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Abstract

Recent breakthroughs in deep learning using automated measurement of face and head motion 

have made possible the first objective measurement of depression severity. While powerful, deep 

learning approaches lack interpretability. We developed an interpretable method of automatically 

measuring depression severity that uses barycentric coordinates of facial landmarks and a Lie-

algebra based rotation matrix of 3D head motion. Using these representations, kinematic features 

are extracted, preprocessed, and encoded using Gaussian Mixture Models (GMM) and Fisher 

vector encoding. A multi-class SVM is used to classify the encoded facial and head movement 

dynamics into three levels of depression severity. The proposed approach was evaluated in adults 

with history of chronic depression. The method approached the classification accuracy of state-of-

the-art deep learning while enabling clinically and theoretically relevant findings. The velocity and 

acceleration of facial movement strongly mapped onto depression severity symptoms consistent 

with clinical data and theory.

I. INTRODUCTION

Many of the symptoms of depression are observable. In depression facial expressiveness 

[23], [26] and head movement [12], [18], [14] are reduced. The velocity of head movement 

also is slower in depression [14].

Yet, systematic means of using observable behavior to inform screening and diagnosis of the 

occurrence and severity of depression are lacking. Recent advances in computer vision and 

machine learning have explored the validity of automatic measurement of depression 

severity from video sequences [1], [28], [31], [8].

Hdibeklioglu and colleagues [8] proposed a multimodal deep learning based approach to 

detect depression severity in participants undergoing treatment for depression. Deep learning 

based per-frame coding and per-video Fisher-vector based coding were used to characterize 

the dynamics of facial and head movement. For each modality, selection among features was 

performed using combined mutual information, which improved accuracy relative to blanket 

selection of all features regardless of their merit. For individual modalities, facial and head 

movement dynamics outperformed vocal prosody. For combinations, fusing the dynamics of 

facial and head movement was more discriminative than head movement dynamics and more 
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discriminative than facial movement dynamics plus vocal prosody and head movement 

dynamics plus vocal prosody. The proposed deep learning based method outperformed the 

state of the art counterparts for each modality.

A limitation of the deep learning approach is its lack of interpretability. The dynamics of 

facial, head, and vocal prosody were important, but the nature of those changes during 

course of depression were occult. From their findings, one could not say whether dynamics 

were increasing, decreasing, or varying in some non-linear way. For clinical scientists and 

clinicians interested in the mechanisms and course of depression, interpretable features 

matter. They want to know not only presence or severity of depression but how dynamics 

vary with occurrence and severity of depression.

Two previous shallow-learning approaches to depression detection were interpretable but 

less sensitive to depression severity. In Alghowinem and colleagues [1], head movements 

were tracked by AAMs [25] and modeled by Gaussian mixture models with seven 

components. Mean, variance, and component weights of the learned GMMs were used as 

features. And a set of interpretable head pose functionals was proposed. These included the 

statistics of head movements and duration of looking in different directions.

Williamson and his colleagues [31] investigated the specific changes in coordination, 

movement, and timing of facial and vocal signals as potential symptoms for self-reported 

BDI (Beck Depression Inventory) scores [2]. They proposed a multi-scale correlation 

structure and timing feature sets from video-based facial action units (AUs [10]) and audio-

based vocal features. The features were combined using a Gaussian mixture model and 

extreme learning machine classifiers to predict BDI scores.

Reduced facial expression is commonly observed in depression and relates to deficits in 

experiencing positive as well as negative emotion [24]. Less often, greatly increased 

expression occurs. There are referred to as psychomotor retardation and psychomotor 

agitation, respectively. We propose to capture aspects of psychomotor retardation and 

agitation using the dynamics of facial and head movement. Participants were from a clinical 

trial for treatment of moderate to severe depression and had history of multiple depressive 

episodes. Compared to state-of-the-art deep learning approch for depression severity 

assessment, we propose a reliable and clinically interpretable method of automatically 

measuring depression severity from the dynamics of face and head motion.

To analyze facial movement dynamics separately from head movement dynamics, facial 

shape representation would need to be robust to head pose changes while preserving facial 

motion information [3], [27], [19], [16]. To achieve this goal, Kacem and colleagues [20] 

used the Gram matrix of facial landmarks to obtain a facial representation that is invariant to 

Euclidean transformations (i.e., rotations and translations). In related work, Begel and 

colleagues [3] and Taheri and colleagues [27] used mapping facial landmarks in Grassmann 

manifold to achieve an affine-invariance representation. These previous efforts yielded to 

facial shape representations lying on non-linear manifolds where standard Euclidean 

analysis techniques are not straightforward. Based on our work [19], we propose an efficient 

representation for facial shapes through encoding landmark points by their barycentric 
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coordinates [4]. In addition to the affine-invariance, the proposed approach has the 

advantage of lying on Euclidean space avoiding the non-linearity problem.

Because we are interested in both facial movement dynamics and head movement dynamics, 

the later is encoded by combining the 3 degrees of freedom of head movement (i.e., yaw, 

roll, and pitch angles) in a single rotation matrix mapped to Lie algebra to overcome the 

non-linearity of the space of rotation matrices [29], [30].

To capture changes in the dynamics of head and facial movement that would reflect the 

psychomotor retardation of depressed participants, relevant kinematic features are extracted 

(i.e., velocities and accelerations) from each proposed representation. Gaussian Mixture 

Models (GMM) combined with an improved fisher vector encoding are then used to obtain a 

single vector representation for each sequence (i.e., interview). Finally, a multi-class SVM 

with a Gaussian kernel is used to classify the encoded facial and head movement dynamics 

into three depression severity levels. The overview of the proposed approach is shown in 

Fig. I.

The main contributions of this paper are three:

• An affine-invariant facial shape representation that is robust to head pose 

changes through encoding the landmark points by their barycentric coordinates.

• A natural head pose representation in Lie algebra with respect to the geometry of 

the space of head rotations.

• Extraction and classification of kinematic features that encode well the dynamics 

of facial and head movements for the purpose of depression severity level 

assessment and are interpretable and consistent with data and theory in 

depression.

The rest of the paper is organized as follows: In section II facial shape representation and 

head pose representation are presented. In section III, we describe kinematic features based 

on the representations proposed in section II. Section IV describes the depression severity 

level classification approach. Results and discussions are reported in section V. In section 

VI, we conclude and draw some perspectives of the work.

II. FACIAL SHAPE AND HEAD POSE REPRESENTATION

We propose an automatic and interpretable approach for the analysis of facial and head 

movement dynamics for depression severity assessment.

A. Automatic Tracking of Facial Landmarks and Head Pose

Zface [17], an automatic, person-independent, generic approach was used to track the 2D 

coordinates of 49 facial landmarks (fiducial points) and 3 degrees of out-of-plane rigid head 

movements (i.e., pitch, yaw, and roll) from 2D videos. Because our interest is the dynamics 

rather than the configuration we used the facial and head movement dynamics for the 

assessment of depression severity. Facial movement dynamics is represented using the time 

series of the coordinates of the 49 tracked fiducial points. Likewise, head movement 
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dynamics is represented using the time series of the 3 degrees of freedom of out-of-plane 

rigid head movement.

B. Facial Shape Representation

Facial landmarks may be distorted by head pose changes that could be approximated by 

affine transformations. Hence, filtering out the affine transformations is a convenient way to 

eliminate head pose changes. In this section we briefly review the main definitions of the 

affine-invariance with barycentric coordinates and their use in facial shape analysis [19].

Our goal is to study the motion of an ordered list of landmarks, Z1(t) = (x1(t), y1(t)), …, 

Zn(t) = (xn(t), yn(t)), in the plane up to the action of an arbitrary affine transformation. A 

standard technique is to consider the span of the columns of the n × 3 time-dependent matrix

G(t) ≔

x1(t) y1(t) 1

⋮ ⋮ ⋮
xn(t) yn(t) 1

.

If for every time t there exists a triplet of landmarks forming a non-degenerate triangle the 

rank of the matrix G(t) is constantly equal to 3 yielding to affine-invariant representations in 

the non-linear Grassmann manifold of three-dimensional subspaces in ℝn. To overcome the 

non-linearity of the space of face representations while filtering out the affine 

transformations, we propose to use the barycentric coordinates.

Assume that Z1(t), Z2(t), and Z3(t) are the vertices of a non-degenerate triangle for every 
value of t. In the case of facial shapes, the right and left corners of the eyes and the tip of the 

nose are chosen to form a non-degenerate triangle (see the red triangle in Fig. 2). For every 

number i = 4, …, n and every time t we can write

Zi(t) = λi1(t)Z1(t) + λi2(t)Z2(t) + λi3(t)Z3(t),

where the numbers λi1(t), λi2(t), and λi3(t) satisfy

λi1(t) + λi2(t) + λi3(t) = 1 .

This last condition renders the triplet of barycentric coordinates (λi1(t), λi2(t), λi3(t)) 
unique. In fact, it is equal to

(xi(t), yi(t), 1)

x1(t) y1(t) 1

x2(t) y2(t) 1

x3(t) y3(t) 1

−1

.

If T is an affine transformation of the plane, the barycentric representation of TZi(t) in terms 

of the frame given by TZ1(t), TZ2(t), and TZ3(t) is still (λi1(t), λi2(t), λi3(t)). This allows us 

to propose the (n − 3) × 3 matrix
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F(t) ≔
λ41(t) λ42(t) λ43(t)

⋮ ⋮ ⋮
λn1(t) λn2(t) λn3(t)

. (1)

as the affine invariant shape representation of the moving landmarks. It turns out that such 

representation is closely related to the standard Grassmannian representation while avoiding 

the non-linearity of the space of representations. Further details about the relationship 

between the barycentric and Grassmannian representations can be found in [19]. In the 

following, facial shape sequences are represented with the affine-invariant curve F(t), with 

dimension m = (n − 3) × 3.

C. Head Pose Representation

Head movements correspond to head nods (i.e., pitch), head turns (i.e., yaw), and lateral 

head inclinations (i.e., roll) (see Fig. 3). Given a time series of the 3 degrees of freedom of 

out-of-plane rigid head movement, for every time t the yaw is defined as a counterclockwise 

rotation of α(t) about the z-axis. The corresponding time-dependent rotation matrix is given 

by

Rα(t) ≔
cos(α(t)) −sin(α(t)) 0
sin(α(t)) cos(α(t)) 0

0 0 1
.

Pitch is a counterclockwise rotation of β(t) about the y-axis. The rotation matrix is given by

Rβ(t) ≔
cos(β(t)) 0 sin(β(t))

0 1 0
−sin(β(t)) 0 cos(β(t))

.

Roll is a counterclockwise rotation of γ(t) about the x-axis. The rotation matrix is given by

Rγ(t) ≔
1 0 0
0 cos(γ(t)) −sin(γ(t))
0 sin(γ(t)) cos(γ(t))

.

A single rotation matrix can be formed by multiplying the yaw, pitch, and roll rotation 

matrices to obtain

Rα, β, γ(t) = Rα(t)Rβ(t)Rγ(t) . (2)

The obtained time-parametrized curve Rα,β,γ(t) encodes head pose at each time t and lie on 

a non-linear manifold called the special orthogonal group. The special orthogonal group 

(3) is a matrix Lie group formed by all rotations about the origin of three-dimensional 

Euclidean space ℝ3 under the operation of composition [5]. The tangent space at the identity 
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I3 ∈ (3) is a three-dimensional vector space, called the Lie algebra of (3) and is 

denoted by so(3). Following [30], [29], we overcome the non-linearity of the space of our 

representation (i.e., (3)), and map the curve Rα,β,γ(t) from (3) to so(3) using the 

logarithm map log (3) to obtain the three-dimensional curve

H(t) = log𝒮𝒪(3)(I3, Rα, β, γ(t)) = log(Rα, β . γ(t)), (3)

lying on so(3). Fore more details about the special orthogonal group, the logarithm map, and 

the lie algebra, readers are refereed to [30], [29], [5]. In the following, the time series of the 

3 degrees of freedom of rigid head movement are represented using the three dimensional 

curve H(t).

III. KINEMATIC FEATURES AND FISHER VECTOR ENCODING

To characterize facial and head movement dynamics, we derive appropriate kinematic 

features based on their proposed representations F(t) and H(t), respectively.

A. Kinematic Features

Because videos of interviews varied in length, the extracted facial and head curves (of 

different videos) varies in length. The variation in the obtained curves’ lengths may 

introduce distortions in the feature extraction step. To overcome this limitation, we apply a 

cubic spline interpolation to the obtained F(t) and H(t) curves, resulting in smoother, shorter, 

and fixed length curves. We set empirically the new length of the curve given by spline 

interpolation to 5000 samples for both facial and head curves.

Usually, the number of landmark points given by recent landmark detectors vary from 40 to 

70 points. By building the barycentric coordinates of the facial shape as explained in section 

II-B, this results in high-dimensional facial curves F(t) with static observations of dimension 

120 at least (it can reach 200 if we have 70 landmark points per face). To reduce the 

dimensionality of the facial curve F(t), we perform a Principal Component Analysis (PCA) 

that accounts for 98% of the variance to obtain new facial curves with dimension 20. Then, 

we compute the velocity VF(t) = ∂F(t)
∂t  and the acceleration AF(t) = ∂2F(t)

∂t2
 from the facial 

sequence F(t) after reducing its dimension. Finally, facial shapes, velocities, and 

accelerations are concatenated to form the curve

KF(t) = [F(t); VF(t); AF(t)], (4)

Because head curve H(t) is only three-dimensional no need for data reduction. Velocities and 

accelerations are directly computed from the head sequence H(t) and concatenated with head 

pose values to obtain the final nine-dimensional curve
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KH(t) = [H(t); VH(t); AH(t)] . (5)

The curves KF (t) and KH (t) denote the kinematic features over time of the facial and head 

movements, respectively.

B. Fisher Vector Encoding

Our goal is to obtain a single vector representation from the kinematic curves KF (t) and KH 

(t) for depression severity assessment. Following [8], we used the Fisher Vector 

representation using a Gaussian mixture model (GMM) distributions [32]. Assuming that the 

observations of a single kinematic curve are statistically independent, a GMM with c 
components is computed for each kinematic curve by optimizing the maximum likelihood 

(ML) criterion of the observations to the c Gaussian distributions. In order to encode the 

estimated Gaussian distributions in a single vector representation, we use the convenient 

improved fisher vector encoding which is suitable for large-scale classification problems 

[22]. This step is performed for kinematic curves KF (t) and KH (t), separately. The number 

of Gaussian distributions c are chosen by a a leave-one-subject-out cross-validation and are 

set to 14 for kinematic facial curves and to 31 for kinematic head curves resulting in fisher 

vectors with dimension 14 × 20 × 3 × 2 = 1680 for facial movement dynamics and vectors 

with dimension 31 × 3 × 3 × 2 = 558 for head movement dynamics.

IV. ASSESSMENT OF DEPRESSION SEVERITY LEVEL

After extracting the fisher vectors from the kinematic curves, the facial and head movements 

are represented by compact vectors that describe the dynamics of facial and head 

movements, respectively. To reduce redundancy and select the most discriminative feature 

set, the Min-Redundancy Max-Relevance (mRMR) algorithm [21] was used for feature 

selection. The set of selected features are then fed to a multiclass SVM with a Gaussian 

kernel to classify the extracted facial and head movement dynamics into different depression 

severity levels. Please note that a leave-one-subject-out cross-validation is performed to 

choose the number of selected features by mRMR which is set to 726 for facial movement 

dynamics and to 377 for head movement dynamics.

For an optimal use of the information given by the facial and head movements, depression 

severity was assessed by late fusion of separate SVM classifiers. This is done by multiplying 

the probabilities si,j, output of the SVM for each class j, where i ∈ {1, 2} denotes the 

modality (i.e., facial and head movements). The class  of each test sample is determined by

𝒞 = arg max
j

∏
i = 1

2
si, j, j = 1, …, n𝒞, (6)

where n  is the number of classes (i.e., depression severity levels).
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V. Evaluation Procedures

A. Dataset

Fifty-seven depressed participants (34 women, 23 men) were recruited from a clinical trial 

for treatment of depression. At the time of the study, all met DSM-4 criteria [11] for Major 

Depressive Disorder (MDD). Data from 49 participants was available for analysis. 

Participant loss was due to change in original diagnosis, severe suicidal ideation, and 

methodological reasons (e.g., missing audio or video). Symptom severity was evaluated on 

up to four occasions at 1, 7, 13, and 21 weeks post diagnosis and intake by four clinical 

interviewers (the number of interviews per interviewer varied).

Interviews were conducted using the Hamilton Rating Scale for Depression (HRSD) [15]. 

HRSD is a clinician-rated multiple item questionnaire to measure depression severity and 

response to treatment. HRSD scores of 15 or higher are generally considered to indicate 

moderate to severe depression; scores between 8 and 14 indicate mild depression; and scores 

of 7 or lower indicate remission [13]. Using these cut-off scores, we defined three ordinal 

depression severity classes: moderate to severe depression, mild depression, and remission 

(i.e., recovery from depression). The final sample was 126 sessions from 49 participants: 56 

moderate to severely depressed, 35 mildly depressed, and 35 remitted (for a more detailed 

description of the data please see [8]).

B. Results

We seek to discriminate three levels of depression severity from facial and head movement 

dynamics separately and in combination. To do so, we used leave-One-Subject-Out cross 

validation scheme. Performance was evaluated using two criterion. One was the mean 

accuracy over the three levels of severity. The other was weighted kappa [6]. Weighted 

kappa is the proportion of ordinal agreement above what would be expected to occur by 

chance [6].

Consistent with prior work [8], average accuracy was higher for facial movement than for 

head movement. Facial movement was 66.19%, and head movement was 61.43% (see Table. 

I). When the two modalities were combined, average accuracy increased to 70.83%.

Misclassification was more common between adjacent categories (e.g., Mild and Remitted) 

than between distant categories (e.g., Remitted and Severe) (Table. II). Highest accuracy was 

found for the difference between severe and mild depression (83.92%).

Evaluation of the system components—To evaluate our approach to encoding 

movement dynamics of face and head movement with alternative representations. For facial 

movement dynamics, we compared the barycentric representation with a Procrustes 

representation. Average accuracy using Procrustes was 3% lower than that for barycentric 

representation (Table. III). For head movements, we compared the Lie algebra representation 

to a vector representation formed by the yaw, roll, and pitch angles. Accuracy decreased by 

about 2% in comparison with the proposed approach.
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To evaluate whether dimensionality reduction using PCA together with spline interpolation 

improves accuracy, we compared results with and without PCA and spline interpolation. 

Omitting PCA and spline interpolation decreased accuracy by about 10%.

To evaluate whether mRMR feature selection and choice of classifier contributed to 

accuracy, we compared results with and without use of a feature selection step for both 

Multi-SVM with logistic regression classifiers. When mRMR feature selection was omitted, 

accuracy decreased by about 8%. Similarly, when logistic regression was used in place of 

Multi-SVM, accuracy decreased by about 7%. This result was unaffected by choice of 

kernel.

Thus, use of the any of the proposed alternatives would have decreased accuracy relative to 

the proposed method.

C. Interpretation and Discussion

In this section we evaluate the interpretability of the proposed kinematic features (that is, KF 

(t) and KH (t) defined in Eq. 4 and Eq. 5) for depression severity detection. We compute the 

l2-norm of velocity and acceleration intensities for the face (i.e., VF (t) and AF (t)) and head 

(i.e., VH (t) and AH (t)) curves for each video. Since each video is analyzed independently, 

we compute the histograms of the velocity and acceleration intensities over 10 samples 

(videos) from each level of depression severity. This results in histograms of 50000 velocity 

and acceleration intensities for each depression level.

Fig. 4 shows the histograms of facial and head velocity (top part) and acceleration (bottom 

part) intensities. Results for face are presented in the left panel and those for head in the 

right panel. For face, the level of depression severity is inversely proportional to the velocity 

and acceleration intensities. Velocity and acceleration both increased as participants 

improved from severe to mild and then to remitted. This finding is consistent with data and 

theory in depression.

Head motion, on the other hand, failed to vary systematically with change in depression 

severity (Fig. 4). This finding was in contrast to previous work. Girard and colleagues [14] 

found that head movement velocity increased when depression severity decreased. A 

possible reason for this difference may lie in how head motion was quantified. Girard [14] 

quantified head movement separately for pitch and yaw; whereas we combined pitch, yaw, 

and also roll. By combining all three directions of head movement, we may have obscured 

the relation between head movement and depression severity.

The proposed method detected depression severity with moderate to high accuracy that 

approaches that of state of the art [8]. Beyond the state of the art, the proposed method 

yields interpretable findings. The proposed dynamic features strongly mapped onto 

depression severity. When participants were depressed, their overall facial dynamics were 

dampened. When depression severity lessened, participants became more expressive. In 

remission, expressiveness was even higher. These findings are consistent with the 

observation that psychomotor retardation in depression lessens as severity decreases. Stated 

otherwise, people more expressive with return to normal mood.
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It is possible that future work will enable similar interpretation using deep learning. Efforts 

toward intepretable artificial intelligence are underway (https://www.darpa.mil/program/

explainable-artificial-intelligence). Until that becomes possible, the proposed approach 

might be considered. Alternatively, it may be most informative to combine approaches such 

as the one proposed and deep learning.

VI. CONCLUSION AND FUTURE WORK

We proposed a method to measure depression severity from facial and head movement 

dynamics. Two representations were proposed. An affine-invariant barycentric and Lie 

algebra representation of facial and head movement dynamics, respectively. The extracted 

kinematic features revealed strong association between depression severity and dynamics 

and detected severity status with moderate to strong accuracy.
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Fig. 1. 
Overview of the proposed approach.
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Fig. 2. 
Example of the automatically tracked 49 facial landmarks. The three red points denote the 

facial landmarks used to form the non-degenerate triangle required to compute the 

barycentric coordinates.
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Fig. 3. 
Example of the automatically tracked 3 degrees of freedom of head pose.
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Fig. 4. 
Histograms of velocity and acceleration intensities for facial (left) and head (right) 

movements. Psychomotor retardation symptom is well captured by the introduced kinematic 

features, especially with those computed from the facial movements.
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TABLE I

Classification Accuracy (%) - Comparison with State-of-the-art

Method Modality Accuracy (%) Weighted Kappa

J. Cohn et al. [7] Facial movements 59.5 0.43

S. Alghowinem et al. [1] Head movements 53.0 0.42

Dibeklioglu et al. [9] Facial movements 64.98 0.50

Dibeklioglu et al. [9] Head movements 56.06 0.40

Dibeklioglu et al. [8] Facial movements 72.59 0.62

Dibeklioglu et al. [8] Head movements 65.25 0.51

Dibeklioglu et al. [8] Facial/Head movements 77.77 0.71

Ours Facial movements 66.19 0.60

Ours Head movements 61.43 0.54

Ours Facial/Head movements 70.83 0.65
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TABLE II

Confusion Matrix

Remission Mild Severe

Remission 60.0 31.42 8.57

Mild 20.0 68.57 11.42

Severe 1.78 14.28 83.92
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TABLE III

Evaluation of the Steps to the Proposed Approach

Facial shapes representation Accuracy (%)

Pose normalization (Procrustes) 63.69

Barycentric coordinates 66.19

Head pose representation Accuracy (%)

Angles head pose representation 59.05

Lie algebra head pose representation 61.43

Impact of spline interpolation Accuracy (%)

Without spline interpolation 60.36

With spline interpolation 70.83

Impact of PCA on facial movements Accuracy (%)

Without PCA 56.19

With PCA 66.19

Impact of feature selection (mRMR) Accuracy (%)

Without feature selection 62.50

With feature selection 70.83

Classifiers Accuracy (%)

Logistic regression 62.02

Multi-class SVM 70.83
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