment brain
is not able to resist AD anymore. Loss of ability to handle
Ca2+ is one of the features of aging neurons. In AD experi-
mental models, Ca2+ is accumulated inside of neurons, and
intracellular Ca2+ concentration is increased (4, 15). Elevated
calcium levels appear to be toxic to cells and trigger subse-
quent pathological processes, which drive AD pathogenesis.
What are the reasons for the increase of Ca2+ in AD? Is there a
main Ca2+ handling mechanism that is dysregulated in AD, or
it is a consequence of events that lead to development of the

AD? Are there any therapeutic agents that can normalize
Ca2+ signaling system in AD? Calcium hypothesis of AD is
aimed at answering these and many other related questions.

Familial forms of AD are caused by mutations in genes
encoding APP, PS1, and PS2 proteins. For a long time, Ab, the
product of proteolytic cleavage of APP, has been considered
the initial molecule that triggers AD. While there is a debate on
whether the Ab is a major toxic culpit in AD (55, 80), it plays a
major role in the pathogenesis of AD and in calcium dysre-
gulation as well. Other AD-related proteins are PSs, which
form the catalytic subunit of gamma secretase. In amyloido-
genic pathway (Fig. 1), gamma secretase is responsible for
cleavage of APP at its transmembrane domain and produces
toxic Ab (60). In addition to gamma secretase function, PS1
plays the function of passive Ca2+ leak channel (84, 121),
which is disrupted by many but not all FAD-associated muta-
tions in PS1. The influence of mentioned proteins on Ca2+

signaling pathways during AD pathology is discussed below.

Ab and Neuronal Calcium Signaling

Ab was initially recognized as the main toxic agent in AD
(103). Currently, Ab theory is under revision (55, 80). It is
apparent that Ab plays an important role in AD pathogenesis,
but some other factors also contribute to AD pathology together
with Ab or may even precede the Ab toxicity. Detrimental
effect of Ab oligomers on neurons has been extensively studied,
and many publications demonstrated that Ab aggregates pro-
mote the increase in neuronal cytosolic Ca2+ concentration (16,
34–37, 46, 68, 107, 124). The exact mechanism of Ab-mediated
disruption of Ca2+ homeostasis is under active investigation.
Concerning the role of Ab in Ca2+ dyshomeostasis during AD,
it has been observed that Ab can make Ca2+-permeable chan-
nels in plasma membrane by themselves (7) (Fig. 2).

Probably the most important Ab targets are NMDA re-
ceptors. Activation of NMDA receptors is a key event in
long-term potentiation phenomenon, which is thought to be
the cellular basis of memory formation process. The effects
of Ab on NMDA receptors were extensively studied (43, 81,
134). Particularly, it has been shown that Ab is able to in-
crease the vulnerability of neurons to excitotoxicity, which is
caused by excessive NMDAR activation with subsequent cell
calcium overload (77, 78). Some data indicate that Ab in its
oligomeric form may directly bind and modulate activity of
NMDA receptors (30, 69, 108, 117). There is indication that
NMDARs are required for synaptic targeting of Ab oligo-
mers, but they do not appear to comprise the actual binding
sites for Ab oligomers (32). Various deleterious effects of Ab
on NMDAR were reported. It was reported that in early disease
stages, Ab activates NMDAR and induces rapid Ca2+ elevation
in neurons (40, 87, 99, 134). Usage of Ab oligomers at sub-
lethal concentrations induces prolonged Ca2+ signaling via
NMDAR. These Ca2+ signals trigger redox-sensitive stimula-
tion of RyanR-mediated Ca2+ release from the ER, decreased
RyanR2 protein expression, mitochondrial fragmentation, and
prevented RyanR-mediated spine remodeling (89).

Detrimental effect of oligomeric Ab on RyanR-mediated
Ca2+ signaling in ER was also observed in glia, particularly in
cultured astrocytes (2). In the study performed by Gavello
et al., the oligomeric Ab42 differently regulated RyanR,
NMDAR, and VGCCs by increasing Ca2+ release through
RyaRs, and inhibiting Ca2+ influx through NMDARs and
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VGCCs. According to this study, the overall increased in-
tracellular Ca2+ concentration caused stimulation of K+ cur-
rent carried by big conductance Ca2+activated potassium
(BK) channels and inhibition of hippocampal network firing
(44). Application of oligomeric Ab species in vivo causes fast
rise in resting Ca2+ levels which depend on NMDARs acti-
vation and triggers dendritic spines loss (6). Treatment with
aducanumab (anti-Ab antibody) restores calcium homeosta-
sis in Tg 2576 mice (61). The treatment effect was connected
to restoration of NMDAR function rather than to restoration
of intracellular Ca2+ signaling. In addition, it was reported
that Ab induces reduction in NMDAR expression and en-
hances its endocytosis (109), impairs NMDAR-dependent
long-term potentiation (LTP) (29) and reduces NMDAR-
mediated calcium influx into active spines (104).

Another calcium-permeable plasma membrane channels are
presynaptic VGCC. It has been observed that Ab oligomers
decrease synaptic transmission between hippocampal neurons,
most likely via depression of Ca2+ flux through P/Q-type cal-
cium channels (85). However, in HEK293 cells that over-
express recombinant P/Q-type calcium channels the increase
in P/Q-type currents by Ab oligomers has been observed (54).
Authors explain such differences by the fact that ion channels

can be bidirectionally regulated by the same molecule. For
example, potassium channel blocker k-conotoxin PVIIA both
enhances and reduces potassium currents depending on its
activation state (65). In contrast, the authors report that block
of postsynaptic L-type calcium channels by 10 lM nimodipine
did not reverse Ab42-induced deficits, indicating that Ab
oligomer pathology is specifically mediated via presynaptic
ion channels. In contrast to the results mentioned above, there
are data on age-dependent upregulation of L-type VGCC
currents in Cornu Ammonis area 1 region of hippocampus in
3 · TgAD (triple transgenic mouse model of Alzheimer’s
disease) mice (125). It was reported that antagonists of L-
VGCC can protect neurons, and preserve synaptic function in
animal models of aging and AD (5, 73, 88, 98, 122).

Beside actions of Ab on the plasma membrane-embedded
calcium channels, it was shown that both extracellular and
intracellular Ab applications alter activity of ER-resident
calcium channels—RyanR and InsP3R (42, 57). RyanR- and
InsP3R-mediated Ca2+ responses were induced by applica-
tion of Ab (25–35) and Ab40 on cultured cortical neurons. It
was shown that Ab42-induced Ca2+ release from the ER in
intact human neuroblastoma cells was just partially mediated
by InsP3R, while the greater part of Ca2+ elevation was

FIG. 1. Two pathways mediate APP processing in neurons. APP is processed by a -, b-, and c- secretases. In
nonamyloidogenic pathway, a-secretase cleaves APP first, leading to the production of soluble APP fragment (sAPPa), P3
and AICD. Although role of P3 is not precisely studied, sAPPa and AICD play physiological roles in neurons (80). In
amyloidogenic pathway, b-secretase cleaves APP first, producing soluble extracellular fragment of APP (sAPPb) and
transmembrane C-terminal fragment of APP (APP-CTF). This APP-CTF is further cleaved by c- secretases to produce Ab
and AICD. Ab, beta-amyloid; AICD, APP intracellular domain; APP, amyloid precursor protein. To see this illustration in
color, the reader is referred to the web version of this article at www.liebertpub.com/ars
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induced by an alternative mechanism (57). Interestingly, it
was reported that lowering of RyanR-mediated Ca2+ release
leads to the reduction of both intracellular and extracellular
Ab load in APP(swe)-expressing (Tg2576) mice (86). Ac-
cording to Briggs et al., it is an example of proposed patho-
genic feed-forward cycle in which elevated Ca2+ levels
triggered by Ab further facilitate production of Ab (17). The
link between extracellular Ab and intracellular channels is
still elusive, but several possible mechanisms of action have
been proposed. It was shown that Ab oligomers induce InsP3

production through stimulation and dimerization of synaptic
metabotropic glutamate receptor 5 (mGluR5) receptors (96).
Another possible link is that in dendritic spines, Ca2+ release
by RyanR can be triggered by Ab-facilitated Ca2+ influx
through NMDARs (17, 45, 89). Studies performed by San-
Martin et al. demonstrated that Ab oligomers promote
RyanR2-mediated Ca2+ release, mitochondrial Ca2+ entry,
ROS generation, and fragmentation of the mitochondrial
structural network. It was further shown that RyanR2
knockdown as well as usage of antioxidants reduces Ca2+-
mediated noxious effects of Ab oligomers on mitochondrial
function (101, 102). Some AD models demonstrated intra-
cellular Ab accumulation, which may also take part in ER
calcium signaling destabilization (75). Intracellular applica-
tion of Ab oligomers into Xenopus oocytes stimulates G-
protein-mediated InsP3 production and consequent cytotoxic
Ca2+ release from the ERs (35). Another study demonstrated
that InsP3Rs were not required for Ab42-stimulated Ca2+

release from ER in DT40 chicken B-lymphocyte line per-
meabilized cells, revealing an additional direct effect of
Ab42 upon the ER (57).

Role of PSs in Ca21 Homeostasis

PSs act as a catalytic subunit of gamma secretase. FAD-
associated mutations disrupt gamma secretase function, leading

to amyloidogenic processing of APP and production of toxic
Ab species (Fig. 1) (60). Whether FAD mutations cause gain
of function or loss of gamma secretase function is the subject
of debate (123, 127, 128). Development of gamma secretase
modulators as potential anti-AD therapeutics is complicated due
to essential role of gamma secretase in Notch processing (31).
Calcium signaling effects of Ab were discussed above. APP
intracellular domain also affects ER Ca2+ release by regulating
the expression of genes involved in Ca2+ homeostasis (71).

Significant body of research suggests that AD-bearing PS
mutants cause Ca2+ dysregulation independently of its gamma
secretase function and Ab accumulation, and due to changes
in activity of RyanR and InsP3R (17, 25, 39, 93). Upregulation
of RyanR-mediated Ca2+ release and increased levels of
RyanR expression among different PS-mutation bearing AD
models were reported (17, 21, 23, 26, 33, 45, 113). It was
proposed that PSs alter RyanR gating through direct protein–
protein interaction mediated by N-terminal cytosolic domain
of PSs (52, 91, 100). RyanR gating effects of PS1 and PS2 are
isoform specific (91). Increase of the PS2 to PS1 ratio was
reported for normal aging mice in both cerebellum and fore-
brain, which correlates to loss of spatial memory, learning,
and motor function (58). Such homologue misbalance is
proposed to contribute to age-dependent cytosolic Ca2+ level
increase (17). Based on these findings, it was proposed that
excessive Ca2+ release from ER and elevated cytosolic Ca2+

concentrations observed during AD may be a result of altered
RyanR interaction with PSs (91). Changes in RyanR function
have been suggested to be responsible for alterations in syn-
aptic activity induced by PSs (126).

Sensitivity of InsP3R to its agonist InsP3 significantly in-
creased in cell expressing mutant PSs (27, 28). Suppression of
InsP3R expression normalized exaggerated Ca2+ signals ob-
served in cortical and hippocampal neurons in PS1-M146 V
knock-in and 3 · Tg AD mice models, indicating that it might
be a potential therapeutic strategy (106). Recent research

FIG. 2. Ab mediated increase of cyto-
solic Ca2+ concentration. Ab has several
interaction partners on the PM. Among them
are NMDAR, VGCC, and mGluR5. Interaction
with NMDAR and VGCC leads to influx of
Ca2+ ions from extracellular space. Interaction
with mGluR5 or other GPCR leads to produc-
tion of IP3 that potentiates the release of Ca2+

via InsP3R from the ER to the cytosol. More-
over, Ab is able to make Ca2+-permeable
channels in PM by itself. Increase in the ER
Ca2+ potentiates Ca2+-dependent calcium re-
lease via RyanR. This Ca2+ release from the
RyanR plays a role in the Ca2+ entry to mito-
chondria (Mito) via MCU. Ca2+, calcium; ER,
endoplasmic reticulum; GPCR, G-protein
coupled receptor; IP3, inositol triphosphate;
InsP3R, inositol triphosphate receptor; MCU,
mitochondria channel uniporter; mGluR5, me-
tabotropic glutamate receptor 5; NMDAR, N-
methyl-D-aspartate receptor; oAb, oligomeric
beta-amyloid; PM, plasma membrane; RyanR,
ryanodine receptor; VGCC, voltage-gated cal-
cium channel. To see this illustration in color,
the reader is referred to the web version of this
article at www.liebertpub.com/ars
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using data-based computational modeling provided deeper
insight into InsP3R gating in the presence of mutated PSs (76).
This model predicted that that the gain-of-function enhance-
ment is sensitive to both InsP3 and Ca2+, and that very small
amount of InsP3 is required to stimulate InsP3R channels in
the presence of FAD-causing mutant PS. Therefore, signifi-
cant activity of the InsP3R at resting InsP3 concentration
should lead to spontaneous Ca2+ signals in cells (76). Using
computational model, the same research group suggested that
mutation in PSs increases the open probability of mitochon-
drial PTP, which in turn triggers pathological processes and
may induce cell death (119). It was proposed that mutated PSs
enhance Ca2+ release through InsP3R into a cytoplasmic mi-
crodomain formed by neighboring cluster of a few InsP3R
channels and mitochondria channel uniporter, and therefore
facilitate mitochondrial calcium uptake (119). This investi-
gation proposes direct link between Ca2+ disruptions and
impaired mitochondrial function, as observed in AD.

Additional gamma secretase-independent function of
PSs was suggested. PS1 and PS2 were reported to act as
passive ER calcium leak channels (84, 121, 131). This idea
was initially controversial (105), but it was supported by
unbiased screen for ER Ca2+ leak channels (10). This func-
tion of PS1 is altered by many but not all FAD-associated
mutations. For example, extensively studied M146 V muta-
tion is a classic example of PS1 mutation that causes dis-
ruption of Ca2+ leak function (121). However, the deletion of
Exon 9 in PS1 is a pathological mutation that acts as a gain of
function for ER Ca2+ leak activity (121). A correlation be-
tween patient clinical phenotypes and effects of FAD muta-
tions on ER Ca2+ leak function was observed (82). Site-
directed mutagenesis approach was used to map potential ion
conduction pore of PS1 (83). It was demonstrated that D385
but not D257 residue is important for channel function of PSs
(83, 121). Interestingly, PSs share the fold with chloride
channels (118), and the high-resolution crystal structure of
archaeal PS homologue, PSH1, has a hole that traverses
through the entire protein and is large enough to allow pas-
sage of Ca2+ ions (74). This hole was however not apparent
when structure of c-secretase complex was solved (9). Pro-
teolytically cleaved PS does not form ER Ca2+ leak channels
(121), which may explain lack of obvious ion conduction
pathway in mature c-secretase complex.

Using molecular dynamics approach, a dynamic all-atom
model of mature PS1 embedded into the membrane has
been published recently (110). It is important to note that
PS1 undergoes post-translational modifications, particularly
autoendo-proteolysis. As many other post-translational modi-
fications, autoproteolysis is suggested to be essential for the
change of PS1 from inactive to active state (110). Authors have
confirmed previously published gating mechanism for PS1
(64). In agreement with previously published data, they have
observed that Exon 9 plays a role of a ‘‘plug’’ that closes or
opens the ‘‘doors’’ to the catalytic pocket of the PS1 depending
on the activation state. Although not modeled in this article,
these data suggest that deletion of Exon 9 permanently opens
the interior chamber of PS1, consistent with superleaky pore
phenotype of PS1DE9 mutant (121).

In conclusion, mutations in PSs are shown to enhance cal-
cium release via both ER-resident channels—RyanR and
InsP3R. In addition, PSs themselves play a role of ER Ca2+ leak
channels. Excessive Ca2+ release from ER contributes to AD

pathology. Modifying Ca2+ release from ER is a promising
therapeutic strategy to reduce toxic cytosolic calcium elevations.

ER calcium overload in AD hippocampal neurons

ER Ca2+ concentration is increased in experimental mod-
els of AD including transgenic mice. It has been observed that
InsP3-evoked calcium release from the ER is upregulated in
PC12 cells and in fibroblasts that express mutant PS1 (48,
70). Similar effects were observed in neurons in brain slices
taken from mutant PS1-M146 V, 3 · TgAD, and APPSwe-
TauP301 L mice (112–114). Stutzmann et al. suggest that
enhanced Ca2+ release from the ER observed in these studies
occurs due to upregulation of RyanR function (112–114).

Another possible mechanism responsible for these effects
is that mutations in PS1 disrupt its function as ER calcium
leak channel. In addition, it has been suggested that PSs may
potentiate the activity of sarco/endoplasmic reticulum Ca2+-
adenosine triphosphatase (ATPase) (SERCA) pump via direct
protein–protein interactions (46). Ab can indirectly increase ER
calcium content. As discussed above, Ab potentiates Ca2+ entry
via plasma membrane channels. Ab can also act on SERCA
pump that sequesters cytosolic Ca2+ (Fig. 3). To compensate the

FIG. 3. Intracellular signaling pathways involved in
ER calcium overload at AD. Possible mechanisms involved
in ER Ca2+ overload in AD. (i) FAD-associated mutations
cause disruption of passive Ca2+ leak function of PSs, thus
causing accumulation of Ca2+ in the ER lumen. (ii) Ab
potentiates plasma membrane Ca2+-permeable channels,
leading to the increase of cytosolic and ER Ca2+ content.
(iii) PS1 may interact with SERCA pump via direct protein–
protein interaction, thus potentiating its Ca2+ pumping
activity. AD, Alzheimer’s disease; ATPase, adenosine
triphosphatase; FAD, familial form of Alzheimer’s dis-
ease; PS, presenilin; PS1, presenilin 1; SERCA, sarco/
endoplasmic reticulum Ca2+-ATPase. To see this illustration
in color, the reader is referred to the web version of this
article at www.liebertpub.com/ars
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ER Ca2+ overload, neurons may upregulate the calcium-induced
Ca2+ release from the ER via RyanR.

Indeed, changes in expression of RyanR have been de-
scribed in human AD cases and in patients with mild cog-
nitive impairment (18, 62). It is important to note that there
are three subtypes of RyanR—1, 2, and 3. RyanR2 and 3
subtypes are expressed in the brain. It has been observed that
RyanR2 is upregulated at early stages and is downregulated
in advanced stages of AD in human postmortem samples (18,
62). Concerning RyanR3 subtype, it has been observed that
its protein (89) and mRNA expression (18) is upregulated in
late stages of the disease, suggesting that upregulation of
RyanR3 might be a compensatory response to decreased
function of RyanR2. Increase in RyanR2 expression and
enhanced Ca2+ release have been reported in presymptomatic
AD mice (21, 62, 113, 131). It has been shown that mus-
cle relaxant dantrolene that targets RyanR exerts neuropro-
tective effects in mouse models of AD (24, 86, 92).
Disadvantage of usage of dantrolene in the treatment of AD
is that it does not have specificity to neuronal type of
RyanR and may lead to side-effects. Moreover, there are data
that long-term treatment with dantrolene can worsen AD
pathology (131).

Neuronal Store-Operated Calcium Entry
Is a Potential Therapeutic Target

Neuronal store-operated calcium entry (nSOCE) is a unique
mechanism that refills ER calcium store in response to its de-
pletion (95). For a long time, it has been believed that SOCE
exists only in nonexcitable cells where it is the main mechanism
to refill intracellular stores (79). However, there is a growing
body of evidence that SOCE exists in neurons (8, 13, 47, 66, 94,
115, 129, 130). nSOCE is composed of two parts. The first one
is plasma membrane proteins from ORAI and TRPC families
that are able to make calcium-permeable channels. Second one
is ER membrane protein that has calcium-sensitive domain
inside of the ER. There are two ER proteins that participate in
functioning of SOCE: STIM1 and STIM2. Stromal interacting
molecule (STIM) 2 is predominantly expressed in hippocampus
(115, 132). When calcium concentration drops inside of the
ER, calcium-sensitive domain sends signal to the STIM to
oligomerize. When it is in oligomerized form, it goes to ER–
plasma membrane junctions to bind ORAI and TRPC pro-
teins to form nSOC channels (Fig. 4) (132).

Recently, cellular nSOCE-dependent signaling pathway
has been described in hippocampal neurons (115). It has been

FIG. 4. Physiological regulation of nSOCE in hippocampal neurons. nSOCE has two partners at different cellular
compartments: ER-resident protein STIM2 and plasma membrane proteins ORAI2 and TRPC6. STIM2 has intraluminal
domain that senses changes in ER Ca2+ concentration. When ER Ca2+ drops, Ca2+ dissociates from N-terminal calcium-
sensitive domain. That leads to conformational change of STIM2, which is oligomerization. In oligomerized form, STIM2
travels to ER–PM junctions where it binds with plasma membrane partners of nSOCE–ORAI2 and TRPC6 proteins. This
binding allows opening of nSOC channels and Ca2+ entry into the neuron. We propose that this Ca2+ entry is necessary to
maintain pCaMKII levels, and that is essential to maintain LTP. LTP, long-term potentiation; nSOCE, neuronal store-operated
calcium entry; ORAI2, calcium release-activated calcium channel protein 2; pCaMKII, phosphorylated calcium/calmodulin-
activated protein kinase II; STIM, stromal interacting molecule. To see this illustration in color, the reader is referred to the web
version of this article at www.liebertpub.com/ars
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FIG. 5. Loss of stable postsynaptic contacts in AD. (A) Confocal images of DIV14-fixed hippocampal neurons in
culture. Primary hippocampal neurons were transfected with TD-Tomato plasmid at DIV7 and left untreated (control,
CTRL) or treated for 3–4 days with synthetic oligomeric Ab (Ab). (B) Cartoon representation of the synaptic loss observed
in amyloid-beta-induced synaptotoxic model of AD. Usually postsynaptic contacts are divided into three morphological
groups. Mushroom spines have thin neck and big head, thin spines have thin neck and small head, barely distinguishable
from neck and stubby spines that do not have head and more or less look like protrusions on dendritic shafts. Due to big
head size, mushroom spines able to make strong synapses that participate in memory formation and storage. Mushroom
spines are selectively lost in AD models, and proportion of thin spines is increased. To see this illustration in color, the
reader is referred to the web version of this article at www.liebertpub.com/ars

FIG. 6. Chemical structures of hyperforin and NSN21778, and mechanism of their action in hippocampal neurons.
(A, B) Structures of hyperforin and NSN21778. Structure of hyperforin is adopted from Sigma-Aldrich Web site. The
structure of NSN21778 is adopted from a previous study (132). (C) The schema demonstrates neuroprotective mechanisms
of hyperforin and NSN21778. Both these compounds activate TRPC6 channels. However, hyperforin is a direct activator of
TRPC6, while NSN21778 needs/or modulates DAG-dependent activation of TRPC6 channels. Due to the activation of
TRPC6 channels, Ca2+ enters the postsynaptic contacts and supports the functionality of CaMKII, which is necessary for
LTP performance and preservation of spines and memory. DAG, diacylglycerol.
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shown that neurons downregulate STIM2 expression in re-
sponse to ER Ca2+ overload, resulting in drop in the amount
of Ca2+ ions that enter neurons via nSOCE channels. STIM2
is downregulated in cultured hippocampal neurons and in
hippocampus in animal models of AD, as well as in human
AD brain samples (94, 115, 133). Cleavage of STIM proteins
by PSs was suggested as a potential mechanism involved
in these effects (120). nSOCE channels constitute ternary
complex made by STIM2 at the ER part, and calcium release-
activated calcium channel protein 2 (ORAI2) and TRPC6 at
the plasma membrane part (132) (Fig. 4). In other studies, a
role of ORAI1 in supporting SOCE in hippocampal and
cortical neurons was demonstrated (47, 66). Knockdown of
TRPC6 expression abolished nSOCE in hippocampal neu-
rons. Overexpressed TRPC6 or pharmacological activators of
TRPC6 channels restored nSOCE and spine loss in AD
neurons (132). The mice that overexpress TRPC6 in the brain
display enhanced cognitive performance and increased for-
mation of excitatory synapses (135).

What is a physiological role of nSOCE in hippocampal
neurons? It has been shown that nSOCE participates in reg-
ulation of stability of mature mushroom spines (Fig. 5) (94,
115, 133). Mushroom spines are sites of strong synapses that
are necessary for formation and storage of memories. It has
been proposed that downstream target for nSOCE is pCaM-
KII (phosphorylated calcium/calmodulin-activated protein
kinase II), molecule that participates in LTP (Fig. 4). LTP is
the best studied physiological mechanism of making par-
ticipating synapses stronger and is essential for preservation
of memories. It has been suggested that nSOCE is active in
resting neurons (115), and is the main supplier of Ca2+ ions
for CaMKII at rest. CaMKII is necessary for LTP perfor-
mance. Shifting a balance from CaMKII to CaN is detrimental
to synapses, leading to their instability and consequently caus-
ing memory dysfunction (93).

From this discussion, TRPC6 appears to be an attractive
target for development of AD-preventing therapies. There are
two molecules that are able to activate TRPC6 channels—
hyperforin and NSN21778 (Fig. 6) (132). Hyperforin is a
natural compound that activates TRPC6 channels (72).
Beneficial effects of hyperforin and its derivatives in animal
models of AD have been demonstrated (20, 38, 56). In double
transgenic APPswe/PSEN1DE9 mice, derivative of hyperforin–
tetrahydrohyperforin improves memory and prevents the
impairment of synaptic plasticity in a dose-dependent manner,
inducing a recovery of LTP (56). It has also been reported that
tetrahydrohyperforin is able to enhance autophagic clearance
of APP (19). In hippocampal neurons, TRPC6-dependent
downstream signaling was connected with activation of the
RAS/MEK/ERK, PI3K, and CAMKIV pathways (53, 116).

NSN21778 compound was recently discovered as a posi-
tive modulator of nSOC (132). It is important to note that
NSN21778 is different from hyperforin in the mechanism of
TRPC6 activation. It has been shown that hyperforin is a
direct activator of TRPC6 while NSN facilitates OAG-
induced Ca2+ influx through TRPC6 channels in conditions
of partially depleted intracellular stores (132). The neuropro-
tective mechanism of NSN that is currently proposed is that
NSN activates TRPC6 channels in diacylglycerol (DAG)-
dependent manner. Following activation of TRPC6 channels,
Ca2+ enters spines and activates CaMKII. All these events lead
to spine and memory preservation and protection from AD

(132) (Fig. 6). Future studies will be needed to establish utility
of NSN21778 and its derivatives for treatment of AD.

Conclusions

Calcium hypothesis of AD is gaining popularity (4) since it
points to new intracellular signaling pathways that are dysre-
gulated in neurons, and more importantly it brings new targets
for the development of AD-preventing therapies. AD is a
multifactorial brain disorder (3) that manifests itself as a loss of
memory. Modern therapeutical interventions should be based
on understanding the mechanisms of memory loss in AD.
Multiple lines of evidence suggest that Ca2+ signaling dysre-
gulation plays an important role in synaptic pathology in AD.
We propose that downregulation of nSOCE is one of the
mechanisms responsible for synaptic and memory loss in AD,
and that activators of TRPC6 channels should exert beneficial
effects on AD. Future studies will be needed to test these ideas.
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Abbreviations Used

3·TgAD¼ triple transgenic mouse model of Alzheimer’s
disease

Ab¼ beta-amyloid
AD¼Alzheimer’s disease

AICD¼APP intracellular domain
APP¼ amyloid precursor protein

ATPase¼ adenosine triphosphatase
Ca2+¼ calcium

DAG¼ diacylglycerol
ER¼ endoplasmic reticulum

FAD¼ familial form of Alzheimer’s disease
InsP3R¼ inositol trisphosphate receptor

LTP¼ long-term potentiation
mGluR5¼metabotropic glutamate receptor 5

NMDAR¼N-methyl-D-aspartate receptors
nSOCE¼ neuronal store-operated calcium entry
ORAI2¼ calcium release-activated calcium channel

protein 2
pCaMKII¼ phosphorylated calcium/calmodulin-activated

protein kinase II
PS1¼ presenilin 1
PS2¼ presenilin 2

PS¼ presenilin
PTP¼ permeability transition pore

RyanR¼ ryanodine receptor
SAD¼ sporadic form of Alzheimer’s disease

SERCA¼ sarco/endoplasmic reticulum
Ca2+-ATPase

STIM¼ stromal interacting molecule
TRPC¼ transient receptor potential channels

VGCC¼ voltage-gated calcium channels
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