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Abstract: We investigate the origin of high frequency noise in Fourier domain mode locked 
(FDML) lasers and present an extremely well dispersion compensated setup which virtually 
eliminates intensity noise and dramatically improves coherence properties. We show optical 
coherence tomography (OCT) imaging at 3.2 MHz A-scan rate and demonstrate the positive 
impact of the described improvements on the image quality. Especially in highly scattering 
samples, at specular reflections and for strong signals at large depth, the noise in optical 
coherence tomography images is significantly reduced. We also describe a simple model that 
suggests a passive physical stabilizing mechanism that leads to an automatic compensation of 
remaining cavity dispersion in FDML lasers. 
© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement 
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1. Introduction 

FDML lasers are narrow band, high-speed optical frequency swept sources [1] that have 
proven their value in many different applications such as optical coherence tomography 
(OCT) [2–8], stimulated Raman spectroscopy [9], picosecond pulse generation [10], and 
sensing [11–18]. Their main application is still high speed OCT, where they have enabled 
recent developments such as ultra-widefield retinal MHz-OCT [19, 20], high definition live 
3D-OCT [21] and “Heartbeat OCT” [22, 23], all applications where multi-MHz A-scan rates 
are mandatory. The most important parameters of OCT sources, besides sweep rate, central 
wavelength, spectral shape and bandwidth, are noise and achievable roll-off performance. 
Many effects influence the performance of FDML lasers [24–29] and there are numerous 
indications that chromatic dispersion in the laser cavity is one of the most important [27, 30–
32]. Kraetschmer and Sanders showed first, that a typical FDML laser intensity trace can 
exhibit nearly a hundred percent intensity modulation when measured with sufficiently high 
detection bandwidth of ~ 4 GHz or more [33]. Depending on the FDML operation parameters, 
Slepneva et al. identified the observed fluctuations as Turing instabilities or fully chaotic 
behavior [27]. Interestingly, when the FDML laser output intensity is measured with 
moderate photo receiver bandwidth of up to ~1 GHz, the output appears very smooth, 
indicating that the instabilities contain mainly very high frequencies, but still they cause a 
degradation of OCT images, even if the system only measures up to several hundred MHz 
electronic bandwidth. 

However, Kraetschmer and Sanders pointed out that an ultra-stable mode locked behavior 
centered around a very narrow range at the laser’s zero dispersion wavelength exists when the 
cavity is very well dispersion compensated [33]. This range can be identified by the CW 
tuning steps described in [27]. In this very small (3.5 nm in their laser) spectral region that 
Sanders termed “sweet spot”, the intensity variation within one sweep is vastly reduced. Up to 
at least several milliwatt, shot noise is dominant in the laser output, i.e., no excess noise can 
be measured. Sanders also reported instantaneous linewidths of ~100 MHz corresponding to 
meters of coherence length. Thus, this sweet spot operation would be extremely interesting 
for biomedical imaging, spectroscopy and sensing. Since this sweet spot was observed around 
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very low noise (considering the high electronic bandwidth). The noise spectrum (Fig. 5(b) 
and c) is flat and at a very low level over most of its range such that even the interleaving 
spurs caused by the oscilloscope electronics are now visible as spikes in the amplitude 
spectrum (Fig. 5(c), label ). The increase towards low frequencies (Fig. 5(b), label ) is 
mainly caused by the intensity envelope itself. 

Detuning the FFP frequency by 1 Hz (Fig. 5(d),e,f - black curves) raises the intensity 
noise in the time traces to modulation depths up to 100% (Fig. 5. d). Accordingly, the 
corresponding noise floor in the spectrum is also increased, but interestingly only up to 
~30−40 GHz (Fig. 5(e) and f). This decrease between 30 and 40 GHz (Fig. 5(f), �) is not 
caused by the electronic bandwidth of the detection, which is 50 GHz. The noise suppression 
is most likely caused by the FFP filter in the FDML laser, which effectively causes low pass 
filtering of any amplitude and phase fluctuations of the laser light. The FFP filter has an 
optical bandwidth of 0.165 nm which corresponds at a wavelength of 1300 nm to an optical 
frequency bandwidth of 29 GHz. 

Detuning of 5 Hz causes an almost full 100% intensity fluctuation (Fig. 5g) over the full 
sweep duration and the level of the noise spectrum is substantially raised (Fig. 5(i)). 
Additionally, a noise peak around 8 GHz can be observed which may be caused by relaxation 
oscillations linked to the carrier dynamics in the semiconductor gain medium of the FDML 
laser (Fig. 5(i), ). The noise decrease between 30 and 40 GHz can be observed again (Fig. 
5(i), ♦). Most interestingly the intensity noise towards low frequencies is actually lower than 
in the case of 1 Hz detuning (Fig. 5(e) and 5(h)). To better visualize this effect, the average of 
1000 FFTs over a range of 0 to 6 GHz is shown in Fig. 6. Between 0 and 2 GHz the 5 Hz 
detuned FDML laser has lower noise than the laser at 1 Hz detuning, for higher frequencies 
the noise of the 5 Hz detuned laser is higher. However, both detuned cases have much higher 
noise than the 0 Hz case. 

Fig. 6. Comparison of the noise spectra between 0 Hz and 6 GHz for 0 Hz (blue), 1 Hz (black) 
and 5 Hz (red) detuning. For each plot 1000 time traces were recorded and Fourier 
transformed. The FFTs were averaged and the amplitude values are plotted on a linear scale. 

3.2 Characterization of noise 2: counting holes 

In the previous section we investigated the situation for a detuning of several Hz where we 
observe noise in form of intensity fluctuations throughout the whole sweep. For smaller 
values of detuning (⪅ 100 mHz) most of the intensity trace is “noise free” and we just 
observe some remaining isolated holes in the sweep as shown in Fig. 2 and Visualization 1. 
Since most of these holes have a duration of only 50 picoseconds or less they do not 
contribute substantially to the integrated noise over the 300 ns sweep and thus cannot be 
identified as increased noise in the noise spectrum. In order to still be able to characterize 
such low values of intensity noise, we switched to a different technique: we investigate the 
intensity trace and count the number of such holes as a measure for the remaining noise. 

To quantify how the occurrence of holes qualitatively scales with the detuning of the 
FDML frequency, an algorithm applied a threshold below the mean intensity level and 
counted these intensity modulations that crossed this threshold as holes. Figure 7(a) shows the 
number of holes plotted against the detuning from the global sweet spot frequency over a 
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the also increased group delay of such a filter might further reduce the occurrence of such 
holes by passive phase stabilization as will be explained in the next paragraph. 

5.2 FFP group delay and dispersion compensation 

As mentioned, we credit a major role for the compensation of the dispersion in the laser 
cavity to the Fabry-Pérot filter. Like any bandpass filter, the FFP induces a group delay on the 
incoming signal. The amount of group delay depends on the frequency offset relative to the 
maximum transmission frequency. In the following, we will show how this frequency 
dependent group delay could act as a passive dispersion compensation mechanism. 

The dispersion relation of the FFP is that of an ordinary bandpass filter and can be treated 
analytically. Using the convention i te ω−  for a plane wave and frequency offset f, the group 

delay is defined as  g

d

d

ϕτ
ω

= . Thus, with the sweep filter amplitude transmission given by 
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Fig. 12. FFP intensity transmission normalized to the maximal transmission and group delay 
dependence on the light’s frequency offset relative to the filter transmission window center. 

Figure 12 shows the group delay for light that arrives at the FFP with a frequency 
difference relative to the transmission window for a filter with a spectral width of λ 0.165δ =  

nm centered at 0λ =  1292 nm. Light with a frequency that exactly matches the maximum 

transmission of the filter experiences a group delay of 10 ps when passing the filter. Light 
with an offset relative to the transmission maximum experiences less group delay. For 
example, for a frequency offset of ± 15 GHz, the group delay induced by the filter reduces to 
only about 5 ps. 

For a filter window moving in time, this suggests that any wavelength circulating the laser 
cavity may experience a varying GD in the FFP due to very small delays in the cavity. If the 
FFP filter frequency FFPf  is chosen such that 
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 ( ) ( )max ( ) 1/ min ( ) ,max
cavity FFP cavity FFPRTT f RTT GDλ < < λ +   

with ( ) ( )min ( )  and max ( )cavity cavityRTT RTTλ λ  being the shortest and the longest roundtrip 

time for any wavelength through the cavity excluding the FFP, and max
FFPGD  being the 

maximum of the FFP filter group delay shown in Fig. 12, any active wavelength can pick a 
position in the filter window such that the total RTT exactly matches 1 / FFPf . Of course, 

these temporal offsets must be sufficiently low so the FFP loss (reflected intensity) remains 
irrelevant. As the light will arrive at the FFP with a constant frequency offset after every 
roundtrip, as long as ( )cavityRTT λ  doesn’t change, we will call this position stationary. 

As shown in Fig. 13a, there are two positions for every wavelength in the filter window at 
which any given wavelength will exactly meet the FDML condition 

 1 / ( ) ( ) ( ),FFP cavityf RTT RTT GD= λ = λ + λ   

but as will be explained in the following, only one of them is stable. 
When the inverse filter frequency of the FFP exactly matches the round trip time of the 

light (including the group delay given by the filter) for every wavelength in the sweep, the 
FDML laser can be run in a stationary mode with phase matching at the input facet of the 
FFP, again, as long as there are no changes in ( )cavityRTT λ . However, these changes will 

naturally occur continuously, for example due to temperature drifts in the cavity. 
We now look at one arbitrary wavelength within this sweep that runs stationary in the 

negative wing (left half in Fig. 13a) of the filter transmission band. We assume that its 

cavityRTT  increases by a time τ  due to a temperature drift in the cavity as sketched in Fig. 

13b. When the light arrives delayed at the filter, the center transmission frequency has 
increased and the light hits the filter with an increased negative frequency offset (for the red 
to blue sweep). For example, a filter tuning over 100 nm at an A-scan rate of 3.2 MHz will 
have shifted its center transmission wavelength by ~ 1.1 GHz within 20 ps. Due to the 
increased negative filter offset, the light passes the FFP faster. This way the FFP group delay 
can compensate for a part of the delay τ  in the cavity. In consecutive sweeps the wavelength 
under inspection will continue to experience the delay τ  in the cavity and will wander to the 
left of the filter transmission window until the reduction in group delay of the filter equals τ . 
From then on it will run in a stationary mode as the RTT equals the filter drive period again. 
This is sketched in Fig. 13b with the red dots being positions in consecutive sweeps following 
the black arrow. 

When the cavityRTT  of this specific wavelength decreases by –τ , the group delay of the 

filter will increase and, again, after some roundtrips compensate for τ− . This way, we think 
that the filter can compensate remaining dispersion in the cavity as well as wavelength 
dependent dynamic changes in the cavity length and therefore allows a stable operation with 
no or very few holes. 

However, when the specific wavelength hits the filter transmission band with a positive 
frequency offset, any change of the frequency accelerates the wandering of this wavelength to 
the other border of the transmission window i.e. to the stable regime. The same argument 
works for the forward sweep, however, then the stable and unstable regimes depicted in Fig. 
13 are interchanged. 
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