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ARTICLE

Multi-Scale Network Model Supported by Proteomics for 
Analysis of Combined Gemcitabine and Birinapant Effects 
in Pancreatic Cancer Cells

Xu Zhu1, Xiaomeng Shen2, Jun Qu1,2, Robert M. Straubinger1 and William J. Jusko1,*

Gemcitabine combined with birinapant, an inhibitor of apoptosis protein antagonist, acts synergistically to reduce pancreatic 
cancer cell proliferation. A large-scale proteomics dataset provided rich time-series data on proteome-level changes that 
reflect the underlying biological system and mechanisms of action of these drugs. A multiscale network model was devel-
oped to link the signaling pathways of cell cycle regulation, DNA damage response, DNA repair, apoptosis, nuclear factor-
kappa β (NF-κβ), and mitogen-activated protein kinase (MAPK)-p38 to cell cycle progression, proliferation, and death. After 
validating the network model under different conditions, the Sobol Sensitivity Analysis was applied to identify promising 
targets to enhance gemcitabine efficacy. The effects of p53 silencing and combining curcumin with gemcitabine were also 
tested with the developed model. Merging proteomics analysis with systems modeling facilitates the characterization of 
quantitative relations among relevant signaling pathways in drug action and resistance, and such multiscale network models 
could be applied for prediction of combination efficacy and target selection.
CPT Pharmacometrics Syst. Pharmacol. 7, 549–561; doi:10.1002/psp4.12320; published online on 09 Aug 2018.

Study Highlights

Pancreatic cancer is one of the most fatal cancers in the 
United States. With incidence and death rates increasing, 
it is projected to become the second leading cause of can-
cer death by 2030.1 It is characterized by late-stage diag-
nosis, early metastasis, and drug resistance. Underlying 
clinical challenges include deregulated signaling pathways, 
large interindividual variability, intratumor heterogeneity, 

and complex influences of the tumor microenvironment.2 
Comprehensive, high-throughput sequencing of the pan-
creatic cancer genome reported >1,000 mutations, cat-
egorized into 14 core signaling pathways, including DNA 
damage control and apoptosis.3 Therefore, combination 
therapies targeting multiple pathways represent a reason-
able paradigm for pancreatic cancer treatment. However, 
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WHAT IS THE CURRENT KNOWLEDGE ON THE TOPIC?
✔  Cell signaling-based network models can provide a 
quantitative basis for exploring treatment targets in pan-
creatic cancer. However, existing QSP or network models 
often lack rich supporting datasets, diminishing the capa-
bility for identifying the model parameters and weakening 
confidence in the quantitative relationships developed.
WHAT QUESTION DID THIS STUDY ADDRESS?
✔  Gemcitabine-based therapy is the standard of care in 
pancreatic cancer treatment. However, the mechanisms of 
action of gemcitabine have not been characterized quan-
titatively or comprehensively and the selection of agents 
for combination therapy has been empirical. The systems 
network model is a promising tool to fully utilize up-to-date 
knowledge and emerging information about gemcitabine 
and provide quantitative guidance for selection of potential 
combinations.

WHAT DOES THIS STUDY ADD TO OUR KNOWLEDGE?
✔  This study provides an approach to utilize large-scale 
proteomics data to support systems network model de-
velopment and balance the biology-driven and data-driven 
features, with fewer requirements for complicated mathe-
matical algorithms. The developed network model quan-
titatively captured key drug-relevant underlying biological 
systems, focusing on cell proliferation, apoptosis, and 
survival signaling pathways in pancreatic cancer cells, and 
characterized the mechanisms of action and interactions 
of gemcitabine and birinapant.
HOW MIGHT THIS CHANGE DRUG DISCOVERY, 
DEVELOPMENT, AND/OR THERAPEUTICS?
✔  Promising drug targets are suggested that may enhance 
gemcitabine-based treatments based on the quantitative 
network model. Approaches used in this study can be ex-
tended to assess other gemcitabine-based treatments and 
identify more combinations that are efficacious.
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mechanisms of action of the standard-of-care drug gem-
citabine have not been characterized comprehensively and, 
as a result, the selection of agents for combination therapy 
has been empirical.

Cell-based network modeling, as a Quantitative and 
Systems Pharmacology (QSP) approach, has yielded im-
portant advances in recent years. Such network models 
merge quantitative information on protein-protein and drug-
target interactions to describe the biological systems and 
mechanisms of action of existing drugs.4 A well-developed 
model can assist in identifying promising drug targets,5 and 
model-based analysis and simulation can also predict which 
drugs will work together to achieve the desired pharmaco-
logical end points.6 In addition, factors underlying variability 
in efficacy can be explored, making it possible to identify 

patients who will respond to and benefit from a given ther-
apy.7 Therefore, the QSP approach with a cell signaling-
based network model may resolve the current difficulties 
in selecting efficacious treatments for pancreatic cancer. 
However, existing network models have limitations that we 
have sought to address. Model parameter values often are 
taken from published literature, rather than derived from ex-
perimental data under consistent conditions, and model val-
idation usually relies on the responses of limited end points, 
for example, the expression status of a handful of protein 
nodes.

Gemcitabine (2′,2′-difluorodeoxycytidine) is a nucleoside 
analog, and birinapant is a bivalent antagonist of inhibitor 
of apoptosis protein (IAP) that promotes apoptosis. In pre-
vious in vitro studies, we demonstrated that gemcitabine 

Figure 1  Multi-scale network model integrating systems information and drug treatment-mediated effects on cell cycle regulation, 
DNA damage response, DNA repair, apoptosis, NF-κB, and MAPK-p38, signaling pathways, as well as cell cycle distributions (G0/G1-, 
S-, and G2/M-phases) and apoptosis. The data sources were: proteomic quantification (open boxes), western blot analysis (red boxes), 
and published literature (yellow boxes). Quantitative information not available is denoted by gray boxes.
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and birinapant displayed synergistic interactions,8 and we 
used proteomic analysis to characterize numerous signal-
ing and functional pathways that might underlie the im-
proved efficacy.9 This report describes a QSP approach 
to assess quantitatively the biological status of signaling 
networks, as well as drug actions that perturb those sys-
tems. This study utilizes comprehensive, quantitative pro-
teomic data to support the protein interaction relationships 
and constrain parameter values in the development of a 
network model. The final model provides an opportunity to 
improve gemcitabine-based combination therapy in pan-
creatic cancer.

METHODS
Cell culture and cell-based experiments
The human pancreatic cancer cell line PANC-1 was used. 
Based on previous analysis of concentration-dependent 
effects on cell proliferation,8 cells were exposed for 
0–72 hours to gemcitabine (20 nM) and birinapant 
(100 nM), alone or in combination, harvested, and an-
alyzed at intervals. Cell culture and counting, cell cycle 
analysis using propidium iodide staining, and apopto-
sis analysis with Annexin V/7-AAD (aminoactinomycin 
D) were described previously.8 Liquid chromatography-
mass spectrometry (LC-MS) analysis of total extracted 
proteins used a nano-flow liquid chromatography (LC; 
Eksigent, Dublin, CA), an Orbitrap Fusion mass spectrom-
etry (MS) analyzer (ThermoFisher, Waltham, MA), and the 
Ionstar workflow to provide accurate, sensitive, and high-
throughput identification and quantification of proteins, 
as described previously.9–13 Analysis of the same protein 
samples by Western blotting provided supporting infor-
mation and validation.

Development of the multi-scale network model
Figure 1 shows a schematic of the QSP model. Details 
of model components and equations are provided in 
Appendix S1, aspects of model fitting are in Appendices 
S2–S4, model code is in Appendix S5, and model param-
eters are summarized in Table 1. Sequential model fitting 
approaches were used. In the first stage, the dynamic 
changes in protein abundance were linked quantitatively, 
and the relevant parameters were estimated simultane-
ously. In the second stage, the parameters describing the 
proteins were fixed as a driving force for the changes in cell 
cycle distribution, apoptosis, and cell numbers.

Most protein data were obtained from the proteomic 
and follow-up Western blotting analysis. Treatment-
mediated protein abundance changes were normalized 
by a control group for each time point, and data nor-
malization is discussed in Appendix S3. Data capturing 
the dynamic changes in p38 phosphorylation at high 
gemcitabine concentration,14 gemcitabine-induced se-
cretion of Fas ligand,15 and the temporal profile of TRAF-
bound cIAP2 degradation16 (Figure S1 in Appendix S2) 
were obtained from the literature. Data for changes in 
cell numbers and cell distribution in different cell cycle 
phases and in apoptosis were obtained from our previ-
ous study.8

Data analysis
Model fitting and parameter estimation was performed 
using ADAPT 5 with the maximum likelihood algorithm.17 
Naïve-pooled data from all replicate studies were analyzed 
using the variance model: 

where Vi is the variance of the response at the ith time 
point (ti), and Y(ti) is the predicted response at time ti. The 
variance parameters intercept and slope were estimated 
together with system parameters. Model performance 
was evaluated by goodness-of-fit criteria, including visual 
inspection of the fitted curves, sum of squared residuals, 
Akaike information criteria, Schwarz criterion, and coeffi-
cients of variation (CV%) of the estimated parameters.

Global sensitivity analysis
Global Sobol Sensitivity Analysis was implemented via the 
IQM Tools (IntiQuan, Basel, Switzerland) based on MATLAB 
(successor of SBPOP/SBTOOLBOX2) and was used to de-
termine the sensitivity of model outputs to changes in the 
parameters. The parameter lower and upper bounds were 
set to values fivefold lower and higher than their estimated 
values. The mean values were based on bootstrapping with 
5,000 resamples.

RESULTS
Mechanisms of drug action and interactions that 
support the model structure
Our proteomic analysis identified and quantified 1,481 
proteins that were changed significantly by gemcitabine 
and birinapant.9 Together with published literature, they 
provide data for key signaling pathways relevant to drug 
mechanisms of action and interactions. Mechanistic infor-
mation for pathways regulating cell cycle progression, DNA 
damage response (DDR), DNA repair, mitogen-activated 
protein kinase (MAPK)-p38, nuclear factor-kappa β (NF-
κβ), and intrinsic and extrinsic apoptosis was summarized 
to support the development of the system network model 
(Figure 1).

Cell cycle regulation and DNA damage response. The 
primary mechanism assumed for gemcitabine-induced S-
phase arrest is by direct gemcitabine action (Figure S2 in 
Appendix S2).18 Replication stress by gemcitabine induces 
DDR. The DDR further activates upstream checkpoint 
proteins, alters the expression of downstream cell cycle 
regulators, and perturbs cell cycle progression through 
all phases.19,20 DNA repair, also activated as a part of the 
DDR, reverses the direct gemcitabine-induced S-phase 
arrest and restores cell cycle progression.21 Significant 
gemcitabine-induced changes in proteins related to 
DDR regulation and DNA repair, which may contribute 
to cell survival and drug resistance, were diminished in 
the presence of birinapant (Figure S3 in Appendix S2).9 
Birinapant also activated cyclins and CDKs, and induced 
protein p21,9 and these effects most likely are mediated by  
NF-κβ.22,23

(1)Vi = (intercept+slope ⋅Y (ti ))
2
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Table 1  Parameter values and coefficients of variation (%CV) estimated in the developed network model (Figure 1) using a two-stage approach. In the first 
stage, the dynamics of all protein nodes were estimated simultaneously; in the second stage, the parameters describing protein dynamics were fixed as a 
driving force for modeling the changes in cell cycle distribution, apoptosis, and cell number

Parameter (units) Annotation Estimate CV%

First stage

 katm (h−1) Turnover rate of protein ATM 0.126 18.5

 kg,atm (nM−1) Induction of protein ATM by gemcitabine 0.404 18.4

 kb,atm (nM−1) Reduction of gemcitabine-induced ATM by birinapant 0.00430 18.3

 kp53 (h
−1) Turnover rate of protein p53 0.0301 20.6

 kp53,fb (h−1) Rate of negative self-feedback on protein p53 0.792 244

 Hp53,fb Coefficient for modification of negative self-feedback on protein p53 5.00 Fixed

 kfasl (h
−1) Turnover rate of Fas ligand 0.178 8.75

 kg,fasl (nM−1) Induction of Fas ligand by gemcitabine 6.62 13.2

 kfasl,fb Coefficient for modification of negative self-feedback on Fas ligand 0.308 17.5

 ktao (h−1) Turnover rate of protein for TAO 0.0137 30.2

 kpp2cb (h−1) Turnover rate of protein for PP2CB 0.101 20.6

 kg,pp2cb (nM−1) Induction of protein for PP2CB by gemcitabine 0.666 29.9

 kb,pp2cb (nM−1) Reduction of gemcitabine-induced PP2CB by birinapant 0.0103 5.49

 kpp5 (h
−1) Turnover rate of protein for PP5 0.163 24.7

 kg,pp5 (nM−1) Induction of protein for PP5 by gemcitabine 0.439 19.4

 kb,pp5 (nM−1) Reduction of gemcitabine-induced PP5 by birinapant 0.00791 8.74

 ktnf (h
−1) Rate of TNF-α induction by NF-κB 0.200 Fixed

 kb,iap Coefficient for cIAP2 degradation induced by birinapant 0.061 Fixeda

 kiap (h−1) Turnover rate of protein cIAP2 0.173 Fixeda

 ktnfs (h
−1) Activation rate of TAK1 or Caspase-8 by TNF-α 0.0857 17.3

 kb,rip Coefficient for induced RIP1 recruitment by cIAPs degradation 12.3 92.4

 kinh,iap Coefficient for inhibition of TAK1 by cIAPs degradation 0.600 Fixed

 ksti,iap Coefficient for activation of Caspase-8 by cIAPs degradation 0.0925 72.8

 ktak,p38 Coefficient for activation of p38 by TNF-α mediated via TAK1 0.0213 126

 kask,p38 Coefficient for activation of p38 via FasL mediated via ASK1 0.0323 20.5

 ktak,p65 Coefficient for activation of p65 by TNF-α mediated via TAK1 0.129 94.7

 katm,p65 Coefficient for activation of p65 by ATM 0.280 31.4

 kp38,p65 Coefficient for activation of p65 by p38 0.497 48.4

 Hfasl Coefficient for modification of activation of Caspase-8 by FasL 0.0567 63.4

 kg,myc (nM−1) Induction of Myc activity by gemcitabine 0.0500 Fixed

 kcas8,bax Induction of Bax by extrinsic apoptotic pathway mediated by tBid 1.05 31.9

 Hp53,bax Coefficient for modification of negative regulation of mp53 on Bax 2.00 Fixed

 kapo,bcl Coefficient for Bcl-2 degradation induced by Caspase-3 mediated apoptosis 0.747 18.9

 kapo,ind (h−1) Turnover rate of cleaved PARP 0.0785 16.1

 kcycD (h−1) Turnover rate of cyclin D1 0.0160 56.9

 kp65,cycD Coefficient for induction of cyclin D1 by NF-κB 9.33 130

 kcycB (h−1) Turnover rate of cyclin B1 0.0795 24.6

 kp65,cycB Coefficient for induction of cyclin B1 by NF-κB 0.413 59.9

 kp65,p21 Coefficient for induction of p21 by NF-κB 0.914 20.8

 krb (h−1) Turnover rate of protein Rb 0.104 70.2

 krfc (h
−1) Turnover rate of protein for RFC1 0.0619 29.8

 kg,rfc (nM−1) Induction of protein for RFC1 by gemcitabine 0.593 33.7

 kb,rfc (nM−1) Reduction of gemcitabine-induced RFC1 by birinapant 0.00815 9.81

 krb,CDK2 Coefficient for the positive correlation between activated CDK2 and protein Rb 1.31 27.6

 kcycB,CDK1 Coefficient for the positive correlation between activated CDK1 and cyclin B1 0.979 19.9

 Hg Coefficient for modification of the relationship of gemcitabine concentration vs. protein 
changes

0.287 16.7

Second Stage

 kinh,G1 Inhibitory effect of overexpressed cyclin D1 and p21 on G1 phase transition 0.212 27.3

 kinh,S Arrest in S phase regulated by checkpoint proteins represented by protein Rb 
phosphorylation

0.0581 140

 kinh,G2 Inhibitory effect of overexpressed cyclin B1 and p21 on G2/M phase transition 0.214 16.6

(Continued)
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MAPK-p38 and NF-κB. The MAPK-p38 pathway is 
activated by gemcitabine-induced DDR9 via the TAO 
protein.24 This pathway may also be activated by tumor 
necrosis factor α (TNF-α) via TAK1,25 or by FasL through 
ASK1,26 and negatively regulated by phosphatases 
regulating DDRs, such as PP2CB and PP5.25,27 MAPK-p38 
activation by gemcitabine was reported to contribute to 
caspase-8 mediated apoptosis.14 Gemcitabine-induced 
NF-κβ activation (Figure S4 in Appendix S2) is part of the 
DDR and is considered a cell survival pathway contributing 
to gemcitabine resistance.28 This activation could be 
mediated by the TAK129,30 and MAPK-p3831 pathways, and 
is countered by protein PP2CB.25 Birinapant interrupts the 
MAPK-p38 and NF-κβ pathways through degradation of 
TRAF2-bound cIAP1 and cIAP2.16 In the presence of TNF-α, 
birinapant blocks TNF-α-mediated activation of TAK1 and 
reduces activity of NF-κβ.16 However, we observed that 
birinapant increased phosphorylation of p65 in the absence 
of TNF-α (Figure S4 in Appendix S2). It is possible that 
rapid degradation of cIAP1 leads to rapid recruitment 
of RIP1 to TNF-R1 with further TAK1 activation and p65 
phosphorylation.9,32 The increased NF-κβ activity would 
be expected to induce secretion of TNF-α in a positive-
feedback manner.33

Apoptosis. Both intrinsic and extrinsic apoptosis may be 
induced by DDR, mediated via p53, c-Myc, and TAO. Protein 
p53 is an important switch in the balance between cell 
survival and death following DNA damage.34,35 Normally, it 
can promote apoptosis through upregulation of Bcl-2 family 
members, such as Bax. However, p53 is mutated (mp53) in 

the PANC-1 cell line, and mp53 may negatively influence the 
intrinsic apoptosis pathway.36 Anti-apoptotic Bcl-2 could be 
induced by NF-κβ,23 but is cleaved by activated caspases 
during apoptosis.37 In addition to the intrinsic apoptosis 
pathway, gemcitabine was reported to induce Fas ligand 
expression15,34; Fas ligation can induce apoptosis directly,34 
or further activate the MAPK-p38 pathway and induce 
apoptosis.26 Birinapant-induced degradation of cIAPs 
leads to formation of a RIPK1:caspase-8 protein complex 
and increased caspase-8 activation through activation of 
TNFR1 and TRAIL receptors, and switches the TNF-α/TAK1/
NF-κβ signaling into caspase-8-mediated apoptosis.16 The 
intrinsic apoptosis pathway is also activated by birinapant, 
mediated by tBid.38 Therefore, strong apoptotic signaling 
was induced in the presence of birinapant, as confirmed by 
cleaved PARP (Figure S5 in Appendix S2) and caspase-3.9

Multi-scale network model development
Based on these drug-related responses and signaling 
mechanisms, a network model incorporating the key 
pathways were developed (Figure 1). Several assump-
tions were made to simplify the mechanisms as imple-
mented in the model. First, gemcitabine was assumed 
to induce rapid S-phase cell cycle arrest directly. It was 
also assumed that cyclin D1 and p21 regulate G1-phase 
progression that the accumulation of phosphorylated Rb 
protein represents S-phase arrest, and that cyclin B1 and 
p21 regulate G2-phase progression. The RFC1 protein 
was selected as a marker for DNA repair because its pro-
file followed the general pattern of other DNA repair pro-
teins (Figure S3 in Appendix S2).9,39 Binding of TNF-α to 

Parameter (units) Annotation Estimate CV%

 ksti,g,S Instantaneous S-phase arrest induced by gemcitabine directly 0.112 6.40

 krfc,S Effect of protein for RFC1 in reversing the direct gemcitabine-induced S-phase arrest 1.71 15.6

 Trepair,d (h) Delay in the initiation of DNA repair process 31.4 3.81

 R0 Initial number of total cells in the culture system 2.25 × 105 1.64

 k1 (h
−1) Rate constant for transition from G0/G1 to S phase 0.604 39.3

 k2 (h
−1) Rate constant for transition from S to G2/M phase 0.111 3.34

 k3 (h
−1) Rate constant for transition from G2/M to G0/G1 phase (mitosis) 0.339 35.6

 kapo (h−1) Rate constant for progression to apoptosis 0.00530 5.16

 f1 Ratio of rate constants for progression to apoptosis and cleared from the system 0.211 152

 kother (h
−1) Rate constant for progression to non-apoptotic cell death 0.000436 3.82

 f(G1)0 Initial fraction of cells in the cell cycle of G0/G1 phase 47.3 1.31

 f(S)0 Initial fraction of cells in the cell cycle of S phase 11.6 4.83

 f(apo)0 Initial fraction of cells undergoing apoptosis 5.00 Fixedb

 f(other)0 Initial fraction of cells undergoing non-apoptotic cell death 1.50 Fixedb

 IR50 Number of cells that cause half maximal growth restriction 6.47 × 104 48.6

 Imax3 Ratio of growth restriction on transition rate k3 vs. transition rate k1 0.830 8.47

 Kother,g Nonlinear coefficient for induction of non-apoptotic cell death by gemcitabine 0.00001 Fixedb

 Hother,g Coefficient modifying the induced non-apoptotic cell death by gemcitabine 0.1 Fixedb

 Kother,b Nonlinear coefficient for induction of non-apoptotic cell death by birinapant 0.0045 Fixedb

 Hother,b Coefficient modifying the induced non-apoptotic cell death by birinapant 0.8 Fixedb

CV%, coefficients of variation; IAP, inhibitor of apoptosis protein; NF-κβ, nuclear factor-kappa β; TNF-α, tumor necrosis factor α.
aParameters were estimated based on data digitized from Benetatos et al.16 For details refer to Appendix S1. bParameters were fixed based on Zhu et al.8

Table 1  Continued
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TNFR1, mediated by TAK1, or DNA damage protein TAO 
and binding of FasL, mediated by ASK1, were assumed 
to induce the phosphorylation of p38. Proteins PP5 and 
PP2CB were assumed to regulate ASK1-mediated p38 ac-
tivation negatively. Checkpoint protein ATM, the binding of 
TNF-α to TNFR1 in the presence of cIAPs, and p38 phos-
phorylation were assumed to further activate NF-κβ. The 
mitochondria-mediated intrinsic apoptosis pathway was 
assumed to be induced by Bax and antagonized by Bcl-2. 
In the model, Bax is induced by c-Myc and tBid, with tBid 
transferring signaling from the caspase-8-mediated path-
way to the intrinsic pathway. Bcl-2 was assumed to be ac-
tivated by NF-κβ and degraded by the activated caspases. 
We also assumed that gemcitabine can upregulate mp53, 
but instead of activating the intrinsic apoptosis pathway, 

mp53 blocks the upregulation of pro-apoptotic Bax.40 
Extrinsic apoptosis is mediated by caspase-8 and acti-
vated by the binding of TNF-α to TNFR1 in the absence 
of cIAPs, the binding of Fas ligand, and p38 phosphor-
ylation. Additional details explaining each node and in-
teraction are provided in Appendix S1. The quantitative 
relationships among protein-level drug responses were 
described by 75 equations, listed in Appendix S1, and 
the references supporting each equation are provided. 
The first stage of model development quantitatively and 
simultaneously linked 21 protein nodes and estimated 46 
parameters. In the second stage, protein changes were 
fixed to drive the changes in cell population distribution 
and proliferation, and 23 parameters were estimated or 
fixed based on prior knowledge. A rich dataset, consisting 

Figure 2  Observations in PANC-1 cells and fittings based on the network model of Figure 1. Treatment groups included control 
(CTRL, black), 10 nM, 20 nM, 100 μM gemcitabine (GEM, blue), 100 nM birinapant (BNT, green), and 20 nM/100 nM gemcitabine/
birinapant combination (COMB, red). (a) Temporal fold-change in the abundance of selected protein nodes, and (b) total cell numbers 
(proliferation) and cell cycle distributions in G0/G1-, S-, G2/M-phases, and in apoptosis. Experimental observations are represented 
by symbols, and fittings based on the multi-scale network model (Figure 1) are indicated by curves. Model parameters are listed in 
Table 1.

Figure 3  Model-based predictions of impact of p53 mutations and silencing on gemcitabine-mediated inhibition of cell proliferation of 
PANC-1 cells. (a) Left: Simulations of cell proliferation during exposure to 20 nM gemcitabine in cells with mutant p53 (mp53; purple) 
and wild-type p53 (wtp53; black). Right: Kaplan Meier plot showing survival of 184 pancreatic cancer patients in PAAD study with 
mp53 (purple) and wtp53 (black), generated from the TCGA database using UCSC Xena (https://xenabrowser.net/heatmap/). Abscissa 
represents days of survival from diagnosis. (b) Silencing p53 shows opposing effects upon cell proliferation and induction of apoptosis 
by gemcitabine in cells with mp53 vs. wtp53. Profiles of cell numbers (left) and percentage of apoptotic cells (right) in cells with mp53 
(solid line) and silenced mp53 (simp53; dashed line) or wtp53 (solid line) and silenced wtp53 (siwtp53; dashed line) in control cells 
(black) and the presence of 20 nM gemcitabine (blue).
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of time-series quantification of 19 proteins by proteom-
ics, Western blot analysis, and literature sources, as well 
as changes in cell distribution and cell numbers from 
our previous studies,8 supported the identifiability of the 
parameters. The observed data were characterized well 
(Figure 2), and the parameters were estimated with rea-
sonable CV%, as defined and summarized in Table 1.

Model validation
Several simulations were made under different conditions 
and compared with experimental observations: (i) the effi-
cacy of gemcitabine in wild-type p53 (wtp53) vs. mp53, (ii) 
apoptosis signaling with and without TNF-α blockade, (iii) 
transient gemcitabine-induced S-phase arrest, and (iv) cell 
proliferation with simultaneous vs. sequential drug expo-
sure. Consistency of the model predictions with experimen-
tal observations increases confidence in the current model 
and provides model validation. The validated assumptions 
in mechanisms also provide mechanistic interpretations 
and insights into previously unexplained drug responses. 
Appendices S3 and S4 provide further insights into ap-
proaches used in modeling this complex system.

Role of p53 mutation. Mutant p53 proteins occur in 50–
75% of pancreatic cancers and are involved in regulation 
of cell survival and drug resistance. The mp53 proteins 
are incapable of recognizing wtp53 DNA binding sites 
and can exert oncogenic effects.41 A Kaplan-Meier plot 
of 184 patients with pancreatic cancer in PAAD study 
with mp53 vs. wtp53was generated from The Cancer 
Genome Atlas database,42 and patients with wtp53 showed 
higher survival (Figure 3a). Given that gemcitabine is the 
standard-of-care for patients with pancreatic cancer, the 
impact of p53 mutations on the antiproliferative effects of 
gemcitabine was explored using the systems model. It was 
assumed that wtp53 activates Bax,34 whereas mp53 blocks 
Bax activation.40 Simulations showed that cell proliferation 
after gemcitabine treatment was similar in the mp53 and 
wtp53 groups at early times, but at later times, the wtp53 
group showed a drastic decrease in proliferation, whereas 

proliferation remained the same with mp53 (Figure 3a). This 
demonstrates that the model can capture the diminished 
efficacy of gemcitabine when p53 mutations are present.

Functional role of TNF-α. The TNF-α/NF-κβ pathway is 
downstream of the birinapant target (IAP) and NF-κβ is a 
key player in the signaling pathways related to gemcitabine 
mechanisms based on our analysis of upstream regulators.9 
Therefore, the TNF-α/NF-κβ pathway was investigated in the 
network model. One challenge was that endogenous TNF-α 
concentrations could not be quantified reliably by enzyme-
linked immunosorbent assay, making it difficult to identify 
the role of this pathway in the observed drug responses. 
Therefore, PANC-1 cells were incubated with the anti-TNF-α 
antibody infliximab to investigate the impact of lowering 
TNF-α concentrations during drug exposure. In the control-
alone and gemcitabine-alone groups, addition of infliximab 
did not change significantly the percentage of apoptotic cells 
after 96 hours, whereas in the birinapant and gemcitabine/
birinapant combination groups, TNF-α blockage reduced 
apoptotic cells by 25–30% (Figure 4a), supporting the role of 
TNF-α in driving birinapant-mediated apoptosis. In parallel, 
the role of TNF-α was investigated in the network model. By 
assuming that infliximab reduced TNF-α by 90%, the model-
predicted percentage of apoptotic cells was similar to the 
observed results for the four treatment groups (Figure 4b), 
suggesting that the model captured well the role of TNF-α.

Transient gemcitabine-induced cell cycle arrest and 
the effect of sequential drug exposure. Previously, 
gemcitabine was observed to induce rapid but transient 
S-phase cell cycle arrest.8 Moreover, with ≥24  hours of 
gemcitabine exposure, the magnitude and duration of S-
phase arrest became insensitive to duration of gemcitabine 
exposure (Figure  5a). The network model suggested that 
delayed DNA repair induced by gemcitabine could explain 
these findings. In the model, a DNA polymerase accessory 
protein for RFC1 was used as a pharmacodynamic marker 
of DNA repair, and induction of RFC1 protein was estimated 
to occur 30 hours after initiation of gemcitabine exposure. 

Figure 4  The functional role of TNF-α, revealed by the effect of anti-TNF-α antibody infliximab upon drug-mediated apoptosis in 
PANC-1 cells. Treatment groups included control (CTRL), 20 nM gemcitabine (GEM), 100 nM birinapant (BNT) and 20 nM/100 nM 
gemcitabine/birinapant combined (COMB) treatment for 96 hours, with (light gray bar) or without (dark gray bar) 1 μg/ml infliximab 
(INF). Percentage of apoptotic cells (a) measured by annexin V/7-AAD assay in PANC-1 cells after treatments of 96 hours, or (b) 
simulated based on the network model.
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Simulations based on this model showed a decline in S-
phase arrest after 30 hours, which was insensitive to further 
exposure times, and the model-predicted S phase temporal 
distribution profiles (Figure  5b) were similar to observed 
data (Figure  5a), confirming gemcitabine-mediated 
delayed DNA repair as a mechanistic interpretation of this 
previously unexplained phenomena. Delayed DNA repair 
after gemcitabine exposure may also explain mechanistically 
the schedule-dependent antiproliferative effects of the 
gemcitabine/birinapant combination observed previously: 
initiating birinapant after ≥24 hours of gemcitabine exposure 
produced greater efficacy than simultaneous exposure.8 
The assumption was tested with the current network model. 

Cell proliferation profiles were simulated for a sequential 
schedule, in which birinapant exposure was initiated after 
30  hours of gemcitabine exposure, the time at which 
activated DNA repair was estimated. At low birinapant 
concentrations (100  nM), sequential and simultaneous 
exposure showed similar efficacy (Figure S6 in Appendix 
S2). However, a higher birinapant concentration (200  nM) 
was predicted to mediate greater efficacy with sequential 
exposure (Figure 5c,d). Thus, the network model explained 
mechanistically the greater efficacy of birinapant sequenced 
after gemcitabine and supported our previous assumptions, 
although it slightly underpredicted the efficacy of lower 
birinapant concentrations combined with gemcitabine.

Figure 5  Transient gemcitabine-induced cell cycle arrest and sequential drug exposure effects. Gemcitabine induced transient cell 
cycle arrest that was alleviated by delayed initiation of DNA repair. Panels show percentage of cells in S-phase after incubation with 
20 nM gemcitabine for different durations (24, 48, 72, and 96 hours) (a) measured by cell cycle analysis, or (b) predicted by the network 
model, and cell cycle arrest in S-phase became insensitive to continuing gemcitabine exposure with ≥24 hours of treatment. Model-
based simulation of cell proliferation and cell cycle arrest with exposure to 20 nM gemcitabine and 200 nM birinapant initiated either 
simultaneously (solid/black) or sequentially (birinapant initiated 30 hours after gemcitabine; dashed/blue). (c) Sustained suppression 
of cell proliferation by sequenced exposure, and (d) percentage of cells in S phase with simultaneous vs. sequenced drug exposure. 
Model prediction recapitulated experimental data showing greater efficacy of gemcitabine/birinapant treatment with sequenced drug 
exposure.8
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Model applications
Several applications of the validated network model were 
explored, focusing on the selection of potential targets to 
enhance antitumor efficacy and the impact of genetic vari-
ations on therapeutic outcomes.

Sobol Sensitivity Analysis for target selection. To test 
which molecules or pathways may have the greatest impact 
on gemcitabine efficacy, the Sobol Sensitivity Analysis 
was performed with the network model perturbed by 
gemcitabine. The selected end point was the change in viable 
cell numbers at 100 hours. The five most important factors 
observed were: (i) the DNA repair proteins represented by 
RFC1, (ii) negative self-feedback or developed resistance 
to Fas pathway43 activation, (iii) the DDR sensor ATM, (iv) 
p53, the regulator of DDR, and (v) the G1 cell cycle regulator 
cyclin D1 (Figure 6a). Thus, targeting pathways related to 
DNA repair and DDR, as well as the death receptor-mediated 
extrinsic pathways were predicted to enhance gemcitabine 
efficacy. Cell proliferation profiles were simulated under: 
(i) blockade of RFC1 induced by gemcitabine, and (ii) 

blockade of developed resistance to Fas, or the addition of 
external Fas ligand (Figure 6b). Simulations predicted lower 
cell numbers under all scenarios, and that both proposed 
approaches could enhance the efficacy of gemcitabine.

Effect of p53 silencing. Because p53 is an important 
regulator of cell survival and death following DNA damage, 
gemcitabine effects were investigated under p53 silencing. 
In the model, the baseline p53 activity was reduced to 10% 
to mimic p53 silencing, and effects on cell proliferation 
were simulated for wtp53, wtp53 silencing (siwtp53), mp53, 
and mp53 silencing (simp53; Figure  3b). Silencing mp53 
would relieve its suppression of apoptotic signaling, and 
the model predicted considerably reduced cell proliferation 
in the control group (Figure  3b). Despite that, the model 
predicted little improvement in gemcitabine efficacy with 
simp53. However, silencing wtp53 reduced the activation 
of apoptotic signaling, and the efficacy of gemcitabine was 
reduced considerably (Figure 3b). These simulation-based 
hypotheses remain to be tested, but suggest that direct p53 
silencing may not have major clinical benefits.

Figure 6  Model-based analysis and 
simulations for target selection and 
prediction of drug combination efficacy. 
Sobol Sensitivity Analysis assisted in 
the selection of protein targets that 
could potentially enhance gemcitabine 
efficacy. (a) Rank-order sensitivity 
indices of model kinetic parameters 
having the most significant impact on 
proliferating cell numbers. (b) Simulated 
profiles of cell proliferation responses 
to 20 nM gemcitabine alone (GEM; 
black), development of resistance to 
Fas pathway signaling (FasFB Inh; blue), 
Fas ligand exposure (FasL; green), 
or combined with inhibition of DNA 
repair (RFC Inh; red). (c) Model-based 
simulation of cell proliferation profiles of 
drug-free control cells (black) and when 
treated with gemcitabine (GEM; blue), 
curcumin (CUR; green), or both (red). 
Specific model parameters were fixed 
based upon assumed mechanisms of 
curcumin action (see text).
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Efficacy of an empirically selected combination. 
Literature reports suggest that curcumin, a natural compound 
extracted from turmeric (Curcuma longa), may exert beneficial 
effects in various cancers via inhibition of constitutively 
activated NF-κβ, p53 activation, and downregulation of NF-
κβ-regulated proteins such as Bcl-2, IAPs, and also cyclin 
D1, c-Myc inhibition.44,45 One study indicated that curcumin 
also potentiated the apoptotic effects of gemcitabine and 
enhanced its antitumor effects.45 However, clinical trials show 
no benefit of curcumin with gemcitabine-based therapy,46 
and in vitro studies demonstrated antagonistic effects 
when combining gemcitabine and curcumin (Appendix 
S6). This combination was investigated mechanistically by 
simulation with the network model. Curcumin was assumed 
to reduce the activation of NF-κβ by 90%, decrease NF-κβ-
regulated proteins, activate p53, and block the activation 
of c-Myc.44,45 Cell proliferation profiles were simulated for 
control, gemcitabine, curcumin, and combined gemcitabine/
curcumin groups. Although simulations showed that both 
gemcitabine and curcumin decreased cell proliferation as 
single agents, the two combined were less efficacious than 
expected for simple additivity (Figure 6c). This result may 
reflect the complex roles that the major curcumin targets 
play in functions related to cell progression and repression. 
For example, although NF-κβ induces Bcl-2 expression 
and apoptosis resistance, it also affects the expression of 
cyclins and is partially responsible for cell cycle arrest. Thus, 
simulations with the model suggest a potential mechanistic 
rationale that is consistent with clinical and in vitro findings 
that curcumin does not enhance gemcitabine-based 
therapies.

DISCUSSION

A recent study of transcriptomic and genomic data showed 
little predictive power for selection of efficacious drugs for 
patients with pancreatic cancer.47 Analysis of chemother-
apy responses at the level of the proteome could provide 
insights that would inform such decisions. The strategy of 
utilizing proteomic data as the basis for cellular network 
modeling has been explored previously48; in this study, it 
provides comprehensive and accurate quantification of 
the effector molecules in numerous inter-related pathways. 
Proteomics also assists in identifying marker proteins within 
key signaling pathways that reveal the status of the net-
work. Moreover, such a modeling approach allowed quan-
titative discrimination of the underlying drug-independent 
biological systems and drug effects upon these signaling 
pathways. The key pathways related to gemcitabine and 
birinapant mechanisms of action and interactions, cell 
cycle progression, DDR, DNA repair, MAPK, NF-κβ, and 
apoptosis, were characterized quantitatively. Based on 
these systems, new targets or combination therapeutic 
strategies could be explored. Approaches, such as target-
ing DDR, DNA repair,49 or Fas/FasL,50 have been reported 
in preclinical settings; model sensitivity analysis supported 
the importance of those pathways. Model-based simula-
tions also indicated the limited additional benefits of direct 
p53 silencing or use of natural products, like curcumin 

with current gemcitabine-based treatments in pancreatic 
cancer.

Systems modeling approaches represent a promising av-
enue in cancer research.4–7 However, selection of the protein 
nodes to be included in a systems model often is not well 
justified, and parameter values usually are obtained from 
the literature and adjusted based on limited observations. 
Several strategies were utilized here to support the quan-
titative relationships developed, and to limit the biological 
and quantitative uncertainty. First, proteomic analysis pro-
vided mechanistic support that the protein nodes included 
in the model represent specific and relevant signaling path-
ways. Moreover, because the modeling approach includes 
both mechanism-driven and data-driven components, only 
those protein-protein relations that could characterize well 
the rich experimental dataset were retained. Therefore, the 
model development process itself represents an alterna-
tive validation of the qualitative relationships in the model, 
minimizing the biological uncertainty. Second, full tempo-
ral profiles were obtained for most proteins comprising the 
developed model; this supports parameter identifiability 
and reduces quantitative uncertainty. Third, the model was 
validated by comparing model-predicted results with ex-
perimental observations, increasing confidence in the de-
veloped model.

Several limitations of the work require future consider-
ation. (i) Further reduction of quantitative uncertainty: the 
majority of observed protein responses were obtained for 
single drug concentrations, because of sample capacity lim-
its of the LC/MS analysis. Therefore, extrapolating to differ-
ent concentrations or scaling to humans requires additional 
data. (ii) Comprehensiveness of mechanism: the current 
model does not include all potentially important mecha-
nisms of gemcitabine action. For example, the PI3K/AKT 
pathway was not explored because proteomic quantifica-
tion revealed minimal treatment-mediated changes in AKT 
abundance (data not shown). In addition, a single pancreatic 
cancer cell line was used, limiting the ability to anticipate 
interindividual variations in the disease. Therefore, refining 
the model to capture drug responses of other cell lines and 
in vivo models is a necessary bridge to accurate predictions. 
Similarly, extension of the analysis to the phosphoproteome 
would provide an additional layer of insight into drug re-
sponse mechanisms. Nonetheless, the work provides proof-
of-concept for using a sensitive, large-scale proteomic 
dataset as a means of developing biologically relevant and 
quantitative relationships. (iii) Limitations of computational 
approaches: the algorithm used for solving the differential 
equations is a local method; global methods (e.g., the Global 
Optimization Toolbox based on MATLAB) would be required 
for models of comparable complexity but with sparser data.

In conclusion, systems network modeling, combined with 
comprehensive and reproducible proteomics data, has identi-
fied reliable quantitative pharmacological relationships, accu-
rately characterized underlying signaling pathways related to 
cell proliferation and apoptosis, and provides insights into the 
mechanisms of action and interactions of gemcitabine and 
birinapant. This paradigm can be applied to identify prom-
ising targets for therapy or mechanistically complementary 
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drug combinations, and predict the impact of genetic muta-
tions in pharmacological response networks.

Supplementary Information 

Supplementary information accompanies this paper on the 
CPT: Pharmacometrics & Systems Pharmacology website. 
(www.psp-journal.com)
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