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Abstract: Age-related macular degeneration (AMD) is the leading cause of blindness in the
elderly (over the age of 60 years) in western countries. In the early stages of the disease,
structural changes may be subtle and cannot be detected. Recently it has been postulated that
the mechanical properties of the retina may change with the onset of AMD. In this
manuscript, we present a novel, non-invasive means that utilizes synchronized acoustic
radiation force optical coherence elastography (ARF-OCE) to measure and estimate the
elasticity of cadaver porcine retina. Both regions near the optic nerve and in the peripheral
retina were studied. An acoustic force is exerted on the tissue for excitation and the resulting
tissue vibrations, often in the nanometer scale, are detected with high-resolution optical
methods. Segmentation has been performed to isolate individual layers and the Young’s
modulus has been estimated for each. The results have been successfully compared and
mapped to corresponding histological results using H&E staining. Finally, 64 elastograms of
the retina were analyzed, as well as the elastic properties, with stiffness ranging from 1.3 to
25.9 kPa in the ganglion to the photoreceptor sides respectively. ARF-OCE allows for the
elasticity mapping of anatomical retinal layers. This imaging approach needs further
evaluation but has the potential to allow physicians to gain a better understanding of the
elasticity of retinal layers in retinal diseases such as AMD.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement
1. Introduction

The retina is a light sensitive layer at the posterior section of the eye that is responsible for
converting visual images and sending visual signals to the brain. Although the retina is thin, it
has many well organized sublayers that contribute to its function. In people over 60 years of
age, age-related macular degeneration (AMD) is the leading cause of vision loss in the United
States [1-2]. Early stage AMD is marked by accumulation of drusen, which are focal deposits
of acellular polymorphous debris that accumulate in the retinal pigment epithelium under the
macula and the peripheral retina. In the late stage progression of AMD, the drusen can be
accompanied by neovascularization and/or atrophy of the retinal pigment epithelium and also
the overlying retina [1-2].

In order to diagnose AMD, fundus imaging, fluorescein angiography, and optical
coherence tomography are some of the commonly used techniques in the clinic [3]. The
structure of the retina has been studied extensively. For further analysis of the retina, there
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have been many segmentation methods that have been used to separate the different layers
within the retina [4-6]. Many of these features are built into commercial imaging systems,
and automated detection is possible. The thickness of the layers and other anatomical
structures can be analyzed in-vivo and correlated with pathology. Although, this structural
information is very helpful in mid to late stage AMD, often it is not sufficient for very early
diagnosis of AMD.

As a precursor to neovascularization and disease progression, the elasticity of the tissue
will change [7-10]. Friedman et al. demonstrated that increased scleral rigidity might be a
precursor to the onset of AMD, which brought to attention the possibility of using mechanical
properties as a diagnostic tool [8]. Shahbazi et al. used ultrasound to show that the posterior
ocular elasticity of patients with AMD is indeed different than that of healthy humans, but did
not offer retinal layer analysis [9]. Recently, Chen et al. presented the possibility of retinal
elastin decreases during the early onset of AMD [10]. Since these cellular level changes are
expected to precede structural abnormalities that can be detected with current imaging
techniques, we believe that there is significance in studying the mechanical properties of the
retina. In addition, elasticity changes in the retina and choroid can also occur when the
microvasculature changes or when drusen forms. Optical coherence elastography (OCE) may
offer an alternate method to detect the environmental changes that occur when alteration of
cellular properties begin to take place. Measuring the elasticity will give scientists and
physicians a better understanding on the disease mechanism in the early stages, and possibly
provide a powerful diagnosis tool.

In order to study the mechanical structure of the retina, several studies attempted to
provide elastic properties by performing mechanical strain testing in vitro [11-12]. However,
strain testing is not possible for tissues in vivo. In addition, the entire retina is extracted as a
single unit, which means that individual layer information cannot be obtained. Although
mathematical modeling of the retina to determine the Young’s modulus has been reported, in
vivo determination remains a challenge [13]. In order to perform in vivo imaging with
information of different layers, a high resolution system functional imaging system is
necessary.

OCE is a relatively new method of providing elasticity mapping with high resolution and
sensitivity [14]. Several different applications have been studied using this technique,
including the study of corneal elasticity [15—18]. However, the mechanical properties of the
retina are still not well defined since the retina is inaccessible to many elastography methods
or is limited by low resolution. We recently reported on an acoustic radiation force (ARF)
OCE method that can map out the elasticity of the cornea both axially and laterally with high
resolution [19].

In this manuscript, we present the quantified retinal layered elasticity map for the first
time in a porcine model. The instrumentation has been updated, including a mechanical stage
to increase the field of view and synchronization to generate a spatial elasticity map. In this
way, the phase cycle of the tissue vibration is uniform in the direction parallel to the
mechanical stage. First, structural optical coherence tomography (OCT) and functional OCE
imaging were performed on a healthy pig retina near the optic disc and in the periphery of the
retina after isolation of the posterior portion of the eye. Then the OCE phase information was
analyzed along the axial direction. Then segmentation was performed on the retinal layers
using OCT and the corresponding layer was matched on the OCE and histology. Nanometer
displacement differences were observed between the layers. Finally, the relative stiffness was
analyzed over 64 B-scan samples and statistical analysis was performed. The Young’s moduli
are estimated for each layer using the experimental stiffness ratios and average elasticity
obtained from literature.
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2. Results
2.1 System design

In this elastography study, an ultrasonic focused ring transducer was used for excitation while
a spectral domain OCT system was used for detection of the tissue response. The acoustic and
optical signals are all synchronized using the computer in order to obtain images with
synchronized vibrational responses. A schematic diagram of the system set up is illustrated in
Fig. 1.

Isolator # : ]‘]

RFA

Fig. 1. Schematic diagram of system setup. SLD: superluminescent diode, L: lens, G:
diffraction grating, CMOS: camera, C: coupler, A: attenuator, M: mirror, MS: mechanical
stage, GM: galvo mirror, UT: ultrasound transducer, S: sample, RFA: radio-frequency
amplifier, FG: function generator, CO: collimator. Red beam: light path. Yellow beam: ARF
path.

The function generator first outputs a modulated square wave signal, which is amplified
by approximately 170 times and fed to a ring ultrasound (US) transducer with a focal distance
of 3 cm. The ring transducer has an outer diameter of 4.5 cm and inner aperture of 9 mm. The
driving frequency is 4.5 MHz and the function generator modulates a square wave signal with
a frequency of 833 Hz. The signal is continuously modulated to form many ARF pushes so
that the tissue response can be tracked consistently. The electrical impedance at the driving
frequency has been experimentally determined to be 42 Ohms at the driving frequency while
the acoustic power output is approximately 1.0 MPa. The small impedance mismatch will
cause a relatively lower power output, but is sufficient for this application. ARF using
approximately 40V post-amplification is induced on the sample and vibrations are generated.
A modulation frequency of 833 Hz, which is much higher than the resonance frequency of
retinal tissue, was chosen so that the mechanical contrasts of the layers are not skewed by
resonance vibrations. On the detection side, the optical set up highly resembles that of
previous publications [19]. The axial resolution has been experimentally measured to be 3 pm
while the lateral resolution is 27 pm in air. The power from the sample arm is measured to be
0.89 mW, which is well below the safety limit determined by the American National
Standards Institute. In order to optimize imaging conditions, especially to maximize imaging
range, a mechanical stage has been incorporated into the system to move the sample. The
sample is fastened to the mechanical stage via metal posts and the sample is mobilized in
discrete steps during imaging. In this way, the limitation set forth by the 500 um uniform
focal diameter of the transducer can be bypassed. One galvanometer mirror is used for
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scanning in one lateral dimension while the motorized stage provides scanning in the other
lateral direction. This increases our imaging range from 500 um to over 3 mm and at the same
time provides more uniform excitation across B-scans. A 20 kHz A-line rate is used and a
volumetric scan in these experiments consists of 500 by 500 A-lines.

The ring ultrasonic transducer is coupled to the porcine eye via a PBS bath. The
transducer is submerged in the bath while the OCT lens is just above the liquid interface. The
OCT light travels through the center aperture of the ring transducer to focus confocally with
the ARF beam. In Fig. 1, the ring transducer is shown in orange with a yellow focused ARF
beam, while the OCT lens is shown in blue with the light path depicted in red, and both focus
on the posterior eye tissue. In other words, the bearing angle is 0 degrees so that we can
ensure that the ARF and the OCT beams are co-aligned.

s |1 T
A § B § B

Galvo
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OCE
Imaging
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Fig. 2. Timing diagram of system showing excitation and detection.

Synchronization between the acoustic excitation and optical detection was performed as
shown in Fig. 2. In this way, it is possible to control the phase of the modulation cycle at
different spatial locations on the sample. A 0.1 ms pause was incorporated into the system to
minimize noise caused by the movement of the motorized stage. The galvo sweeping, camera
acquisition, and ultrasound modulation signals are triggered at the same time when the
motorized stage is stationary to produce a single B-scan. Then the motorized stage shifts in a
preset increment smaller than the lateral resolution of the system, and another B-scan is
acquired. The scanning time is 52 ms for a B-scan image with 1000 A-lines, the recovery step
of the Galvo back to the origin is 5.2 ms, and the rest step where the motorized stage moves is
10 ms as shown on the timing diagram. For the results shown here, a 6 pm displacement is
achieved for each step.

2.2. Retina and optic disc imaging

A porcine eyeball was isolated within 24 hours of death and the anterior of the eye was
removed so that only the vitreous fluids and the retina/sclera remained. The eyeball was then
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fixed using agar gel and mounted to the imaging stage in the water bath. The optical disc was
identified on the retina by its diameter of approximately 1.7 mm. Using the synchronized
system, a region of 3 mm by 3 mm was scanned near the optical disc. Previously [19], only
the middle 500 pum by 500 pum region can be assumed to have uniform excitation, but with the
addition of the mechanical stage, a region of 500 um by 3 mm is able to achieve uniform
force. This expands our imaging region by 6 fold in this figure.

The OCT cross-sectional image showing the optical disc region is displayed in Fig. 3(a),
while the corresponding OCE phase map is displayed in Fig. 3(b). The B-scan shown is in the
same direction as the movement of the mechanical stage. Within this B-scan, an accurate
uniform acoustic field is guaranteed for elastography since synchronization allows for phase
cycle uniformity in the direction perpendicular to the galvo scanning.

The OCT and OCE images of the peripheral retina are shown in Figs. 3(c) and 3(d),
respectively. The same scanning mechanism was used over a 3 mm by 3 mm region after
shifting the focus to the peripheral retina, and then extracting the phase information, A¢(z,?) ,

from the raw OCT data. Then using the Doppler principle, the change in displacement of the
AGOA
47nt cos@

where /4, is the central wavelength, @ is the Doppler angle, n is the refractive index, 7 is the

El

tissue response can be calculated according to the following equation: Ad = .[

exposure time of the detector. The Young’s modulus is inversely related to the change in

o
A
z is the axial depth. It is clear that the optic disc region had a much smaller vibrational
response, indicating a stiffer tissue, than the peripheral retina and the retinal regions closer to
the optic disc. The pocket structure in the middle of Fig. 3(b) had a very high vibrational
response, which indicates a softer tissue that is concluded to be a collapsed blood vessel. This
figure portrays the elasticity of the optic nerve relative to the peripheral retina and
demonstrates the feasibility of using ARF-OCE in the mapping of retinal elasticity. It was
also noted that the relative stiffness of the retina changes in the axial direction, suggesting the
separation of different layers, with the top layer indicating the softest structure.

Previously, we have shown that the ARF field is uniform across the imaging axial depth,
and verified the ability of OCE to separate the stiffness of individual axial and lateral
components in a connected agar phantom with inclusions [19]. OCE was able to extract the
stiffness of the 2 layers of different elasticity accurately according to verification with
compression testing methods [19]. In addition, we have also demonstrated that the vibrational
response is uniform within the axial imaging range for a uniform phantom [20], which means
that the material attenuation is minimal within the 1 mm imaging range. Therefore, according
to the phase map, we conclude that the stiffness of the retina increases from the inner
ganglion side (white arrow) to the outer photoreceptor side (yellow arrow).

displacement as depicted in the following relationship: ¥ = , where o is the stress and
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Fig. 3. Optical disc and peripheral retina imaging. a) OCT cross-section of optical disc. b)
OCE phase cross-section of optical disc. ¢) OCT cross-section of peripheral retina. d) OCE
phase cross-section of peripheral retina. Phase is measured in radians from 0 to 5. White arrow
indicates ganglion side and yellow arrow points to the photoreceptor side.

2.3. Segmentation and histology correlation

Since different layers were observed both in the OCT intensity images and the OCE phase
images, segmentation was performed on the OCT images based on a graph-based method
presented previously by our group [21]. From experimental results, 5 different axial layers
could be isolated as shown in Fig. 4(a). The OCE small interval displacement image in Fig.
4b was also segmented using the same boundaries. Segmentation was not performed on OCE
directly since we have yet to validate the stiffness contrast corresponding to the boundaries
between layers. Figure 4(c) shows the corresponding elastogram with Young’s modulus
values, which were derived from the frequency sweeping experiments. According to porcine
retinal anatomy, there are ideally 7 layers that can be separated, but were not visible in these
results. Therefore, histology using H&E staining was performed shown in Fig. 4(d) to match
the imaging layers to anatomy. The top three layers, including the nerve fiber layer, ganglion
cell layer, and inner plexiform layer, were compressed into a single detected layer. This is
probably caused by the deterioration of the tissue after harvest, also as indicated by the
collapsed blood vessel near the optic disc in Fig. 3(b). Experiments were performed
approximately 40-48 hours after tissue harvest, and it is likely that degradation occurred
during storage and transport.

The boundaries for the inner nuclear layer was highly distinguishable from the OCT
images, and the mechanical elasticity also showed contrast between upper and lower layers.
Within the inner nuclear layer, there seems to be a elasticity gradient in the axial direction,
with a redder color or lower elasticity on the inside as denoted by the white arrow and a green
color or higher elasticity on the outside, shown by the blue arrow. This is due to the
connective boundaries between the layers that vibrate together. Unfortunately, it is not
possible to completely segregate the layers due to the interdependent motion and response.
The outer plexiform layer is relatively thin and displacement values continue to decrease. The
outer nuclear layer is difficult to visualize on the OCT image, since its properties allow for
low scattering of optical light. Therefore, it was omitted in the quantitative analysis. The
outermost layer of the retina is the photoreceptor region, which had high scattering contrast,
but low displacement values. The average imaging or penetration depth is approximately 400
um for the porcine retinal tissue.
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Fig. 4. Retina segmentation and elastogram. a) OCT segmentation. b) Corresponding segments
of OCE displacement mapping. ¢) Corresponding elastogram. d) H&E staining of porcine
retina with the anatomical layers labeled. White arrow point to outer nuclear layer region with
low elasticity. Blue arrow point to outer nuclear layer portion with high elasticity.

From analysis of Fig. 4, it can be concluded that the OCE displacement map is not
affected by the difference in OCT intensity. As long as there is some scattering, the relative
displacement can be measured. In this case, the depth penetration was enough to capture the
retina. In the onset of AMD, drusen can form in the retinal pigment epithelium (RPE) layer,
which is directly underneath the photoreceptor layer shown. A higher output power or a
longer central wavelength can be used to increase imaging depth.

2.4 Statistical analysis

In order to verify the consistency of the relative layered stiffness over the entire retina, 64
cross-sectional OCT and OCE B-scans were obtained at different spatial locations on 2 retina
samples. Segmentation was performed on OCT images and the respective OCE segments
were analyzed. Five different retinal layers were isolated and the thickness of each layer was
estimated by counting the axial pixels and averaging over the lateral direction. The results are
summarized in Table 1. The entire thickness of the retina was approximately 400 pm.

Since each of the 64 images varies in their phase cycle, it is necessary to normalize all the
displacement values to a relative scale so direct comparisons can be made according to the
ratios. In this case, the value of the highest displacement was set to be 1, and the other
displacement values are portrayed as a fraction of the maximum. As shown from previous
publications [22], the Young’s modulus is inversely proportional to the displacement values,
but only relative displacement ratios are available. Therefore, the elasticity estimations are
based on the resonance frequency theory where the Young’s modulus is proportional to the
square of the resonance frequency [23]. After measuring the displacement response under
different excitation frequency similar to previous experiments [23], the highest tissue
response was observed at 21 Hz. We experimentally calibrated the squared relationship
between the resonance frequency and the Young’s modulus using silicone phantoms. The

relationship was determined to be E = > *0.03 , where u is the resonance frequency and E

is the Young’s modulus. The Young’s modulus of the entire retina was calculated to be 13
kPa. The retinal elasticity measurement is similar to the ones reported in literature using a
mathematical model [13]. A weighted average approach was used to provide individual layer



Vol. 9, No. 9| 1 Sep 2018 | BIOMEDICAL OPTICS EXPRESS 4061 |
Biomedical Optics EXPRESS -

elasticity, where the weight contribution was dependent on the thickness of the respective
layers, and the mean was set to 13 kPa. The results are shown in Table 1, where the Young’s
modulus was estimated anywhere from 1 to 26 kPa. The outer nuclear layer was omitted from
this estimation since scattering signal was too low for proper detection of OCE. According to
previous literature, the bulk elasticity of the retina has been determined to be 20 kPa with
mathematical modeling methods [24], while the layered elasticity has been shown to increase
from the ganglion to the photoreceptor sides, ranging from approximately 10 to 30 kPa using
shear wave OCE methods [25]. The results from the ARF-OCE study closely agree with the
reported values, and the increasing elasticity trend from the ganglion layer has also been
similarly observed. The advantages of this ARF-OCE system lies in the capability to non-
invasively access the posterior eye and the high-speed mechanical mapping using a
continuous modulated excitation. In addition, this ARF-OCE technology has nanometer scale
displacement sensitivity, which allows us to minimize the ARF power [26].

According to the results for 4 retinal layers, it seems that the inside layer on top of the
retina is much softer than the bottom layers, which is getting closer to the sclera. This is
expected since the sclera, which is the protective outer layer, is much stiffer than the retina. A
total of 64 B-scans were analyzed to correspond to 80% confidence level with 8% confidence
interval. However, further analysis is necessary to accurately measure the retinal layers
between several different samples.

Table 1. Analysis of 64 B-scan locations on the retina

Nerve fiber layer 1.33 £ 0.37
Ganglion cell layer
Inner plexiform layer

Inner nuclear layer 132 0.48 2.73 +£0.82
Outer plexiform layer 37 0.17 7.7 +£2.26
Outer nuclear layer 84 N/A N/A
Photoreceptor 72 0.06 25.9 +7.36

inner/outer segments

Since the ARF-OCE measurements are based on the sample displacement, it is less
accurate for stiff samples that correspond to a low tissue displacement. The reason is that the
measurements are often at the ten-micron level, meaning that a small amount of noise or
motion will create a larger percentage of error. Therefore, in Table 1, the error increases with
the stiffer layers of the retina as expected.

3. Discussion and conclusion

This study using ARF-OCE technology is the first to visualize the mechanical properties of
individual retinal layers, where 4 distinct layers were quantified. An ARF-OCE system was
set up with synchronized excitation, detection, and scanning for better control of the
modulation phase cycle. By analyzing the cross-sectional images perpendicular to the
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galvanometer scanning direction, it can be guaranteed that the B-scan shows a synchronized
vibration in a uniform phase cycle. Using this approach, elasticity maps were obtained for the
peripheral retina and the optic disc regions. Segmentation was performed on the OCT images
and the corresponding layers were separated in the OCE, and both were matched to histology
results using H&E staining. Further analysis was performed on 64 B-scans to estimate the
thickness of the 5 layers as well as the relative displacement values. Using a weighted average
method, the Young’s moduli for 4 different retinal layers were estimated.

Since this is a feasibility study to demonstrate the ARF-OCE method to generate
quantified elasticity maps, only results from 1 sample is analyzed, and the sample was not
very fresh as can be seen by the collapse of the top three layers. We are currently doing work
on more samples in order to study the consistency between different subjects. However,
freshness of the samples remains a problem. Since the porcine eyeball deteriorates at a rapid
rate, and retinal structure is highly correlated with perfusion and freshness, it is difficult to
obtain ex-vivo data. In addition, the anterior of the eye is always clouded, making the removal
of the cornea and lens a necessity. However, since the procedure itself is non-invasive, it has
a very optimistic outlook in in-vivo animal studies. There are a few issues that must be
addressed in advance.

The imaging region of the sample must be further expanded in order to decrease imaging
time and complexity during the procedure. This can be solved by using an ultrasound
transducer with a wider focus or no focus. Scanning can be performed over the entirety of the
retina within 12.5 seconds. This also indirectly helps to address the problem of the safety of
the acoustic excitation. In order to adhere to the mechanical index limit of 0.23 for human
ocular tissue, it is necessary to lower the excitation power per unit area. The current MI was
estimated to be around 0.9. Since OCE has nanometer displacement sensitivity, it would be
sensitive enough to detect smaller vibrations that adhere to the MI.

Since ARF is used for excitation, a transmission medium is necessary for the propagation
of the ultrasound force. While it is sufficient to use a PBS bath in ex vivo settings, the current
setup would not be feasible for in vivo imaging. In clinical ultrasound for ophthalmic
applications, ocular ultrasonic gel can be directly applied to the eye and serve as the medium
between the probe and the eye. Another solution is a steridrape setup, which involves a
transparent drape that comes into contact with the eye and the probe is submerged into fluid
on the other side. Both these setups can easily be adapted for use with the ARF-OCE system.

Another observation we made was the blending of the OCE information at the boundaries
between layers. This is caused by the bulk vibrations of the entire sample, where each of the
connected layers affect each other. In addition to the visible layers, the sclera is relatively a
much stiffer medium that can also affect the lower layers of the retina. If there is a stiff layer
connected to a soft layer, the boundary shows a gradient [16]. This relationship must be taken
into account when analyzing the mechanical properties of the layers. Modeling of the
viscoelastic phenomenon can help us better understand this issue and make more accurate
parameter estimations.

The ARF-OCE technology was used to quantify retinal layered elasticity and is adaptable
to in-vivo applications. We believe that this initial demonstration in the porcine eye is a
stepping stone to the translation of the technique, which can potentially provide a powerful
tool for the clinical diagnostic management of AMD.
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