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Abstract: The number of patients with kidney stones worldwide is increasing, and it is 
particularly important to facilitate accurate diagnosis methods. Accurate analysis of the type 
of kidney stones plays a crucial role in the patient's follow-up treatment. This study used 
microscopic Raman spectroscopy to analyze and classify the different mineral components 
present in kidney stones. There were several Raman changes observed for the different types 
of kidney stones and the four types were oxalates, phosphates, purines and L-cystine kidney 
stones. We then combined machine learning techniques with Raman spectroscopy. KNN and 
SVM combinations with PCA (PCA-KNN, PCA-SVM) methods were implemented to 
classify the same spectral data set. The results show the diagnostic accuracies are 96.3% for 
the PCA-KNN and PCA-SVM methods with high sensitivity (0.963, 0.963) and specificity 
(0.995,0.985). The experimental Raman spectra results of kidney stones show the proposed 
method has high classification accuracy. This approach can provide support for physicians 
making treatment recommendations to patients with kidney stones 
© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement 

1. Introduction
Kidney stones are a global problem that seriously threatens human health [1]. The stones 
cause physical pain and lead to chronic kidney disease [2]. Recent statistics indicate the 
incidence of kidney stones is increasing worldwide, and the incidence rate usually varies from 
2 to 20% [3–5]. The prevalence of kidney stones in adolescents and children is also increasing 
and has become common [6]. There are substantial social and medical consequences due to 
the high incidence of kidney stones. The treatment of urolithiasis in the United States costs 2 
billion US dollars annually [7]. Additionally, treating kidney stones is a painful process for 
most patients. However, kidney stones are an extremely recurrent disease and survey data 
show 52% of patients relapse within 10 years [8] and 3% of patients experience renal failure 
because of urolithiasis [9].Thus, preventing recurrence is critical. 

The current recommendations for the treatment and prevention of kidney stones are based 
on the analysis of kidney stone types. Prompt and accurate detection of the kidney stones 
reduces treatment error and improves the prevention advice. It is valuable to perform 
precision treatment on patients with kidney stones. The current identification methods for 
kidney stone composition include infrared spectroscopy, chemical analysis and X-ray 
diffraction [10–12]. Infrared spectroscopy is currently the most practical method in hospitals, 
but its wide spectrum range makes it difficult to differentiate overlapped peaks and 
distinguish different types of kidney stones. In addition, this method can be easily disturbed 
by water and other particles. However, Raman spectroscopy is beginning have an important 
role in biomedicine [10]. 

Raman spectroscopy can provide the chemical composition, structure and spatial 
information of molecules. This approach could be useful in the biomedical field. Cells, tissues 
and organs in different states have different biochemical components and spectral 

                                                                       Vol. 9, No. 9 | 1 Sep 2018 | BIOMEDICAL OPTICS EXPRESS 4175 

#330816 https://doi.org/10.1364/BOE.9.004175 
Journal © 2018 Received 2 May 2018; revised 27 Jun 2018; accepted 25 Jul 2018; published 9 Aug 2018 

https://doi.org/10.1364/OA_License_v1
https://crossmark.crossref.org/dialog/?doi=10.1364/BOE.9.004175&domain=pdf&date_stamp=2018-08-09


characteristics [11–13]. Raman spectroscopy plays an important role in the detection of 
kidney stones, clinical diagnosis and postoperative guidance. Many scholars have studied 
kidney stones by Raman spectroscopy [14–18]. 

The Raman spectroscopy method allows real-time, lossless and non-invasive 
measurements. In addition, it requires only minimal sample preparation. It has a better signal-
to-noise ratio than X-ray diffraction, and the problem of spectral line overlap is less than 
FTIR and the detection time is short. However, no one has attempted to classify kidney stones 
using Raman spectroscopy combined with machine learning. 

Therefore, analysis and classification of kidney stones by Raman spectroscopy is 
completely effective. Raman spectroscopy is now combined with machine learning in medical 
diagnostics [19, 20]. In this study, we used micro-Raman spectroscopy to analyze kidney 
stones by percutaneous nephroscope lithotripsy. The contributions of this paper are as 
follows. First, we first used Raman spectroscopy in combination with machine learning 
methods to classify kidney stones, compared to methods already used in hospitals. Raman 
spectroscopy is faster and takes less time. Second, 135 samples of kidney stones were 
collected. This is the first time that a large-scale sample analysis has been performed 
compared to previous studies. Third, using a variety of machine learning models for 
comparison, it was found that most models are well-suited for the classification of kidney 
stones. 

2. Materials and methods 

2.1 Sample 

The major crystalline components of human urinary tract stones are listed in Table 1. 

Table 1. The chemical name, composition, mineral name of the most common 
components of urinary tract calculi [21]. 

Chemical name Mineral name Chemical formula 
Oxalates   

·Calcium oxalate monohydrate Whewellite CaC2O4·H2O 
·Calcium oxalate dihydrate Weddellite CaC2O4·2H2O 

Phosphates   
·basic calcium phosphate Apatite Ca5(PO4)3(OH) 
·Calcium hydrogen phosphate Brushite CaHPO4·2H2O 
·Magnesium ammonium phosphate 

hexahydrate 
Struvite MgNH4PO4·6H2O 

Purines   
·Uric acid  C5H4N4O3 
·Monosodium urate monohydrate  NaC5H3N4O3·H2O 

Other   
·L-cystine  (-SCH2CHNH2COOH)2 

 
A total of 135 kidney stone samples were obtained from patients at the First Hospital of 

China Medical University. The numbers of different types of kidney stones were 34 for L-
cystine kidney stones, 34 for purines kidney stones, 32 for phosphates kidney stones and 35 
for oxalates kidney stones. The mean patient age was 62 years. The oldest patient was 88 
years old, and the youngest patient was 31 years old. All kidney stones were obtained by 
percutaneous nephroscope lithotripsy. The stones were washed with deionized water to 
remove debris such as blood, mucus and gypsum. The experimental procedure in this study 
was performed after obtaining written permission from the First Hospital of China Medical 
University and the patients. The washed kidney stones were dried in a moisture proof box for 
1 hour. The oven-dried kidney stone samples were ground into a fine powder by using an 
agate mortar and pestle. In addition, we photobleached all kidney stone samples to reduce the 
effect of fluorescence. 
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2.2 Raman spectroscopy 

The spectrum from the kidney stone samples were recorded in the spectral range of 200 cm−1 

to 1700 cm−1 by using a Raman system (Horiba JY HR Evolution, France), which can provide 
a spectral resolution of 1 cm−1. A 785 nm diode laser with spatial resolution of 1μm was used 
as an excitation source. The power of the laser is 19.2 mW, and the kidney stone samples 
were excited by a 20x microscope objective lens (NA = 0.40). 

We measured three different locations for each sample during the collection of Raman 
spectra of kidney stones. Each spectrum was acquired with an integration time of 1s and 
accumulated 5 times. 

2.3 Preprocessing 

The spectra collected using the Horiba JY HR evolution Raman spectrometer yielded noise 
and fluorescence background. The noise was removed by Savitzky-Golay and the 
fluorescence background was also removed [22, 23]. Savitzky-Golay filters are widely used 
for data stream smoothing and reducing noise. The most important feature of this kind of 
filter is the filtering ensures the shape and width of the signal while filtering out noise. The 
fifth-order polynomial fit was used to estimate the fluorescence background and then subtract 
from the original spectrum. In order to compare the changes in spectral shape and relative 
peak intensity in different urine samples, all the Raman spectra were normalized. 

2.4 Classification and quantification 

Principal Component Analysis (PCA) is a statistical method that reduces the dimensions of 
high-dimensional data to simplify complex data sets. A dependent-sample t test was 
conducted to select the most diagnostically significant PCs (P < 0.05). 

There were two classifiers adopted for identification analysis; KNN and SVM. Both of 
these classifiers are well studied for classification problems and have been used in the fields 
of biophotonics, pattern recognition and classification for many years. The KNN algorithm is 
a mature and basic classification and regression method proposed by Cove and Hart in 1967 
[24]. For a newly arrived instance the KNN algorithm predicts the category of the new 
instance by means of majority voting according to the category of its k nearest neighbor 
training set instances. The following algorithm is used: 
Input: Training data set 

T = {( 1x , 1y ),( 2x , 2y ),…,( Nx , yN )} 

where x χ n

i ∈ ⊆ R  is the feature vector of the instance, 
1 2

Υ { , , , }
i k

y c c c∈ ⊆ …  is the class of the instance, i = 1, 

2, …,N; the instance feature vector x; 
Output: Class y to which instance x belongs 
1. According to the given distance metric, k points in the training set t are found to be nearest to x, and the 

neighborhood of x covering the k points is denoted as ( )
k

N x ; 

2. Determine the class y of x according to the classification decision rule (such as majority vote) in ( )
k

N x : 

Y = arg 
( )

( ), 1, 2, ; 1, 2,  

i k

i j

x N xj

max
I y c i j K

c
∈

= = … = … N  

where I is the indicator function, i = 1 when 
i jy c= , otherwise i = 0. 

The standard SVM was proposed by Cortes and Vapnik [25]. This is a supervised learning algorithm that 
implements network optimal parameter selection by minimizing structural risk minimization. The support vector 
machine can realize non-linear mapping of input vectors to high-dimensional feature space through nonlinear kernel 
function and can achieve effective classification. This makes the sample linearly feasible within this feature space. 
The following kernel functions are used in this study: 

Linear: K( ix ,
jx ) = T

i jx x  

Polynomial kernel: K( ix ,
jx ) = ( )T d

i jx x  
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Gaussian radial basis function (RBF): K( ix ,
jx ) = exp 

2

2
2

i j
x x

σ

− − 
 

3. Results and discussion 

3.1 Spectral preprocessing 

The data preprocessing substantially improved the Raman spectra quality. The Raman 
spectrum was smoother and the Raman peaks of different kidney stones were distinguished. 

 

Fig. 1. Typical Raman spectra of kidney stones after preprocessing. 

Figure 1 shows the typical Raman spectra for the kidney stones in four different 
categories. The spectral intensities of the samples were different from each other. Specific 
assignments of individual peaks could be found in Table 2. The Raman spectrum of L-cystine 
stones, as shown in Fig. 1(a), have a strong S-S stretching in Raman peak at 499 cm−1. There 
are some faint Raman bands at 614, 679,1341 1387, 1408cm−1. Figure 1(b) shows that Raman 
spectra of uric acid stones have four main characteristic peaks at 626, 997, 1039 and 1405 
cm−1. There are two more peaks at 1501 and 1648 cm−1. Figure 1(c) shows Raman spectra of 
phosphate stones, mostly caused by phosphate. In the composed calcium phosphate, the 
spectrum mainly appears in the 2

4HPO −  and 3
4PO −  bands in the spectral range of 900-1000 

cm−1. The intense band in the range of 1000-1100 cm−1 belongs to the bending vibration of 
the 3

4PO −  group. Figure 1(d) shows Raman spectra of oxalate stones. Compared to other 

stones, Oxalate stones are caused by oxalate ions (COO- or CO2
-) with 16 bands, 4 bands near 

1476, 1398, and 594 cm−1. The Raman spectra showed distinct doublets at 1493 and 1468 
cm−1. The sharp bands at 1462 cm and 1473 cm-1 were COM and COD scaled by C = O 
oscillations and C-Osymmetry.. 
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Table 2. Raman spectral data of kidney stones [17, 26, 27] 

COM COD L-cystine Uric acid HA MAPH Assignments 
   1683   Stretching vibration of 

C=O 
   1650   C=O Stretching 

1631 1629     Asymmetric COO− 
stretching 

1614      C-O asymmetric 
stretching 

   1593   C-N stretching 
1471 1476     Symmetric COO− 

stretching 
1462,1489 1462,1473     Vibration of C=O 

1398 1417     Symmetric C=O 
stretching 

  1408    C-H bending and COO- 
stretching 

  1387    C-H bending 
862,896  1341    C-C stretching 

 1305     O-C-O stretching mode 
   1286   O=H deformation 
   1121,1231   Ring vibration 
    1086  ν3(PO4): 
   997, 1037, 

1404 

  Highly mixed vibration: 
(1) ring 

    961，997，
1068 

 P-O Stretching 

    
 

941 ν1(PO4) 

 912     Shift C–C stretching 
   782   N-H out of plane and in-

plan 
  614, 679    C-S stretching 
   634   Ring breathing mode 
    590  ν4 stretching of 

phosphate 
    584，599  Phosphate Bands 
    567 524 ν4(PO4) 
   471，569，

625 
  

Skeletal ring deformation 

503,594 598     O–C–O bending/Water 
libration 

 504     O–C–O bending 
  499    S-S stretching 
    434 434 δ(O–P–O) 
    428  ν2 stretching of 

phosphate 

3.2 Principal component analysis 

The PCA was performed to reduce the number of variables in the analysis. The data presented 
in Table 3 show the first four principal components of the Raman spectrum of the kidney 
stone sample retained 94.94% of the original data. There is a substantial amount of original 
information compressed into principal component 1, principal component 2 and principal 
component 3.These three principal components account for 89.19% of the original 
information. Figure 3 shows the pc 1, the pc 2 and the pc 3 scores. The different types of 
kidney stones are well distinguished. The scores of different types of kidney stones are within 
their respective regions without interfering with each other. In addition, the dispersion of 
points in each region of the kidney stone sample is relatively small and further shows that 
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Raman spectroscopy combined with principal component analysis can distinguish kidney 
stone types. The PCA was performed to reduce the number of variables in the analysis. 

Table 3. Explanation of variance for the top 6 principal components of samples 

PC PC1 PC2 PC3 PC4 

contribution% 66.67% 12.40% 10.12% 5.75% 
Cumulative contribution% 66.67% 79.07% 89.19% 94.94% 

 

Fig. 2. The spectra of first five principal components in PCA. 

 

Fig. 3. 3D plot of the first principal component (PC1) versus the second principal component 
(PC2) and the third principal component (PC3) for kidney stones. 

The spectra also contain redundant data and noise, which limit the efficiencies of the 
KNN and SVM techniques. It is critical to reduce the dimensions of the spectral data using 
the PCA technique to simplify the implementation of the SVM algorithm and to improve the 
performance. Therefore, PCA can accurately capture changes in different types of stones, 
reduce the dimensions for subsequent machine learning of the data, and reduce calculations. 
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3.3 Classification 

An accurate discrimination algorithm is required to properly use all of the information 
contained in Raman spectra for the classification. The KNN and SVM models were 
developed for the classification of Raman spectra of kidney stones. The classification model 
was evaluated by using a 5-fold cross validation approach. This approach divides the whole 
data set into 5-subsets. For each of the sub-sets we use one as the test set and the remaining 
four as training sets. The overall process is repeated 5 times to predict all the samples 
stepwise. This method makes full use of all the samples. 

Table 4. Classification results for the samples in the validation set. 

Classifier Classification accuracy% 
KNN  

·Euclidean knn 96.3% 
·Cosine knn 94.8% 
·Minkowski knn 94.8% 

SVM  
·Linear SVM 96.3% 
·Polynomial kernel SVM 96.3% 
·RBF SVM 88.1% 

The distance measure is used to determine the spatial distance of the individual. A longer 
distance indicates there is a greater difference between individuals. We chose three different 
distance formulas (Euclidean, Cosine and Minkowski) in the KNN for comparison. The KNN 
algorithm with three different distance formulas achieved acceptable results in the 
classification of kidney stones. The Euclidean distance KNN algorithm yielded the best 
results. The data show the classification accuracy was 98.8%. We also chose three different 
kernels (Linear, Polynomial and Gaussian) in the SVM algorithm for comparison. Similar to 
the RBF, the other two SVM algorithms also achieved very good classification accuracy 
values of 96.3% (Table 4). These are considered high quality results for the classification of 
kidney stones. 

 

Fig. 4. Receiver operating characteristic (ROC) curve of discrimination results for Raman 
spectra utilizing the PCA-SVM and PCA-KNN based spectral classification. 
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Table 5. Each case was classified by the functions derived from all cases other than that 
case 

 Oxalates Phosphates Purines L-cystine 
Sensitivity     

Euclidean KNN 0.97 1 0.88 1 
Cosine KNN 0.97 1 0.82 1 
Minkowski KNN 1 0.76 0.95 1 
Linear SVM 0.91 1 0.94 1 
Polynomial kernel SVM 0.97 1 1 0.88 
RBF SVM 0.97 0.94 0.74 0.88 

Specificity     
Euclidean KNN 0.95 1 0.99 1 
Cosine KNN 0.94 1 0.99 1 
Minkowski KNN 0.90 1 1 1 
Linear SVM 0.98 1 1 1 
Polynomial kernel SVM 0.96 1 1 0.99 
RBF SVM 0.85 1 0.99 1 

 
The performance of the model is usually evaluated based on accuracy, sensitivity, and 

specificity. We further confirmed the performance of the diagnostic model developed by the 
KNN and SVM algorithms using a receiver operating characteristic (ROC) for all 
classification algorithms (Fig. 4). The ROC curve is a graph that illustrates the performance 
of the binary classifier system because of its varying threshold of discrimination. The 
integrated area under the ROC curve (AUC) is a quantitative indicator used to represent the 
classifier performance. The sensitivity is the ability to correctly classify all patients with this 
disease and all patients without the disease are correctly identified with specificity (Table 
5).The larger AUC value means that the classifier has higher prediction accuracy. These 
results confirm the polynomial kernel SVM algorithm produces better diagnostic accuracy 
than other algorithms. 

4. Conclusions 
This study demonstrates the use of Raman spectroscopy combined with machine learning 
techniques can classify spectral data obtained from different kidney stones. The combination 
of Raman spectroscopy and statistical tools has great potential for the effective diagnosis and 
study of kidney stones. This is the first report classifying kidney stones according to Raman 
spectroscopy combined with machine learning methods. 

It is feasible to classify kidney stones optically. We used Raman spectroscopy combined 
with PCA to investigate the identification of kidney stones. Our findings indicate kidney 
stone samples could be satisfactorily discriminated. The PCA methods can considerably 
simplify the complexity of calculation without sacrificing the performance of the algorithm. 
The experimental results show the proposed classification algorithms are effective methods 
and the KNN and SVM achieved high classification accuracy. Thus, there is potential to 
provide an effective and accurate diagnostic means for kidney stone detection. Future 
research should consider the potential effects of different optical methods in classifying 
kidney stones more carefully. Additionally, further work is required to disentangle the 
complexities in multi-component kidney stone classification. The research in our laboratory is 
using different optical imaging methods to accurately diagnose kidney stones. We hope this 
technique will determine the clinical advantage of Raman spectroscopy in the diagnosis of 
kidney stone types. 
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