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Abstract: Automatic segmentation of esophageal layers in OCT images is crucial for studying
esophageal diseases and computer-assisted diagnosis. This work aims to improve the current
techniques to increase the accuracy and robustness for esophageal OCT image segmentation. A
two-step edge-enhanced graph search (EEGS) framework is proposed in this study. Firstly, a
preprocessing scheme is applied to suppress speckle noise and remove the disturbance in the
esophageal structure. Secondly, the image is formulated into a graph and layer boundaries are
located by graph search. In this process, we propose an edge-enhanced weight matrix for the
graph by combining the vertical gradients with a Canny edge map. Experiments on esophageal
OCT images from guinea pigs demonstrate that the EEGS framework is more robust and more
accurate than the current segmentation method. It can be potentially useful for the early detection
of esophageal diseases.
© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement
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1. Introduction

Optical CoherenceTomography (OCT),whichwas first demonstrated by theMIT group in 1991 [1],
is a powerful medical imaging technique. It can generate high-resolution, non-invasive, 3D images
of biological tissues in real time. Initial applications of OCTwere mainly in ophthalmology, where
the microstructures revealed by OCT facilitated retinal disease diagnosis [2–4]. Endoscopic OCT
is an important and rapidly growing branch of the OCT technology [5]. By combining fiber-optic
flexible endoscopes, OCT is able to image internal luminal organs of human body with minimal
invasiveness. It has been shown that gastrointestinal endoscopic OCT can visualize multiple
esophageal tissue layers and pathological changes in a variety of esophageal diseases, such as
eosinophilic esophagitis (EoE), Barrett’s esophagus (BE) and even esophageal cancer [6–8].
Recently, the development of ultrahigh-resolution gastrointestinal endoscopic OCT enables
imaging of the esophagus with much finer details and improved contrast [9,10]. Many esophageal
diseases are manifest by changes in the tissue microstructures, such as changes in the esophageal
layer thickness or disruption to the layers. Accurate quantification of the esophageal layered
structures from gastrointestinal endoscopic OCT images can be potentially very valuable for
objective diagnosis of the diseases and assessment of the disease severity as well as the exploration
of potential structure-based biomarkers associated with disease progression [5, 11]. For instance,
the OCT image of BE has an irregular mucosal surface and may present an absence of the layered
architecture [12]; the OCT image of EoE is featured with increased basal zone thickness in the
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esophagus [11]. These diseased features can be easily detected provided that the esophageal OCT
images are accurately segmented.

Traditional manual segmentation is time-consuming and subjective. As a result, the computer-
aided automatic layer segmentation method is in urgent need. In the past few years, research on
OCT images segmentation methods mostly targeted retina OCT images, and various algorithms
have been published [13–16]. Representative methods can be grouped into the following four
categories: the A-scan based methods [2,3], the active contour based methods [4,17–19], machine
learning based methods [20, 21] and the graph based methods [22]. Among these methods,
the graph based method is the most widely used one in layer segmentation, and is proven to
be quite successful [13,22,23]. Representative frameworks are the graph theory and dynamic
programming (GTDP) [13] and the 3-D graph based segmentation [22]. It is worth mentioning that
the newly developed deep learning algorithms have also been applied to retinal layer segmentation
and achieved great success [24–27]. Studies on the segmentation of endoscopic OCT images are
not as extensive as the macular ones. Representative researches can be found in the processing
of cardiovascular [28–30] and esophageal OCT images [31–36]. As reported, the graph based
method is also effective in segmenting cardiovascular [30] and esophageal tissue layers [36].

Segmentation of normal esophagus OCT images is supposed to detect layered tissue structures.
Considering guinea pig as an example, the layerd structure includes the epithelium stratum
corneum (SC), epithelium (EP), lamina propria (LP), muscularis mucosae (MM) and submucosa
(SM) as illustrated in Fig. 1, which is the result of our proposed segmentation method. It can be

Fig. 1. Demonstration of a segmented esophageal OCT image from guinea pig.

found that these tissues have a similar layered architecture as the retina. In that case, automatic
segmentation of esophageal OCT images has to address some common challenges in OCT image
processing, such as speckle noise and motion artifacts [13, 36]. Moreover, the esophageal OCT
image has some unique challenges resulting from the in vivo environment or the endoscopic setup,
including the disturbance from the plastic sheath and the mucus, the discontinuous boundaries
due to the non-uniform scanning speed and the irregular bending caused by the sheath distortion.
Solutions of these common problems, such as speckle noise and the irregular bending have

been reported in the literature. Representative speckle noise suppression algorithms include
the median filter [3, 37], wavelet shrinkage [38], curvelet denoising [39] and the non-linear
anisotropic diffusion filter [4, 22]. Among these methods, the median filter is not the best, but
it has the advantages of easy parameter setting, simple algorithm realization and robust noise
suppression, which make it popular in OCT image denoising and was adopted in our framework. It
is noted that there are some more advanced denoising methods, such as the sparse representation
based framework proposed by Fang [40, 41]. Since such methods are not easy to implement and
may take more computation time than the simple median filter, they were not adopted in this
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reported work. The negative effect caused by tissue irregular bending can be reduced by image
flattening [20], which is realized by using cross-correlation [20] or the baseline search [42].
Generally, the baseline-related method performs better, but robust baseline extraction is difficult
in esophageal OCT images due to the disturbance of the plastic sheath and mucus. To improve the
image quality and remove such disturbance, our study designed a comprehensive preprocessing
scheme according to the specific problems of the esophageal OCT image, thus creating favorable
conditions for the subsequent segmentation.
Considering the previously mentioned problems, this study proposed an edge-enhanced

graph search (EEGS) framework to automatically segment esophageal tissue layers. The main
contributions lie in two aspects: Firstly, a specific-designed preprocessing scheme is proposed to
address the challenges in esophageal OCT images (e.g. speckle noise, plastic sheath and mucus
disturbances and boundary distortion). Secondly, an edge-enhanced weight matrix that combines
modified canny map [43, 44] and vertical gradients are employed for graph a search. In that
case, the local feature is preserved while the missing boundary in shadow regions is interpolated.
Different from Yang’s work [44], the canny edge detector used in this study was modified to focus
on horizontal features, which is consistent with the esophageal tissue orientation, thus making it
more suitable for esophageal layer boundary detection.
The paper is organized as follows. Section 2 introduces the detailed process of the proposed

EEGS framework. Section 3 illustrates the advantages of the EEGS framework by segmentation
experiments on esophageal OCT images of guinea pigs. Comparisons with the GTDP framework
and the clinical potential of EEGS are also included in this section. Discussions and conclusions
are presented in Sections 4 and 5, respectively.

2. Framework for robust esophageal layer segmentation using EEGS

The proposed EEGS method is composed two major steps: 1) preprocessing and 2) graph search
using weight matrix based on Canny edge detection. The flowchart of the proposed EEGS
framework is illustrated in Fig. 2.

Fig. 2. Flowchart of the proposed EEGS segmentation scheme.

2.1. Preprocessing

In order to calculate reliable weights that accurately indicate layer boundaries and improve
the segmentation performance, we designed a novel preprocessing scheme to deal with the
disturbance in esophageal OCT images.
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2.1.1. Denoising

In this study, we chose the simple median filter to suppress the speckle noise and its effectiveness
in OCT image denoising has been proven by numerous studies [3, 37]. Besides, the median
filter has the advantage of high efficiency and easy parameter setting comparing with other
popular OCT denoising methods, such as the wavelet and diffusion filter. A representative original
esophageal image and the image denoised by a 7 × 7 median filter are presented in Fig. 3.

(a) (b)

Fig. 3. Demonstration of (a) a representative original esophageal OCT images and (b) the
image denoised by a 7 × 7 median filter.

2.1.2. Removing plastic sheath

During endoscopic OCT imaging, the probe is protected from biofluid by a plastic sheath. The
sheath boundary is so prominent that causes strong disturbance in the search of esophageal tissue
layers. To remove the plastic sheath from the OCT image, its upper bound Pr1 and lower bound
Pr2 should be determined first.
In this study, the GTDP algorithm [13] was adopted for the boundary identification of the

plastic sheath. The GTDP represents image I as a graph G(V, E), where V denotes the graph
nodes that correspond to image pixels and E is the edge connecting adjacent nodes. The weight
for edge connecting adjacent pixels a and b was set as

wab = 2 − (ga + gb) + wmin, (1)

where ga and gb are the vertical intensity gradients normalized to [0, 1], and wmin is the minimum
possible weight in the graph. The gradients are calculated by convolving the image with a mask
k [36], which is defined by

k =
1
13


0 1 2 1 0
1 2 3 2 1
0 0 0 0 0
−1 −2 −3 −2 −1
0 −1 −2 −1 0


. (2)

The path with minimal weight is the potential layer boundaries, which was solved by the Dijkstra
algorithm [45].

The Pr1 is the boundary that separates the plastic sheath from the background, which possesses
the highest intensity contrast. This character indicates the Pr1 owns the highest gradient that
can be easily located by GTDP. Pr2 can also be determined using GTDP by limiting the search
region with Pr1 and 10 pixels below Pr1. Ten pixels is the approximate sheath thickness in this
study. The plastic sheath is then removed by shifting the pixels from Pr1 to Pr2 and the empty
pixels are filled with a mirror image. The result is illustrated in Fig. 4.
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(a) (b)

Fig. 4. Plastic sheath removal: (a) position of Pr1 and Pr2; (b) image with the plastic sheath
removed.

2.1.3. Lumen segmentation

The outer boundary of the esophageal lumen is defined as the baseline (Fig. 1). Baseline is
important in this study because it is the foundation of the following image flattening and it also
affects the effectiveness of the subsequent search for other layer boundaries.

The baseline extraction using GTDP is supposed to be easy since it is the most prominent layer
boundary on the image without the plastic sheath as illustrated in Fig. 4(b). Nevertheless, the
mucus may induce a great error to GTDP as displayed in Fig. 5(a). Noticing that the SC layer has
the highest intensity in the image, which can be used to correct the mucus-influenced baseline.
The detailed process is summarized below:

(a) Extract a preliminary baseline BA1 by GTDP as shown in Fig.5(a).

(b) Find the up-most point that has an intensity higher than a predefined threshold in each
column.

(c) Determine if there is a successive part in BA1 above the obtained points. Provided that BA1
is consistent with the obtained points, it can be marked as the valid baseline. Else, recognize
the different part as the erroneous region (Fig. 5(b)), and continue to the following steps.

(d) Limit the graph search region for GTDP. As illustrated in Fig. 5(c), in the valid part of BA1,
the graph search region is defined around BA1, while in the erroneous part, the graph search
is conducted beneath BA1, thus eliminating the negative effects of mucus.

(e) Graph search in the re-defined region to get the final baseline (Fig. 5(c)).

2.1.4. Flattening

Based on the graph search theory, the layer boundary is identified by searching the minimum
weighted path across the graph. When the weights are set uniformly, the graph search method
tends to find the shortest geometric path. However, the in vivo esophageal OCT images are
often accompanied with a steep slope and irregular bending due to tissue movements and sheath
distortion, which make the interested boundary lie in complex curves. Flattening is an effective
solution to this problem.

The flattened image is created based on the baseline obtained in the previous section. We shift
each column up or down such that the baseline is flattened. Empty pixels resulting from the
baseline shifting are filled with a mirror image. The final image is shown in Fig. 5(d), which is
beneficial to the following segmentation.
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(a) (b)

(c) (d)

Fig. 5. Deomonstration of: (a) the initial baseline BA1; (b) the erroneous part of BA1; (c)
corrected baseline and (d) flattened image.

2.2. Esophageal layer segmentation by EEGS

EEGS is composed of the following steps. Firstly, a modified Canny edge detector is designed
to create a map showing local main edges. Secondly, a gradient map in the axial direction
is generated using a convolution mask. In that case, an edge-enhanced graph combining the
gradient and Canny maps is obtained. As a result, layer boundaries can be extracted by dynamic
programming. Detailed realization is described as follows.

2.2.1. Modified Canny edge detection

The Canny edge detector [43] was modified to create an edge-enhanced weight matrix for the
subsequent graph search. This process can be summaried by the following steps:

(a) Apply a Gaussian filter to smooth the image.

(b) Calculate the intensity gradients of the smoothed image. The gradient magnitude G and
direction α can be determined by

G = |Gy |, α = atan
(

Gy

Gx

)
(3)

where Gx and Gy are the first derivative in the horizontal and vertical direction, respectively.
The gradient magnitude is calculated along the vertical direction since the flattened esophageal
tissue layers distribute horizontally.

(c) Apply non-maximum suppression to get rid of spurious response to edge detection. The
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matrix indicating edges can be described by

Ie =


0 if G ≤ p

1 if (G > p) ∩ (G > Ii) ∩ (G > Ij)
0 if (G > p) ∩ [(G ≤ Ii) ∪ (G ≤ Ij)]

(4)

where p is a pre-defined threshold, Ii and Ij denotes the gradient magnitude of the pixel in
the positive and negative gradient directions, respectively.

Consequently, a binary matrix Ie indicating image edges can be generated. An example of
edge map Ie overlying the original image is shown in Fig. 6(b). By removing vertical edges, the

(a) (b)

Fig. 6. Edge maps overlying the original image (a) traditional Canny edge and (b) the
modified Canny edge.

modified canny detector can better describe esophageal tissue layers, thus creating an edge map
more suitable for layer segmentation.

2.2.2. Construction of edge-enhanced gradient map

In this study, the edge-enhanced gradient map M is defined as

M = Gr + w × Ie (5)

where Gr denotes the vertical intensity gradient calculated by mask k (Eq. (2)), Ie represents the
modified Canny edge map and w is a weight parameter. The combination of Gr and Ie has the
following advantages. By using neighboring information, Gr provides complementary search
guidance where the Canny detector loses its efficacy. Meanwhile, Ie calculated by the Canny
strategy compensates for the lack of local precision of Gr caused by the local smoothing effects
of k. As a result, M is able to preserve local details while interpolating information into the
shadow regions.

2.2.3. Segmentation by EEGS

The EEGS framework uses the GTDP for layer boundary identification. Instead of setting the
weight by Eq. (1), the edge weight in EEGS is defined as:

wab = 2 − (Mn
a + Mn

b ) + wmin (6)

where, Mn
a and Mn

b
are normalized edge-enhanced map values for connecting adjacent points a

and b calculated by Eq. (5).
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The extraction of each boundary is realized by performing EEGS iteratively in a limited search
area. The area is defined using the previously-identified boundary and the prior knowledge of the
tissue layer thickness with a ±20% tolerance [44, 46], so that each search region contains one
boundary ideally. The prior knowledge can be obtained by manual segmentation. As a result, all
of the six boundaries are acquired automatically.

3. Experiments

3.1. Experimental data

The proposed EEGS segmentation framework was tested on esophageal OCT images of guinea
pigs, which were acquired by an 800-nm ultrahigh resolution gastrointestinal endoscopic OCT
system [9, 10, 47]. A typical image is illustrated in Fig. 3(a). Some layer boundaries like SC, EP
and LP can be visually observed, while the MM and SM layer boundaries have low-contrast and
are difficult to identify. Besides, disturbance such as the speckle noise, plastic sheath and the
mucus are clearly presented on the image.

3.2. EEGS performance on OCT images with different challenges

In vivo esophageal OCT images present unique difficulties for layer segmentation resulting from
motion artifacts and intrinsic disturbance from the endoscopic equipment itself (such as the
plastic sheath). Fig.7 illustrates several typical ill-posed images. Specifically, Fig. 7(a) shows an
image with irregular bending, which was caused by the sheath distortion; Fig. 7(c) has quite weak
boundaries in some regions of theMM and SM layers; Fig. 7(e) presents discontinuous boundaries,
which might be caused by the non-uniform rotation speed of the endoscope; mucus occurs in Fig.
7(g) and separates the probe from the tissue surface. All of the listed problems are addressed
in our EEGS scheme by embedding procedures such as flattening, baseline correction and the
Canny-based edge-enhanced strategy. Corresponding segmentation results are demonstrated in
Figs. 7(b),7(d),7(f) and 7(h). Results show that the EEGS is able to accurately identify all the
esophageal layers, which confirms the robustness of the proposed method.

3.3. Segmentation result analysis of the EEGS framework

To further confirm the effectiveness of the EEGS framework, we compared the proposed method
with manual segmentation of three experienced observers. These observers have segmented
numerous OCT images from different organs, such as the retina, esophagus and airway, using a
freeform (drawing) method implemented in the open-source software ITK-SNAP [48]. Besides,
the comparison of the EEGS and GTDP [13, 36] was also carried out to prove the advantages of
the proposed method. The experimental data is composed of 100 esophageal OCT images, each
with 2048 × 2048 pixels acquired from one healthy guinea pig. For a quantitative evaluation, we
calculate the thickness of the five esophageal layers.

An intuitive segmentation comparison among EEGS, GTDP and one of the observers (Obs. 1)
was demonstrated in Fig. 8. It can be seen that both EEGS and GTDP are consistent with the
manual segmentation results for the right portion of the image, where the tissue layers are smooth
and little disturbance exists. In comparison, for the left portion of the image where distortion
occurs, differences between automatic and manual segmentation can be visually found. In that
case, the EEGS result is closer to Obs.1 than GTDP because the modified Canny map in EEGS
enhances the edge details, thus compensating for the loss of precision of the vertical gradients
used by GTDP. The unsigned border position differences between the automatic and manual
segmentations are listed in Table 1, where borders BD1 to BD6 represent the layer boundary
from the top of SC layer to the bottom of SM layer and the data is presented in the form of
mean ± standard deviation in micrometer. It can be found that the EEGS result is closer to the
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Fig. 7. Representative esophageal OCT images with (a) irregular bending; (c) weak boundary;
(e) discontinuous boundary and (g) mucus. (b),(d),(f) and (k) are the corresponding
segmentation results with the proposed EEGS method.
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manual segmentation in all cases, which proves its better accuracy in layer boundary identification.

Fig. 8. Comparison of segmentation results of EEGS, GTDP and Obs.1.

Table 1. Unsigned border position differences of the automatic segmentation methods and
manual segmentation.

Border Obs.1 as Ref. Obs.2 as Ref. Obs.3 as Ref.

GTDP EEGS GTDP EEGS GTDP EEGS

BD1 (µm) 2.41 ± 0.98 2.34 ± 0.97 2.86 ± 0.71 2.84 ± 0.79 3.18 ± 1.43 3.16 ± 1.42
BD2 (µm) 3.23 ± 2.56 2.15 ± 1.62 5.09 ± 2.40 3.14 ± 1.45 4.3 ± 2.17 3.61 ± 1.71
BD3 (µm) 1.13 ± 1.97 0.23 ± 0.81 1.14 ± 1.16 0.21 ± 1.03 1.89 ± 1.91 1.52 ± 1.54
BD4 (µm) 1.03 ± 1.15 0.31 ± 0.85 1.68 ± 1.82 1.23 ± 0.83 2.12 ± 2.09 2.71 ± 1.54
BD5 (µm) 5.58 ± 4.26 3.96 ± 2.73 5.65 ± 4.25 3.98 ± 2.82 4.87 ± 3.32 3.77 ± 2.33
BD6 (µm) 1.33 ± 2.33 1.15 ± 1.07 1.99 ± 2.90 1.72 ± 1.69 2.85 ± 2.56 2.70 ± 2.12

The average layer thickness of 100 esophageal OCT images and the corresponding standard
deviation are listed in Table. 2. Using each of the manual segmentation as a reference separately,

Table 2. Layer thickness obtained by different methods for 100 esophageal OCT images of
guinea pig.

Layer Obs. 1 Obs. 2 Obs. 3 GTDP EEGS

SC (µm) 36.61 ± 2.60 41.74 ± 1.23 38.42 ± 1.59 35.06 ± 0.92 37.43 ± 0.83
EP (µm) 17.13 ± 2.21 14.28 ± 1.20 16.45 ± 1.39 19.09 ± 0.51 18.05 ± 0.50
LP (µm) 10.29 ± 0.74 8.21 ± 0.45 11.10 ± 0.48 10.56 ± 0.50 10.28 ± 0.34
MM (µm) 20.90 ± 1.70 23.12 ± 1.44 19.25 ± 1.31 16.21 ± 1.43 17.39 ± 1.30
SM (µm) 19.68 ± 1.65 19.79 ± 1.23 21.85 ± 2.10 25.21 ± 2.05 23.97 ± 1.42

the differences of layer thickness between the automatic segmentation and the reference are listed
in Table 3. Data in bold indicates the automatic segmentation results that are closer to the manual
segmentation. Noticing that the EEGS segmentation results are closer to the manual reference
values than the GTDP in all cases, which indicates the proposed EEGS is able to segment five
esophageal layers more accurately than GTDP.
Fig. 9 shows the scatter plots indicating the reliability of the thickness measurements using

GTDP and EEGS in comparison with the reference annotations from Obs.1, as well as the
corresponding Bland-Altman plot. In Fig. 9, n is the point number, r denotes the correlation
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Table 3. Comparisons of esophageal layer thickness mesurements between EEGS and GTDP
using manual segmentation as references.

Layer Obs.1 as Ref. Obs.2 as Ref. Obs.3 as Ref.

GTDP EEGS GTDP EEGS GTDP EEGS

SC (µm) 2.66 ± 1.70 2.32 ± 1.73 6.67 ± 1.31 4.34 ± 1.27 3.39 ± 1.64 1.58 ± 1.02
EP (µm) 2.49 ± 1.53 2.09 ± 1.20 4.81 ± 1.22 3.82 ± 1.09 2.68 ± 1.42 1.81 ± 1.18
LP (µm) 0.76 ± 0.59 0.63 ± 0.48 2.36 ± 0.66 2.07 ± 0.58 0.85 ± 0.54 0.72 ± 0.53
MM (µm) 4.73 ± 2.13 3.68 ± 2.01 6.91 ± 1.91 5.75 ± 1.94 3.13 ± 1.86 2.14 ± 1.45
SM (µm) 5.55 ± 2.27 4.35 ± 2.06 5.42 ± 2.36 4.19 ± 1.72 3.76 ± 2.87 2.79 ± 1.79

coefficient and LOA represents the limit of agreement with the 95% confidence interval. It can
be found that the EEGS method offers a larger r value and a smaller LOA, which indicates its
result is closer to the reference annotations.

3.4. Clinical potential of EEGS

To demonstrate the clinical potential, the EEGS framework was employed to segment three sets of
30 guinea pig esophagus images, including two normal conditions and one EoE model [49]. EoE
is an esophageal disorder featured with eosinophil-predominated allergic inflammation in the
esophagus [11]. Representative OCT images of guinea pig esophagus segmented by EEGS are
presented in Figs. 10(a) to 10(c), and the corresponding thicknesses of the five tissue layers are
shown in Fig. 10(d). It is evident that the thickness of the SC layer of the EoEmodel is significantly
thicker than the normal cases, which indicates our EEGS framework would potentially aid clinical
diagnosis [11, 50].

4. Discussions

Our image analyses were performed on a personal computer with an Intel Core i7 2.20 GHz
CPU and 16 GB RAM. Using MATLAB, it takes about 12 seconds for the EEGS to preprocess
and segment an esophageal OCT image with the size 2048 × 2048 pixels, which is less efficient
than GTDP (about 8 seconds) due to the additional Canny edge detection. This computational
efficiency is suboptimal for real-time processing. To reduce the segmentation time, more efficient
GPU-based programming in C will be adopted in the future.

Since the esophageal OCT images were collected successively by the endoscope, the overlapped
information in adjacent frames can be used to correct outliers, thus further improving the
segmentation accuracy. In addition, the current algorithm requires some apriori knowledge such
as the layer numbers to be segmented and the approximate layer thickness. Future work will try
to find adaptive parameter setting methods to perform automatic segmentation with less or no
user input.
The esophagus layer segmentation experiments on normal and EoE guinea pig models

demonstrate the clinical potential of the EEGS framework. In the future, esophageal OCT images
for human will be collected and studied, so that the criteria for diagnosing different esophageal
diseases would be determined. As a result, an automatic diagnosis system for esophageal diseases
will be developed.

5. Conclusions

The main contribution of this paper is proposing the EEGS scheme to accurately segment
esophageal layers on OCT images. With reasonable preprocessing before segmentation, the
negative effect caused by the OCT imaging system and in vivo motion artifacts is minimized. By
introducing Canny edge detection in the construction of the edge-enhanced weight matrix, the
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(a)

(b)

Fig. 9. Correlation analysis and the corresponding Bland-Altman plot of (a) the GTDP
method and (b) the EEGS framework, compared to the manual segmentation of Obs.1.
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(a) (b)

(c) (d)

Fig. 10. Representative segmentation results of EEGS for (a) normal guinea pig 1; (b)
normal guinea pig 2; (c) guinea pig EoE model and (d) comparison of the measured layer
thicknesses.

local edge information is preserved while the lost information in the shadow region is interpolated.
It is worth mentioning that the Canny method utilized in this study focuses on boundaries along
the horizontal direction, thus matching the esophageal layer better. Experiments showed that the
proposed EEGS method can achieve better esophageal layer segmentation results in accuracy and
stability than the GTDP, and it has the potential to be used for diagnosing esophageal diseases.
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