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MINIREVIEW

Regulation of HIV-1 Transcription

KENNETH A. ROEBUCK1 AND MOHAMMED SAIFUDDIN

Department of Immunology/Microbiology, Rush Presbyterian St. Luke’s Medical Center, Chicago, 1L 60612

Human immunodeficiency virus type-1 (HIV-1) is a highly pathogenic lentivirus that requires transcription of 
its provirus genome for completion of the viral life cycle and the production of progeny virions. Since the first 
genetic analysis of HIV-1 in 1985, much has been learned about the transcriptional regulation of the HIV-1 
genome in infected cells. It has been demonstrated that HIV-1 transcription depends on a varied and complex 
interaction of host cell transcription factors with the viral long terminal repeat (LTR) promoter. The regulatory 
elements within the LTR interact with constitutive and inducible transcription factors to direct the assembly of 
a stable transcription complex that stimulates multiple rounds of transcription by RNA polymerase II (RNAPII). 
However, the majority of these transcripts terminate prematurely in the absence of the virally encoded trans- 
activator protein Tat, which stimulates HIV-1 transcription elongation by interacting with a stem-loop RNA 
element (TAR) formed at the extreme 5' end of all viral transcripts. The Tat-TAR interaction recruits a cellular 
kinase into the initiation-elongation complex that alters the elongation properties of RNAPII during its transit 
through TAR. This review summarizes our current knowledge and understanding of the regulation of HIV-1 
transcription in infected cells and highlights the important contributions human lentivirus gene regulation has 
made to our general understanding of the transcription process.
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HUMAN immunodeficiency virus type-1 (HIV-1) is 
a highly pathogenic lentivirus that causes acquired 
immune deficiency syndrome (AIDS). HIV-1 perma­
nently infects CD4-positive T cells and macrophages 
by insertion of a DNA copy of its genome into the 
host cell chromosome (Fig. 1). After integration of 
the DNA provirus, a threshold burst of genomic 
length transcription mediated by RNA polymerase II 
(RNAPII) is required to complete the viral life cycle 
and produce progeny virions (89,101). The initial 
transcription of the HIV-1 genome is controlled by 
the 5' long terminal repeat (LTR) and is dependent 
upon host cell transcription factors binding to an 
array of DNA cw-regulatory elements in the LTR 
promoter (48,78).

Transcriptional studies of the HIV-1 genome indi­
cate that the 636-base pair HIV-1 LTR promoter can

be subdivided into four functional domains: a basal 
core promoter, which is comprised of a specialized 
initiator element, a canonical TATA element, and 
three tandem Spl binding sites; an upstream enhancer 
element containing two adjacent binding sites for the 
inducible transcriptional activator nuclear factor 
kappa B (NF-kB); an upstream regulatory region 
containing elements for cell type-specific expression; 
and a downstream regulatory region containing sec­
ondary enhancer elements and an unstable positioned 
nucleosome. Together, these elements function in 
concert to determine the level of HIV-1 transcription 
in a particular cell type.

In addition to the various DNA elements, the LTR 
also encodes a novel RNA element, the frans-activa- 
tion response (TAR) element, located immediately 
downstream of the transcription initiation site. TAR
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FIG. 1. Structure of the HIV-1 genome. The HIV-1 genome is about 9200 base pairs in length and like all retroviruses contains G ag , Pol, 
and Env genes, which encode the viral structural proteins. The genome is flanked at the 5' and 3' ends by long terminal repeats (LTR) 
consisting of unique 5' (U5), unique 3' (U3), and repeat (R) regions. Transcription, as indicated by the arrow, is initiated at the 5' LTR and 
proceeds through the 3' LTR where transcription termination and polyadenylation occur. Tat is expressed from a multiply spliced transcript 
(shown below the provirus) and the Tat protein binds a structured RNA element at the 5' end of all transcripts (TAR).

encodes a 59-nucleotide RNA stem-loop structure 
that forms a target at the extreme 5' end of all HIV- 
1 transcripts for the virally encoded frans-activator 
protein Tat (11,12). Tat is an essential viral regula­
tory protein that is expressed early in infection from 
multiply spliced viral mRNAs. By binding to TAR, 
Tat greatly increases the number of full-length tran­
scripts (75). Tat appears to be critical to bring about 
the rapid increase in genomic length transcription re­
quired for the transition from a quiescent to an active 
viral infection.

THE HIV-1 PROMOTER 

Core Promoter

Although functional studies have shown that the 
HIV-1 promoter is spread over the entire LTR, only 
the core promoter is essential for virus transcription 
(Figs. 2 and 3). The LTR core promoter consists 
of a TATAA element, an initiator element, and a se­
ries of three tandem Spl binding sites. Together these 
elements act in concert to generate basal virus tran­
scription. The core promoter also represents the mini­

mal promoter sequence required for fraws-activation 
by Tat.

The TATAA element, located 25 bp upstream of 
the transcription initiation site, binds the general tran­
scription factor TFIID, which is a large multiprotein 
complex consisting of the TATA binding protein 
(TBP) and a number of TBP associated factors (TAF). 
TAFs function as adapter proteins through protein- 
protein interactions and are required to mediate the 
response of transcriptional activator and repressor 
proteins (187). TBP binding is the first step in the 
formation of the preinitiation complex and is often 
the critical rate-limiting step in RNAPII transcribed 
genes (112). TBP binding to the LTR is essential for 
the formation of the preinitiation complex and activa­
tion of virus transcription (141). TBP also interacts 
with Tat (83,84,188) and its cooperation with Tat is 
essential for fraws-activation of the HIV-1 LTR (113).

Downstream of the TATAA element resides a bi­
partite initiator element, which determines the tran­
scriptional initiation site (13,116,153,202). The HIV- 
1 initiator is composed of two elements located be­
tween nucleotide positions -6  and +30, both of which 
are necessary for significant transcription initiation

Core Promoter
CO CO

¥ ¥ ^  ^  Q + U
^  cl a  cl g: iH TAR

Upstream Elements 5'-UTR Elements Gag
-453 Enhancer TATA Initiator + 3 3 6

FIG. 2. Stucture of the HIV-1 promoter. The major elements of the HIV-1 promoter are shown. Solid rectangles indicate transcription factor 
binding sites important for virus transcription. The numbers at the extreme ends of the long terminal repeat (LTR) indicate the nucleotide 
position relative to the start site of transcription (+1). The four promoter regions important for virus transcription are indicated. The solid 
bar over the LTR indicates the core promoter, which is essential for basal transcription and Tat trans-activation. The core promoter consists 
of the TATA, initiator, and Spl binding sites together with the TAR element. The viral enhancer consists of two binding sites for the 
transcription factor NF-kB. Tat interacts with TAR, a structured RNA formed at the 5' end of viral transcripts, to activate HIV-1 transcription.
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(202). The HIV-1 initiator differs from other initiator 
elements, in that the activity of these elements is 
strictly dependent on the presence and correct posi­
tion of the TATAA element, suggesting cooperation 
between the initiator and TATAA elements is critical 
for proper transcriptional initiation. Furthermore, 
other TATAA and initiator elements cannot function­
ally substitute for the HIV-1 elements, indicating that 
the HIV-1 elements have evolved to specifically pro­
mote viral transcription presumably in cooperation 
with Tat tams-activation (10,135).

Immediately upstream of the TATAA element is 
a GC-rich segment of the promoter containing three 
binding sites for the ubiquitous transcription factor 
Spl (76). Spl, a zinc finger transcription factor in­
volved in the transcription of many cellular genes, is 
critical for both basal transcription and Tat-mediated 
fraws-activation of the viral LTR (80,176). Spl binds 
its recognition site through three zinc finger motifs 
and activates transcription through a Gin-rich hydro- 
phobic activation domain (55). The Spl sites cooper­
ate with the TATAA element, and increasing the 
spacing between the Spl sites and the TATAA ele­
ment abrogates HIV-1 replication (70,159). Spl also 
cooperates with Tat during mmv-activation (74,196). 
This interaction with Tat increases the phosphoryla­
tion of Spl by the DNA-dependent kinase (27). 
These cooperative interactions indicate that the topo­
logical arrangement of the three factors on the HIV- 
1 promoter are critical for HIV-1 expression, suggest­
ing that Spl, TFIID, and Tat must correctly interface 
with each other for optimal virus transcription.

The Spl binding sites have also been shown to 
interact with several other transcription factors. For 
example, BTEB, a GC binding transcription factor, 
can bind to the Spl motifs and activate the HIV-1 
LTR (71). Other members of the Spl family can also 
interact with the Spl motifs, but show differential ef­
fects (111). Sp4 activates the LTR, while the Sp3 
protein represses basal expression of the HIV-1 pro­
moter. Nonetheless, of the Spl family members only 
Spl cooperates with NF-kB to activate virus tran­
scription demonstrating a highly specific interaction 
between NF-kB and the trans-acting domain of Spl 
bound to the adjacent site. Embedded within the GC- 
rich Spl binding sites is a thyroid hormone response 
element, which has been shown to mediate LTR acti­
vation by the alpha thyroid receptor (150).

Enhancer Element

Immediately upstream of the Spl binding sites are 
two adjacent binding sites for the inducible transcrip­
tion factor NF-kB, which function to increase LTR 
transcription in response to a variety of cellular acti­

vation signals (94). Members of the NF-kB family 
(NF-kB 1, RelA, c-Rel, NF-kB2, and RelB) bind as 
dimers to the HIV-1 enhancer and certain combina­
tions of NF-kB subunits are preferred for Tat trans- 
activation (104). Although binding of NF-kB to the 
viral enhancer elements results in enhanced expres­
sion of HIV-1 in T-cells and macrophages (35,72,92, 
120), the NF-kB sites are not essential for HIV-1 rep­
lication (25,28,34,97) and appear to serve primarily 
to increase the rate of HIV-1 transcription during cell 
activation. The LTR enhancer is activated by proin- 
flammatory cytokines including TNFa, IL-ip, and 
IL-6 (4,35,41,57,72,99,120,134,146), mitogenic stim­
uli such as phorbol esters (33), as well as invasion by 
microorganisms such as Mycobaterium avium (50). 
Antagonistic cytokines such as TGF-p (98) and IL-10 
can also stimulate the HIV-1 enhancer under certain 
conditions and require NF-kB binding activity (7,40). 
Tat itself can also activate NF-kB forming a positive 
feedback loop to further enhance and sustain virus 
transcription (15,29,31).

Enhancer function requires cooperative protein- 
protein interactions. NF-kB cooperates with the adja­
cent Spl binding site (143) as well as the TATAA 
element to enhance virus transcription (161). The co­
operation with Spl is highly specific, involving inter­
actions with the transacting domain A of Spl (111) 
and the amino-terminal region of RelA (142). The 
cooperation with the TATAA element is mediated by 
interactions with TBP and several TAFs that include 
TAFII250 (58). The HIV-1 enhancer can bind other 
transcription factors including Ets-1 (8) and E2F-1 
(96), which respectively either cooperate with NF-kB 
to activate transcription synergistically or prevent 
NF-kB from binding the enhancer downregulating 
transcription (107).

Upstream and Downstream Regulatory Elements

The LTR regions upstream of the enhancer and 
downstream of the initiator element contain a variety 
of transcription factor binding sites that modulate vi­
rus transcription (2,48). The upstream region was 
originally identified as a negative element involved 
in the downregulation of HIV-1 expression (110, 
191), but more recently it has been shown to be capa­
ble of both up- and downregulating virus expression 
depending on the cell type and activation state of the 
cell. For example, several upstream C/EBP and AP- 
1 binding sites have been shown to mediate HIV-1 
expression in some cell types but not others (22,63- 
65). Additional binding sites for Ets, LEF-1, COUP, 
and NF-AT within this upstream region may also 
contribute to the regulation of HIV-1 transcription in 
lymphocytes (78).
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-453 TGGAAGGGCTAATTTGGTCCCAAAAAAGACAAGAGATCCTTGATCTGTGGATCTACCACA
C/EBP

-393 CACAAGGCTACTTCCCTGATTGGCAGAACTACACACCAGGGCCAGGGATCAGATATCCAC
COUP/AP-1

-333 TGACCTTTGGATGGTGCTTCAAGTTAGTACCAGTTGAACCAGAGCAAGTAGAAGAGGCCA 
COUP/AP-1 AP-1

-273 AATAAGGAGAGAAGAACAGCTTGTTACACCCTATGAGCCAGCATGGGATGGAGGACCCGG
GRE AP-1

-213 AGGGAGAAGTATTAGTGTGGAAGTTTGACAGCCTCCTAGCATTTCGTCACATGGCCCGAG
C/EBP USF

-153AGCTGCATCCGGAGTACTACAAAGACTGCTGACATCGAGCTTTCTACAAGGGACTTTCCG
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+328 GGAGAGAG' ATG GGT GCG AGA 

Met Gly Ala Arg



HIV-1 TRANSCRIPTION 71

Recent studies indicate the sequences downstream 
of transcription in the transcribed 5'-untranslated 
leader region (5'-UTR) are also important for viral 
expression (2,100,103,154,183). In vivo and in vitro 
footprinting studies have demonstrated that host cell 
transcription factors interact extensively with the 
5'-UTR (20,38,114). Downstream binding sites for 
NF-1 and LB P-1 were originally identified by Jones 
and colleagues (77), but more than a dozen different 
regulatory elements have now been identified within 
the 5'-UTR that bind several distinct families of tran­
scription factors (38,79,183). These sequence ele­
ments include binding sites for both constitutive (i.e., 
Spl) and inducible transcription factors (i.e., AP-1, 
NF-kB, IRF, NF-AT). Several have been shown to 
transmit activation signals to the LTR (147-149,155) 
and some have been shown to be required for effi­
cient HIV-1 expression and replication in T cells 
(183). In particular, several AP-1 binding sites, which 
can also bind CREB/ATF proteins, have been shown 
to mediate cellular activation signals transmitted 
through the cAMP-dependent protein kinase A (PKA) 
pathway (147,149). The 5'-UTR also interacts with 
an unstable positioned nucleosome (Nuc-1) that is 
displaced during chromatin remodeling of the HIV-1 
promoter (184).

Taken together these studies suggest responsive 
elements in the 5'-UTR may comprise a downstream 
enhancer domain that can act independent of, or in 
concert with, the upstream enhancer and promoter to 
ensure maximal activation of HIV-1 gene expression. 
Acquisition of a downstream enhancer could broaden 
the viral response to cellular activation signals and 
activate LTR transcription in response to a wide vari­
ety of cell activation signals. The downstream en­
hancer could also assist in the displacement of the 
unstable nucleosome and in the remodeling of provi- 
ral chromatin structure.

INDUCIBLE TRANSCRIPTION FACTORS 

bZip Transcription Factor Family

Recent studies indicate transcription factors of the 
basic-leucine zipper (bZip) family play important 
roles in the regulation of HIV-1 transcription (2,64). 
bZip transcription factors include the AP-1 (Jun and 
Fos), CREB/ATF, and C/EBP families. These factors

are nuclear phosphoproteins that combine to form ho­
mo- or heterodimers through their leucine zipper do­
mains (82). The downstream region of the HIV-1 
LTR contains three functional AP-1 binding sites that 
are important for virus transcription and replication 
(38,154,183). These AP-1 sites bind purified c-Jun in 
vitro (38,154), but not purified CREB/ATF protein 
(149), demonstrating that these elements are genuine 
AP-1 binding sites.

Interestingly, supershift analyses using nuclear pro­
tein extracts indicate the AP-1 complexes are com­
posed of cFos and JunD, as well as CREB, ATF-1, 
and ATF-2 (149,155), suggesting CREB/ATF pro­
teins bind to the AP-1 sites in cells as cross-family 
heterodimers with the AP-1 subunits. Certain AP-1 
and CREB/ATF family proteins have been shown to 
cross-dimerize in vitro (59). For example, cJun and 
ATF-2 dimerize to bind a nonconsensus AP-1 bind­
ing site in the c-jun gene promoter (182). Consistent 
with the cross-dimerization between AP-1 and 
CREB/ATF subunits, the AP-1 sites were found to 
mediate cooperativity between TNFa and cholera 
toxin, a potent activator of the cAMP/PKA pathway 
(147).

AP-1 binding sites have also been identified in the 
upstream regulatory region, where they may play a 
role in cell type-specific expression of HIV-1. A vari­
ant AP-1 binding site was recently identified in neu­
rotropic stains of HIV-1 that interact with Jun and 
Fos (22). AP-1 binding to the variant site is cell type 
specific because Jun and Fos were detected only with 
nuclear extracts from glial and HeLa cells and not 
from neuronal and Jurkat T-cells. Functional analysis 
further revealed that the variant AP-1 binding site is 
able to mediate AP-1-dependent transcriptional acti­
vation in glial but not neuronal cells.

The LTR also contains several C/EBP binding 
sites upstream of the enhancer (179,180) that have 
also been shown to be important for cell type-specific 
expression of the virus (63-65). The C/EBP sites in 
the HIV-1 LTR are critical for HIV-1 expression in 
macrophages but not T cells (63-65), whereas C/EBP 
inhibits HIV-1 expression in brain-derived cells 
(124). The C/EBP binding site can also cooperate 
with the adjacent NF-kB binding site to enhance 
HIV-1 gene expression (158). This transcriptional 
synergy may be mediated by cooperative binding of 
the factors to the HIV-1 promoter because C/EBP has

FACING PAGE
FIG. 3. Transcription factor binding sites within the HIV-1 promoter. The nucleotide sequence of the 5' long terminal repeat of HIV-1 
(NL4-3) is shown. The numbers to the left indicate the nucleotide positions relative to the transcription initiation site at the U 3-R  boundary. 
Major transcription factor binding sites within the LTR are in bold face type and underlined. The boundaries of the U3, U5, and R regions 
are indicated by arrows. The translation of the first four amino acids of the Gag protein is shown. SD denotes the 5' slice site donor.
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been shown to physically interact with transcription 
factors of the NF-kB family (172).

NF-kB Family

NF-kB is a family of inducible proteins that bind 
as dimers to each of the kB enhancer sites (5). In 
resting cells, NF-kB resides in the cytoplasm com- 
plexed with an inhibitor protein, I-kB (197). In 
response to cell activation signals, I-kB becomes 
phosphorylated by a specific kinase and targeted 
for proteolysis by the 26S proteasome (32,121). 
Proteolytic degradation of I-kB permits NF-kB to 
translocate to the nucleus and interact with its recog­
nition sites in the viral LTR. frans-Activation of the 
LTR is conferred primarily through the phosphoryla­
tion of the RelA subunit of the NF-kB complex 
(60,160).

NF-kB binds the HIV-1 enhancer and cooperates 
with other proteins through specific protein-protein 
interactions to stimulate HIV-1 transcription (55, 
142,143). Recently, a NF-kB binding site was identi­
fied in the 5'-UTR that cooperates with the HIV-1 
enhancer (115), demonstrating for the first time that 
upstream and downstream transcription factors can 
functionally cooperate to activate HIV-1 transcrip­
tion. NF-kB has also been detected binding to the 
viral initiator element, suggesting NF-kB may regu­
late HIV-1 expression not only from the enhancer but 
also from the initiator (125).

The HIV-1 LTR also contains several NF-AT 
binding sites. NF-AT is an inducible transcription 
factor related to the NF-kB family that is regulated 
by the calcium/calmodulin-dependent phosphatase 
calcineurin (151). Calcineurin controls the transloca­
tion of NF-AT proteins from the cytoplasm to the 
nucleus of activated cells by interacting with an N- 
terminal regulatory domain conserved in the NF-AT 
family. NF-AT is present in most immune cells and 
can physically interact with AP-1 at NF-AT/AP-1 
composite binding sites such as those found in the 
IL-2 and IL-4 promoters (175). The NF-AT binding 
site in the HIV-1 5'-UTR was originally identified by 
DNase I footprinting as an AP-3-like binding site 
(38) and was subsequently shown to be a NF-AT 
binding site using antisera raised against NF-AT in 
gel supershift assays (183). The NF-AT binding site 
has sequences immediately downstream that resem­
ble the NF-AT/AP-1 composite site in IL-4, suggest­
ing the HIV-1 site may be a composite site in which 
NF-AT and AP-1 may bind cooperatively, a feature 
of many cytokine gene promoters. The NF-AT bind­
ing sites in the upstream region of the LTR also affect 
HIV-1 transcription (118,129).

Class II trans-Activator

We recently showed that the MHC class II trans- 
activator OITA activates HIV-1 transcription (Fig. 
4). CIITA, a 124-kDa protein first identified by Mach 
and colleagues in 1993 (170), is required for tran­
scriptional activation of the major histocompatibility 
complex (MHC) class II genes (23). Mutation of 
OITA causes bare lymphocyte syndrome, a com­
bined immunodeficiency disease characterized by the 
lack of MHC class II gene expression (19,203). The 
CIITA protein, which contains a strong acidic activa­
tion domain, does not bind directly to DNA elements 
involved in class II expression. Rather, it acts as a 
transcriptional coactivator integrating interactions 
with DNA binding proteins such as RFX and CREB 
with the basal transcriptional machinery (24,42,126, 
152). Recent reports demonstrated that CREB bind­
ing protein, CBP, also physically interacts with 
CIITA to synergistically induce transcription of 
MHC class II genes (43,93). Transfection studies us­
ing a human CIITA expression plasmid and HIV-1 
provirus or LTR reporter constructs demonstrated an 
increased stimulation in HIV-1 transcription in re­
sponse to increasing amounts of CIITA (Fig. 4). 
These data are the first to suggest that CIITA plays a 
role in the activation of HIV-1 transcription in in­
fected cells and may explain why HIV-1 is efficiently 
expressed in class Il-positive, but not class II-nega- 
tive, cells (M. Saifuddin, G. T. Spear, and K. A. Roe­
buck, unpublished results).

FIG. 4. Class II trans-activator CIITA activates HIV-1 expression. 
HeLa cells were cotransfected with HIV-1 pro virus (pNL4-3-Lu- 
cE“) and increasing amounts of the class II frans-activator (CIITA) 
expression plasmid (0-4 pg). At day 3 posttransfection cell lysates 
were analyzed for luciferase activity. Note that CIITA increases 
HIV-1 pro virus expression in a dose-dependent manner.
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Repressive Transcription Factors

In latently infected cells, HIV-1 transcription is 
minimal and may be actively repressed by a closed 
chromatin structure and/or binding of repressor pro­
teins. Several DNA binding proteins have been 
shown to repress HIV-1 transcription and could play 
a critical role in viral latency. Recently, an Oct-1 
binding site was identified between the TAT A A and 
initiator elements that mediated repression of both 
basal and Tat-induced HIV-1 transcription (106). 
LBP-1, which binds to multiple sites within the initia­
tor element, has also been shown to repress HIV-1 
transcription (85) by itself or in cooperation with 
YY1 (117,157), suggesting the initiator element may 
be important for maintaining latent provirus expres­
sion in quiescent cells (85,139).

Other Transcription Factors

Computer-generated analyses of the HIV-1 LTR 
using the TRANSFACT matrix table database and 
the TFSEARCH program (61,62) revealed a number 
of other potential transcription factor binding sites 
within the HIV-1 promoter region. Many of these 
factors are predicted to interact with the HIV-1 LTR. 
Of note, we found several binding sites within the 
core promoter for the myeloid zinc finger (MZF-1) 
transcription factor. MZF-1 encodes a transcription 
factor, which is expressed in myeloid cells and recog­
nizes GC-rich sequences (67). MZF-1 contains 13 
C2H2 zinc fingers arranged in two domains, both of 
which bind DNA (127).

The promoter search also revealed binding sites 
for GATA binding transcription factors (GATA-1, -2, 
and -3). GATA-1 was originally identified as an ery- 
throid-specific factor but is present in most hemato­
poietic cells including T cell and macrophages. Bind­
ing sites for the tumor suppressor protein p53 were 
also noted. The wild-type p53 protein has been re­
ported to suppress HIV-1 transcription, while onco­
genic forms of the protein activate virus transcription 
(174). The promoter search further revealed several 
binding sites for inducible transcription factors, in­
cluding Egr-2, STATx, ELK-1, and HSF-1. It will be 
of interest to determine whether any of these tran­
scription factors functionally contribute to the activa­
tion and regulation of HIV-1 transcription in infected 
cells.

CHROMATIN REMODELING

After integration into the host chromosome, the 
HIV-1 provirus is packaged into a chromatin struc­

ture that must undergo a defined remodeling process 
involving histone acetylation prior to activation of 
LTR transcription [reviewed in (123)]. Structural 
studies on integrated templates in vivo have identi­
fied a set of positioned nucleosomes within the HIV- 
1 LTR (Fig. 5) (185). An unstable nucleosome (Nuc- 
1), located at the 5' end of the 5'-UTR between posi­
tion +10 and +155, is rapidly displaced in response 
to TNFa or PMA stimulation (184,186). The disrup­
tion of Nuc-1 during transcriptional activation of the 
HIV-1 LTR promoter produces a large open chroma­
tin region encompassing the upsteam promoter and 
most of the 5'-UTR. Similar chromatin structures can 
be duplicated in vitro when chromatin assembly oc­
curs in the presence of Spl and NF-kB transcription 
factors (194).

Transcription factor binding to the 5'-UTR may 
facilitate Nuc-1 disruption because a DNase I hyper­
sensitive site is associated with downstream tran­
scription factor binding sites and mutation of these 
sites functionally inactivates the HIV-1 LTR when 
it is constrained in a chromatin configuration (36). 
Analysis of the inactive LTR showed that the 5'-UTR 
was resistant to nuclease digestion (36). The down­
stream AP-1 binding sites, which partially overlap 
Nuc-1, may promote disruption of Nuc-1 by binding 
AP-1 and/or CREB/ATF during cellular activation. 
AP-1 and CREB transcription factors are capable of 
altering chromatin structure (130). Phosphorylation 
of CREB on Ser 119 recruits the CBP coactivator, a 
histone acetyl transferase that alters chromatin struc­
ture by modifying histones (6,56,131). Acetylation of 
HIV-1 associated histones results in nucleosome re­
modeling (168) and the displacement of Nuc-1, 
which in turn permits the activation of LTR transcrip­
tion (165,184).

The kB enhancer together with the upstream bind­
ing transcription factors LEF-1 and Ets-1 also con­
tribute to remodeling of the LTR chromatin structure 
(140,166,169) and can also recruit CBP (49). LEF-1 
is a T-cell-specific architectural transcription factor 
that enhances assembly and function of enhancer 
complexes by bending DNA (53,54,108). Assembly 
of positioned nucleosomes required the prebinding of 
both NF-kB and Spl to the HIV-1 LTR (37,195). 
Because transcriptional activation of latent provirus 
is associated with an open chromatin structure in the 
5'-UTR (20,185,186), inducible transcription factors 
such as AP-1 and NF-AT may function to disrupt 
Nuc-1 independently of, or in concert with, NF-kB 
binding at the upstream enhancer sites. Unstable 
nucleosomes such as Nuc-1 can also facilitate tran­
scription by providing the appropriate scaffolding to 
bring transcription factors bound at distant sites into
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FIG. 5. Nucleosome structure of the HIV-1 promoter. The 5' end of the HIV-1 provirus is depicted showing the viral long terminal repeat 
(LTR) and the start of the G a g  gene. The nucleotide positions are shown relative to the start site of transcription (+1). The /ram-activation 
response (TAR) element, present at the 5' end of all viral transcripts, is indicated as an open rectangle within the mRNA transcript (arrow). 
An arrow above the G ag  coding region indicates start of the Gag protein. The relative binding position of the major host cell transcription 
factors is indicated by solid rectangles along the provirus. The location of four DNase I hypersensitive sites (DHS) are indicated by solid 
rectangles below the provirus. The three positioned nucleosomes (Nuc) are indicated below the provirus as gray ovals covering 146 base 
pairs each.

juxtaposition. For example, Nuc-1 could bring the 
upstream promoter in close proximity to the down­
stream enhancer, facilitating protein-protein interac­
tions to occur between the various transcription fac­
tors bound at these remote sites. In this regard, the 
upstream and downstream NF-kB binding sites can 
functionally cooperate (115), and NF-kB can physi­
cally interact with AP-1 to activate LTR transcription 
(171). Tat may also play a role in chromatin remodel­
ing because it can form ternary complexes with his­
tone acetyltransferases (9) and recruit CBP to the 
HIV-1 promoter (119).

VIRAL TRANSCRIPTION FACTORS 

Tat

At least two virally encoded proteins also contrib­
ute to HIV-1 transcription: Tat and Vpr. Tat is ex­
pressed early in the viral life cycle and is essential 
for viral replication. Although Tat fnms-activation 
has been studied extensively, the precise mechanism 
of Tat fnms-activation is still not fully understood. 
Accumulating evidence indicates that Tat function is 
similar to that of cellular activator proteins, with the 
exception that its target is RNA rather than a DNA 
sequence. Protein fusion experiments have been used 
to demonstrate the similarities between Tat and con­
ventional transcriptional activators (156). These stud­
ies have shown that Tat, when fused to the appro­
priate DNA binding domain, can function from 
upstream or downstream DNA binding sites (167). 
However, in contrast to DNA activators, Tat cannot 
interact with its binding site until after TAR RNA 
has been transcribed. Therefore, as the rate of tran­
scription increases so does the number of Tat binding 
sites, resulting in an increase in the concentration of 
Tat near the LTR promoter. This unique feature of

Tat trans-activation may provide a way for the virus 
to bring about maximal expression of its genome 
very rapidly, and thereby trigger progression from a 
quiescent to an active viral infection.

Vpr

In addition to Tat, the 96-amino acid viral protein 
Vpr has recently been shown to activate HIV-1 tran­
scription (173). Vpr is a virion-associated regulatory 
protein that has been shown to interact with TFIIB 
and Spl (1,189), and cooperates with the coactivator 
CBP to activate HIV-1 transcription (39a). Recently, 
Vpr was shown to contain a functional motif present 
in cellular nuclear receptor coactivators. Mutations in 
this region make'Vpr a dominant negative inhibitor 
and abrogate the ability of Vpr to activate transcrip­
tion (90). Thus, Vpr appears to function as a coacti­
vator protein in concert with the coactivator CBP in 
the activation of HIV-1 transcription.

Tat trans-A ctivation

Early studies suggested that Tat increases the rate 
of transcription initiation as well as elongation (16, 
86). However, more recent studies indicate that Tat 
functions primarily to increase the rate of transcrip­
tion elongation rather than initiation of viral tran­
scription (47,78), most likely through alteration in the 
transcriptional elongation properties of RNAPII (30, 
198). Apparently, the two processes are coupled in 
HIV-1 transcription with the initiation of transcrip­
tion being mediated primarily by DNA binding cellu­
lar factors and elongation of transcription being de­
pendent on the TAR RNA binding of Tat (105,163).

In contrast to other TATAA element-containing 
promoters, it has recently been shown that transcrip­
tion of the HIV-1 promoter has a major rate-limiting 
step subsequent to the recruitment of TBP to the pro­
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moter (199). Thus, in the absence of Tat, the majority 
of viral transcripts are terminated prematurely at ap­
proximately position +59, whereas in the presence of 
Tat the majority of transcripts reach genomic length. 
Virus transcription terminates early in response to a 
DNA element known as the inducer of short tran­
scripts (1ST) (81,144,181). 1ST is a bipartite element 
in the R region (-5  to +26 and +40 to +59) that binds 
the cellular factor FBI-1, which associates with Tat, 
suggesting that Tat repression of 1ST is mediated 
through interactions between the two factors (128). 
The R region of the LTR appears to be a rather com­
plex regulatory region containing both RNA and 
DNA elements important for the formation of tran­
scription complexes that have different elongation 
properties (164). Indeed, the HIV-1 LTR may direct 
the formation of two distinct transcription complexes, 
only one of which is regulated by Tat (109).

Tat-Associated Factors

Tat frans-activation of the HIV-1 LTR requires 
coactivators that are distinct from those required for 
basal transcription (177). A number of cellular fac­
tors that bind Tat have been identified (102,132, 
178,200,205). Recently, Tat has been shown to re­
cruit a 600-kDa cellular protein complex (P-TEFb) 
containing the cyclin-dependent serine-threonine ki­
nase T1 and CDK9 kinase (73), which phosphory- 
lates the carboxy-terminal domain (CTD) of the large 
subunit of RNAPII, a prerequisite for transcription 
elongation (44-^6,190,204,206). The CTD of RNAPII 
has been shown to be essential for Tat frans-activa- 
tion (26,133). There is evidence that Tat and P-TEFb 
become attached to the elongating transcription com­
plex during its transit through TAR (87,88,145). Tat 
recruitment of the P-TEFb complex into the tran­
scription initiation-elongation complex, which can 
also be recruited by DNA binding proteins (192), has 
been proposed to trigger the transition from transcrip­
tion initiation to active elongation (138) and is the 
basis for the species specificity of Tat function (14). 
Thus, the Tat-TAR interaction has evolved as an effi­
cient way to recruit essential cellular cofactors to the 
HIV-1 promoter and properly convey them to the 
transcription initiation-elongation complex.

Exogenous Tat trans-Activation Effects

An intriguing feature of Tat is its ability to be re­
leased and taken up by cells (39,91). Exogenous Tat 
had been shown to produce a variety of cellular ef­
fects including cell activation and angiogenesis (21, 
66,69,136,193). In particular, Tat can activate cellular 
gene expression through its effects on signal trans­

duction pathways (17,18,122,201) and transcription 
factors (29,52). For example, Tat has recently been 
reported to activate AP-1 through the Jun-N-terminal 
kinase (JNK) (95). Tat can also activate NF-IL-6 (3) 
and NF-kB through induction of cytokines (137) and 
can increase CREB activity through stimulation of 
Ser phosphorylation (51). Tat can even upregulate the 
expression of the HIV-1 co-receptors, CCR5 and 
CXCR4 chemokine receptors, making cells more sus­
ceptible to infection (68,162).

CONCLUSIONS AND FUTURE DIRECTIONS

In summary, HIV-1 transcription is highly regu­
lated involving a large number of host cell transcrip­
tion factors, two virally encoded regulatory proteins, 
and a complex interplay between these cellular and 
viral factors. It is the intracellular concentrations and 
activities of these factors along with their DNA-pro- 
tein and protein-protein cooperative interactions on 
the HIV-1 promoter that ultimately determine the 
specific expression pattern of HIV-1 in any given cell 
type or in response to any particular cellular activa­
tion signal. HIV-1 has acquired this large array of 
regulatory elements most likely to ensure its expres­
sion in a wide range of cell types and in response to 
a large variety of cell activation signals.

Although HIV-1 is one of the most thoroughly 
studied transcription units in biology, it continues to 
attract researchers with its fascinating regulatory 
mechanisms. Indeed, HIV-1 has become an invalu­
able research tool not only for our understanding of 
the unique features of lentivirus transcription but also 
for our understanding of transcriptional mechanisms 
in general. However, a more complete understanding 
of HIV-1 transcription will require elucidation of the 
precise mechanism of Tat function. It will also re­
quire a more complete description of the host cell 
transcription factors involved in HIV-1 transcription 
and their specific role in chromatin remodeling of the 
HIV-1 promoter. Given the importance of HIV-1 as 
a human pathogen, continued molecular studies on 
the regulation of HIV-1 transcription will be critical 
for the future hope of developing effective therapeu­
tic strategies and identifying critical targets suitable 
for antiviral intervention.
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