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C. Nunes3, Laura Fernandes de Barros Marangoni4, Adalto Bianchini4,5

1 Universidade Federal de Pernambuco (UFPE), Departamento de Oceanografia, Recife (PE), Brazil,

2 Projeto Conservação Recifal (Reef Conservation Project), Recife, Pernambuco, Brazil, 3 Laboratório de
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Abstract

Deeper reefs are often considered to be less susceptible to local and global disturbances,

such as overfishing, pollution and climate change, compared to shallow reefs and therefore

could act as refugia for shallow water species. Hence, the interest on deeper reefs has hap-

pened at a time when shallow reefs are undergoing unprecedented changes. Here we

investigated the hypothesis that fish community differed from shallow to deeper reefs due to

factors apart from habitat structure and quality and therefore discuss for the first-time

insights of a “deep refuge hypothesis” from Brazilian reefs. We collected data on fish com-

munity, benthic community and physiological conditions of two coral species on shallow (< 6

m) and deep reefs (> 25 m). No significant difference on substratum composition was

observed comparing sites and depths. Additionally, physiological data on corals also

showed similar oxidative status and growth conditions when comparing the two-coral spe-

cies in shallow and deep reefs. Conversely, our study demonstrated strong differences on

reef fish communities in terms of abundance, species richness, trophic groups, size classes

and groups of interest when comparing shallow and deeper reefs. Fish abundance was 2-

fold higher and species richness was up to 70% higher on deeper reefs. Also, a significant

difference was observed comparing trophic groups of reef fish. Macrocarnivore, Mobile

invertebrate feeders, Planktivores, Sessile Invertebrates Feeders and Roving Herbivores

were more abundant on deeper reefs. On the other hand, Territorialist Herbivores almost

exclusively dominated shallow reefs. Strong differences were also observed comparing the

abundance of reef fish groups of interest and their respective size classes between shallow

and deeper reefs. Ornamental, Great Herbivores and Groupers showed clear differences,

with higher abundances being observed in deeper reefs. Considering size classes, larger

individuals (> 15 cm) of Great Herbivores, Groupers and Snapper were uniquely recorded at

deeper reefs. Additionally, individuals with > 30 cm were recorded almost exclusively on

deeper reefs for all the analyzed groups of interest. Our findings suggest that fishing pres-

sure on the target species may be attenuated on deeper reefs, and these regions may
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therefore be considered as areas of refuge from shallow water impacts. Therefore, the likely

potential for deeper reefs protect species from natural or anthropogenic disturbances

increases the attention of marine conservation planning and resource management on

including deeper reefs in protected areas.

Introduction

Coral reefs are among the most diverse and productive ecosystems on earth [1, 2]. They play

important economic, ecological and social roles such as coastal protection, maintenance of

ocean ecological processes and climate regulation [3, 4, 5]. However, coral reefs are in intense

decline due to several local and global disturbances such as climate change, overfishing, coral

bleaching, predator outbreaks and biological invasion[2, 6, 7];). These disturbances can affect

not only the structure and composition of corals and fish communities but also key ecological

processes, such as herbivory and recruitment, and therefore the maintenance of ecosystem

functioning ([7,8].

Depth is known to influence many factors on reef ecosystems for both coral and reef fish

communities, influencing the structure of coral reef communities mainly due to light attenua-

tion, changes in water temperature and resource availability [9, 10, 11]. For instance, depth

influences coral distribution, composition and physiology [12, 13, 14]. It has been currently

suggested that some coral species exhibit distinct and sometimes opposing physiological adap-

tations due to low light attenuation; [10, 15]. However, it is still unclear if differences in depth

could influence the ecophysiology of coral species (e.g. bleaching susceptibility) and few stud-

ies have attempted to understand this relationship so far (e.g. [16]). Additionally, reef fish com-

munities are also strongly influenced by depth with effects on abundance, species richness, size

classes, fish trophic guilds and habitat specialization [17, 18, 19, 20, 21]. Different patterns of

fish community have been historically found for coral reefs around the world. However, stud-

ies assessing the structure of coral reef communities have been strongly focused on shallow

reefs and only in the last decades researches have endeavoured to explore deeper and meso-

photic coral reefs on the South Atlantic Ocean [22, 23, 24, 25].

Deeper reefs are currently considered to be less susceptible to local and global disturbances,

such as overfishing, pollution and climate change, compared to shallow reefs. Thus, they

may act as refuges and sources of propagules for shallow threatened reefs (the “deep reef

refugia” hypothesis; [16, 26]). The interdependence between shallow and deeper reefs (via

larval dispersal or juvenile/adult migration) has intrigued marine ecologists and is a central

question on studies focused on deeper reefs [27, 28, 29]. Many coral reef fish, especially com-

mercial species such as groupers and parrotfishes demonstrate a large depth distribution and

use to be often recorded on both shallow and deeper reefs [30]. In these context, certain fishing

methods performed on coral reefs, particularly breath-hold spearfishing, have obvious depth

limitations and deeper reefs could be “safer” compared to shallow habitat. Thus, it is therefore

assumed that a proportion of the fish population can obtain refuge in deeper water; [31].

Hence, multiple approaches integrating knowledge on different ecological groups and incor-

porating field and laboratory analyses may represent important tools for better understanding

the deep refuge hypothesis. Conversely, it is worth mentioning that ecological process driving

differences between shallow and deep coral reef communities could be related to other vari-

ables such as cross-shelf coral reef distribution patterns. Many large-bodied and commercial

fish species such as groupers and snappers present evident cross-shelf migration patterns (i.e.

Influence of depth on Brazilian reef fish community

PLOS ONE | https://doi.org/10.1371/journal.pone.0203072 September 26, 2018 2 / 20

https://doi.org/10.1371/journal.pone.0203072


recruit in shallow reefs and migrate to deeper habitats where they reproduce) described

worldwide [32, 33]) and in Brazilian coast [34]. Brazilian reefs comprise the unique coral

reef ecosystems on South Atlantic Oceans, with high endemism rates, and therefore a good

model for testing hypothesis related to the deep refuge hypothesis. Brazilian coral reefs are

approximately extended 3,000 km along the Brazilian coast, disconnected from the Caribbean

Sea by a semi-permeable geographic barrier [35]. Recent studies have described the com-

position and community structure of deeper reefs in Brazil [25, 36, 37] However, the deep ref-

ugee hypothesis has been poorly studied on Brazilian reefs [25] and preliminary data on our

deeper study sites suggests that fish populations could be buffered from shallow waters impacts

[38].

The present study aims to test the effects of depth on reef fish communities analyzing abun-

dance, species richness, size classes, trophic guild and groups of interest. In order to correlate

fish community data with habitat features we accessed benthic community data by comparing

shallow (<6 m) and deeper reefs (>25 m) in Brazilian reefs. Lastly, cellular diagnostic parame-

ters (also known as biomarkers) have been applied in two important scleractinian coral species

in Brazilian reefs, Montastraea cavernosa and Siderastrea stellata. Our goal was to assess the

cellular/physiological condition of corals according to depth. Thus, ecologically relevant bio-

markers related to photo-physiological traits (Chl a content), bleaching susceptibility (LPO

levels) and calcification (Ca-ATPase activity) were used to assess the health of the two coral

species aforementioned. Use of biomarkers enables the identification of stressors or environ-

mentally changing conditions based on an understanding of processes at cellular level [39] and

therefore infer on habitat suitability for fish communities. Specifically, we investigated the

hypothesis that fish community differed at different depths due to factors apart from habitat

structure and quality, and therefore discuss insights of a “deep refuge hypothesis” from Brazil-

ian reefs.

Materials and methods

Study area

The present study was conducted during 2015–2016 in four distinct areas aiming a compari-

son between shallow and deep reefs in northeastern Brazil under Brazilian permit SISBIO n-

54029. Shallow areas had an average depth of approximately 4 m: Pirambú (8˚ 45’31.65 "S 35˚

5’8.01" W) and Northern Pirambú (8˚ 44’32.97 "S 35˚ 4’50.61" W). On the other hand, Carapi-

tanga (8˚ 49’35.59 "S 35˚ 2’43.16" W) and Carapitanga do Norte (8˚ 49’13.58 "S and 35˚

2’21.60" W) were the deep reefs. They are reefs more distant from the main land (around 8

km) and had a depth ranging from 25 to 30 m (Fig 1, also see [38] for site description).

Benthic community

To measure the coverage and categorization of the substratum (e.g. benthic community), the

Point Intercept Transect (PIT) method was used. This method is most commonly used

because of its efficiency and fast data acquisition. It also provides good estimates of coverage of

benthic communities [40]. This method consists in positioning of a transect of 20 m, in which

every 0.5 m the substrate component was annotated, adding 40 points per track, totalling 40

points per transect. A total of 12 transects were performed per site (Shallow 1, Shallow 2, Deep

1 and Deep 2) with a total of 48 transects randomly distributed. For identification, the sub-

strate was categorized into: (1) Epilithic Algae Matrix (EAM); (2) Hard coral; (3) Macroalgae;

(4) Coralline Algae; (5) Zoanthids; (6) Sponge; (7) Bared Rock, and (8) Sand.

In order to produce benthic composition percentage analyses, data were mathematically

(arcsine square root) transformed [41]. The arcsine square root transformation has been used
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for long time as a standard procedure when analyzing proportional data in ecology, with appli-

cations in data sets containing binomial and non-binomial response variables [42]. Multivari-

ate analysis was also applied for benthic community data comparing shallow and deep sites. A

principal component analysis (PCA) was performed after a centered log-ratio (clr) data trans-

formation and a matrix using euclidean distance for PCA. PCA was performed using the soft-

ware Primer V6 & PERMANOVA+ [43].

Fig 1. Shallow (A) and deep (B) reefs and studied coral speciesMontastraea cavernosa (C) and Siderastrea stellata (D). Photos–Pedro Pereira”.

https://doi.org/10.1371/journal.pone.0203072.g001
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Biomarkers approach for corals

Chlorophyll a (Chl a) quantification. Coral bleaching (as a decrease in photosynthetic

pigments in the coral host tissue) is considered a potential physiological response that can be

used to assess a diversity of stressors [44]. Also, acclimation of the holobiont to low-light inten-

sity can be achieved by change in the photo-physiological traits of the symbionts, such as

changes in pigment (e.g. Chl a) concentrations [45]. Chl a concentration in the holobiont was

quantified following the method described by Schimidt [46], with some modifications. Briefly,

small pieces (~0.5 cm2) of the collected corals were cut, placed in Eppendorf-type tubes (2 mL)

and sonicated (Sonaer Ultrasonics, Farmingdale, NY, USA) on ice using Milli-Q water until

the tissue was detached from the skeleton. For Chl a extraction, 18 μl of the sample homoge-

nate was vortexed with 382 μl of cold ethanol (�99.5), boiled for 5 min at 80˚C and kept at

4˚C for 24 h. After the extraction step, the sample homogenate was centrifuged and had its

absorbance read at 750 and 665 nm using a microplate reader (ELx-800, Biotek, Winooski,

VT, USA). In all steps, sample homogenates were protected from light. Chl a concentration

was normalized considering the amount of total proteins present in the sample homogenates

[47]. Data were expressed as ng Chl a μg protein-1. Total proteins content in the sample

homogenates was determined using a commercial reagent kit based on the Bradford assay

(Sigma-Aldrich, St. Louis, MO, USA).

Sample preparation for biochemical biomarkers analyses. Samples were prepared for

lipid peroxidation level and Ca-ATPase activity measurements following the procedures

described by Downs [39], with some modifications. Briefly, samples of the holobiont were

ground in liquid nitrogen, divided into aliquots (150–200 mg) and sonicated (Sonaer Ultra-

sonics, Farmingdale, NY, USA) on ice using the specific homogenization buffers (1:2, w/v)

required for analysis of each biomarker, as described below. Sample homogenates were centri-

fuged (13,000 g) at 4˚C for 10 min. The intermediary phase was collected and immediately

used for analyses.

Lipid peroxidation (LPO). Biomarkers related to oxidative stress can be used to evaluate

reef environment health by quantifying the level of damage to biomolecules (e.g. lipids and

DNA). Therefore they can be good predictors of bleaching/mortality in coral reef organisms

[48, 49, 50, 51]. Lipid peroxidation (LPO) measurement was performed using the fluorimetric

method described [52], which quantifies oxidative stress by measuring the peroxidative dam-

age to lipids induced by free radicals [52]. For both species, samples were homogenized in

1.15% KCl solution containing 35 μM butlylated hydroxytoluene (BHT). The peroxidative

damage to lipids was quantified through the reaction between the thiobarbituric acid (TBA)

and malondialdehyde (MDA), a byproduct of lipid peroxidation. The reaction generates a

chromogen, which is measured by spectrofluorometry. Fluorescence (excitation: 515 nm;

emission: 553 nm) was measured using a fluorometer (Victor 2, Perkin Elmer, Waltham, MA,

USA). Data were normalized considering the amount of total proteins in the sample homoge-

nates. Data were expressed as nmol MDA mg protein-1. Total protein content in sample

homogenates was determined using a commercial reagent kit based on the Bradford assay

(Sigma-Aldrich, St. Louis, MO, USA).

Ca-ATPase activity. Calcification represents a crucial process for the growth of scleracti-

nian corals, and therefore of vital importance in the structuring and functioning of coral reefs

[53]. In the present study, Ca-ATPase activity was used as a biomarker of this process, since

Ca-ATPase is recognized as a key-enzyme in the calcification process in scleractinian corals.

Indeed, it has been used as a good indicator of growth rates in calcifying reef organisms [50,

51, 54, 55, 56]. Ca-ATPase activity was measured under optimized substrate concentrations

for each species, following a modified protocol originally developed by Chan [57]. For both
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species, sample homogenates were prepared using a buffer solution containing 500 mM

sucrose, 1 mM dithiothreitol (DTT), and 1 mM phenylmethylsulfonyl fluoride (PMSF), and

100 mM trizma hydrochloride (Tris-HCl) at pH 7.6. Samples were centrifuged (10,000 g) at

4˚C for 20 min prior analysis. The working buffer solution contained 189 mM NaCl, 1 mM

ouabain and 20 mM Tris-HCl at pH 7.6. Optimized substrates concentrations for M. cavernosa
were 10 mM CaCl2 and 3 mM ATP, while for S. stellata they were 3 mM CaCl2 and 20 mM

ATP. Sample homogenates were incubated with 250 μl of reaction medium (working buffer

+ substrates) and placed into a water bath at 30˚C for 30 min. The reaction was stopped by

placing the mixture on ice for 10 min. Ca-ATPase activity was measured based on the amount

of inorganic phosphate (Pi) released in the reaction medium, considering that the enzyme con-

verts ATP to ADP with consequent release of Pi. Pi concentration in the reaction mixture was

measured using the commercial reagent kit "Fosfato" (Doles, Goiânia, Goiás, Brazil), which is

based on the colorimetric method described by Fiske [58]. Measurements were performed at

630 nm using the microplate reader (ELx-800, Biotek, Winooski, VT, USA). Data were nor-

malized considering the amount of total proteins in the sample homogenates. They were

expressed as mM Pi mg protein-1 min-1. Total protein content in sample homogenates was

determined using a commercial reagent kit based on the Bradford assay (Sigma-Aldrich,

St. Louis, MO, USA).

Data presentation and statistical analyses

Data were expressed as mean ± standard error of the mean (SE). Data on biochemical bio-

markers forM. carvernosa and S. stellata, from shallow and deeper reefs, were compared using

a mixed-model analysis of variance (ANOVA). Depth was used as a fixed factor while collec-

tion sites were considered as random factors nested within depth. If indicated, ANOVA were

followed by the post hoc Student-Newman-Keuls (SNK) multiple comparison test. In all cases,

ANOVA assumptions (data, normality and homogeneity of variances) were previously verified

using the Shapiro-Wilk and Levene´s tests, respectively. Data were log-transformed when nec-

essary. In all cases, significance level adopted was 95% (α = 0.05).

Reef fish community

Reef fish community was also accessed by belt transects in the same sites of benthic composi-

tion. This method consists in the use of 20 m long transects where all fish individuals and their

sizes are recorded (Visual Census) (2.5 m to the right and 2.5 m to the left of the track) (Brock,

1982). Fishes were classified into seven size categories, at intervals of 5 cm (0–5, 6–10, 11–15,

16–20, 21–25, 26–30,<31). Species were also classified according to their trophic category: (1)

Macrocarnivore (MCAR); (2) Mobile invertebrates feeders (MIF); (3) Omnivores (OMN); (4)

Piscivores (PIS); (5) Planktivores (PLK); (6) Sessile Invertebrates Feeders (SIF); (7) Roving

Herbivores (ROVH); and (8) Territorialist Herbivores (TERH). The species trophic categori-

zation followed the information available in the literature on dietary habits [59, 60]. Groups of

interest were also standardized aiming to better understand differences on fish community

when comparing shallow and deeper reef. Groups of interest included Ornamental, Great Her-

bivores, Groupers, Snappers and Pelagics. Information available in the literature was also used

to classify fish into groups of interest [59, 60].

Univariate and multivariate analyses were applied on reef fish community data. WIL-

COXON [61] test was used for the factor “Depth”. This nonparametric comparison of two

groups was used to verify if the population means are different. A permutational multivariate

analysis of variance (PERMANOVA) [62] was used to test the null hypothesis. In this case,

we tested if the fish community is different between shallow and deeper reefs. Statistical
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significance of PERMANOVA was tested with 9999 residuals permutations under an unre-

stricted permutation method and type III (partial) sums of squares. Therefore, a "two-way

nested PERMANOVA" was used for the factors "Depth" and "Site nested within Depth. We

also used the PERMANOVA approach for the analysis of trophic categories only for the factor

“Depth”. The similarity percentage analysis (SIMPER) [63] only for factor “Depth” was used to

ascertain which species contributed the most with the dissimilarity comparing shallow and

deeper reefs. All multivariate analysis was performed using the software Primer V6 & PERMA-

NOVA+ [43].

The similarity matrix based on Bray Curtis was generated and the multidimensional scaling

(MDS) analysis was performed to verify the samples distribution aiming for a better under-

standing of the differences in depth between the study areas and sites. From this matrix, sam-

ples were graphically represented by a non-metric multidimensional scaling (nMDS)

ordination [63]. MDS was performed using the software Primer V6 & PERMANOVA+ [43].

Results

Benthic community

Ephilitic algae matrix (EAM) was the most abundant substratum category recorded in all stud-

ied sites in shallow (shallow 1: 43.43%; shallow 2: 30.77%) and deeper reefs (deep 1: 21.70%;

deep 2: 28.76%) (Fig 2). Additionally, hard coral, macroalgae and coralline algae had similar

covers among sites. In general, no significant difference was observed regarding substratum

coverage between sites and depths (ANOVA; F = 224.56; p> 0.01).

PCA analysis showed that PC1 and PC2 explained 36.9% and 21.0% of the data variation

respectively. Sponge, sand and coralline algae were more correlated with deeper reefs (Deep 1

and 2). In contrast, bare rocks and zoanthids were more correlated with shallow reefs (Shallow

1 and 2) (Fig 3).

Fig 2. Substratum coverage (mean average ± SD) between shallow and deep reefs in northeastern Brazil.

https://doi.org/10.1371/journal.pone.0203072.g002
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Biomarkers approach for corals

Chlorophyll a (Chl a) content. For both corals M. carvernosa (Fig 4A) and S. stellata (Fig

4B), there were no significant differences in the holobiont Chl a content between sites of col-

lection at the same depth, as well as between shallow and deeper reefs.

Lipid peroxidation (LPO). For the coral M. carvernosa holobiont, no significant differ-

ences in LPO levels were observed between sites of collection at the same depth, as well as

between shallow and deeper reefs (Fig 4C). In turn, the coral S. stellata holobiont showed sig-

nificant different levels of LPO between sites of collection at both depths. Mean values of LPO

were higher (~1.5-fold; p<0.001) at the shallow 1 site when compared to the shallow 2 site.

However, mean values of LPO were higher (~1.8-fold; p<0.001) at the deep 1 site when com-

pared to the deep 2 site (Fig 4D).

Ca-ATPase activity. In the coralM. carvernosa holobiont, there were no significant differ-

ences in Ca-ATPase activity between sites of collection at the same depth, as well as between

the shallow and deep reefs, (Fig 4E). In turn, mean values of Ca-ATPase activity were signifi-

cantly higher (~1.8-fold; p<0.05) in the coral S. stellata holobiont at the shallow 1 site when

compared to the shallow 2 site. However, no significant differences were observed between the

sites of collection in the deep reefs (Fig 4F).

Reef fish community

A significant difference in fish abundance was observed comparing depths in the study area

(W = 247, p<0.001), with higher abundance (up to 450 individuals/100 m2) being observed in

deeper sites (Fig 5A). Species richness was also significant different between shallow and deep

reefs (W = 191; p< 0.001), with higher values (up to 35 species/100 m2) being observed in

Fig 3. PCA analysis with substratum coverage considering shallow and deep reefs in northeastern Brazil.

https://doi.org/10.1371/journal.pone.0203072.g003
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deeper reefs (Fig 5B). PERMANOVA analysis also revealed significant differences in reef fish

communities between depths and sites. When comparisons were made between sites, differ-

ences are only seen in the shallow reefs. However, there were no differences between sites in

the deep reefs (Table 1).

Fig 4. Chlorophyll a (Chl a) concentration, lipid peroxidation (LPO) and Ca-ATPase activity in the corals Montastraea cavernosa and Siderastrea stellata collected

in shallow and deep reefs in northeastern Brazil.

https://doi.org/10.1371/journal.pone.0203072.g004
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With a stress of 0.19 when comparing shallow and deeper reefs, the non-metric multidi-

mensional (MDS) scaling ordination highlights the differences between reef fish communities

among habitats. The MDS analysis demonstrated a formation of two distinct groups, with

strong distinction between depths (Fig 6).

The SIMPER analysis indicated Stegastes fuscus, Bodianus rufus and Gramma braziliensis as

being the fish species that contributed most to the dissimilarity between depths (11.0%, 5.5%

and 4.4% respectively) (Table 2). The fish S. fuscuswas the most abundant species in the pres-

ent study, but its greater occurrence was concentrated in the shallow reefs. On the other hand,

B. rufus and G. braziliensis were also abundant species, but almost uniquely recorded at deeper

reefs (Table 2).

Also, a significant difference was observed when comparing reef fish trophic groups

(Pseudo-F = 67.52, P (perm) < 0.001) (Fig 7). Macrocarnivore, Mobile Invertebrate Feeders,

Planktivores, Sessile Invertebrates Feeders and Roving Herbivores were more abundant in

Fig 5. Reef fish abundance (A) and species richness (B) on shallow and deep reefs in northeastern Brazil. Box plots show the interquartile range, with whiskers

indicating the respective confidence intervals. The horizontal lines indicate median values and circles represent the outliers of the total length that presented greater

variability.

https://doi.org/10.1371/journal.pone.0203072.g005

Table 1. Reef fish community results of the two-way nested PERMANOVA with factor “Site” nested within factor “Depth”. Posteriori pair-wise tests results for the

factor “Site(Depth)” are also shown.

Factor df SS MS Pseudo-F P(perm) Unique Perms

Depth 1 34604 34604 28.72 <0.001 9935

Site(Depth) 2 8646 4323 3.59 <0.001 9935

Residuals 68 81921 1204.7

Total 71 125170

Pair-wise tests for factor “Site(Depth)” t P(perm) Unique Perms

Within level “Shallow” of factor “Depth”
Pirambu x North Pirambu 2.28 <0.001 9931

Within level “Deep” of factor “Depth”
Carapitanga X North Carapitanga 1.25 0.06 9922

https://doi.org/10.1371/journal.pone.0203072.t001
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Fig 6. Multidimensional scaling (MDS) comparing reef fish communities in shallow and deep reefs in northeastern Brazil.

https://doi.org/10.1371/journal.pone.0203072.g006

Table 2. SIMPER results of dispersion-based weighting data of reef fish species with an overall contribution greater than 50% to the dissimilarity between shallow

and deep reefs.

Species Mean count Contribution (%) Cumulative Contribution (%)

Shallow Deep

S. fuscus 4.62 0.16 11.42 11.42

B. rufus 0.01 2.33 5.50 16.92

G. brasiliensis 0.04 1.95 4.45 21.37

H. tricolor 0.00 1.71 4.31 25.68

C. fulva 0.44 2.05 4.20 29.87

A. bahianus 1.29 2.22 4.06 33.93

S. zelindae 0.29 1.61 3.49 37.42

S. frondosum 0.14 1.35 3.21 40.62

H. poeyi 1.43 0.68 3.13 43.76

H. aurolineatum 0.12 1.28 3.09 46.85

E. figaro 0.22 1.30 2.76 49.61

A. saxatilis 0.66 1.10 2.74 52.35

Mean dissimilarity = 79.94

https://doi.org/10.1371/journal.pone.0203072.t002
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deep reefs. On the other hand, Territorialist Herbivores were almost exclusively found in shal-

low reefs. Piscivores and Omnivores did not show significant differences between shallow and

deep reefs (Fig 7).

Significant differences were also observed when comparing the abundance of groups of

interest of reef fish and their respective size classes between shallow and deep reefs (Fig 8).

Ornamental, Great Herbivores and Groupers showed clear differences, with higher abun-

dances in deep reefs. In contrast, no significant differences in fish abundance were observed

for the Snapper and Pelagics groups when comparing shallow and deep reefs (Fig 8). Consider-

ing fish size classes, larger individuals (> 15cm) of Great Herbivores, Groupers and Snapper

were uniquely recorded at deep reefs. Additionally, individuals larger than 30 cm were

recorded almost exclusively on deep reefs, for all the analyzed groups of interest (Fig 8).

Discussion

A current increase body of research has analysed the importance of deeper reefs and its rele-

vance for the maintenance of anthropized shallow coral reef communities (see [64] for a

review). However, there is a clear lack of information on how this process occurs and if this

potential is universal in space and time [65]. Our study demonstrated strong differences in

reef fish communities in terms of abundance, species richness, trophic groups, size classes and

groups of interest when comparing shallow and deep coral reefs communities from the South

Atlantic Ocean. Despite no difference in habitat features and quality (e.g. cellular diagnostic

parameters—biomarkers) were observed for two important coral species, fish community was

much more abundant and rich on deeper habitats. Larger fishes, ornamental species and spe-

cies target on spearfishing such as groupers, snappers and pelagics were also much more abun-

dant on deeper reefs. Therefore, these findings suggest a potential for a “deep refuge

hypothesis” in South Atlantic coral reefs. On the other hand, recent studies have suggested that

distance from the coast might be as important as depth on influencing reef fish communities

especially on the SWA continental shelf, which is wide [66]. In the present study, distance

from the coast could definitely be an important variable reducing fishing pressure on deeper

reefs; however, those variables are difficult to be analyzed independently once they covary.

In the present study, epilithic algae matrix (EAM) was the most abundant substratum cate-

gory recorded in all studied sites, with up to 40% of relative abundance. As previously recorded

by Rosa [36] in depths around 30 m, EAM is the most abundant benthic category in other

depth habitats. Additionally, for the Brazilian coast, [37] also cited that turf algae dominated

rocky reefs of varying health levels in deeper reefs of the Vitória-Trindade Seamount Chain

(VTC). In the present study, subtle differences in benthic communities were observed when

comparing depths, such as higher abundance of zoanthids in shallow reefs (up to 10% of rela-

tive abundance) and higher abundance of sponge in deeper habitats (up to 15%). However, no

significant difference in substratum composition was observed when comparing sites and

depths. Strong similarities in benthic communities emphasizes the likely potential to maintain

similar fish communities in shallow and deep reefs (Williams et al., 2015); however, this was

not the case in the area evaluated in the present study.

Generalist coral species, with wide bathymetric distributions (e.g. Stylophora pistillata and

Seriatopora hystrix), change their colony morphology in deeper water toward flat shapes with

thinner, wider spreading branches in order to decrease self-shading and maximize light cap-

ture [67, 68]. Besides morphological changes to compensate lower light levels, corals can har-

bor different types (clades) of symbionts, which imply modifications in their photo-

physiological traits [15, 16]. Also, this increases the acquisition of heterotophic nutrients to

compensate lower photosynthate production [15, 16, 69]. In the present study, ecologically
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relevant biomarkers related to photo-physiological traits (Chl a content), bleaching suscepti-

bility (LPO levels) and calcification (Ca-ATPase activity) were used to assess the health of M.

carvernosa and S. stellata, two important corals species occurring in shallow and deeper reefs

in the Brazilian coast. Altogether, biomarker data indicate no significant difference in cellular-

physiological conditions in corals occurring in shallow and deeper reefs, thus suggesting simi-

lar bleaching susceptibility and thermal stress for both coral species in different habitats. These

results emphasize the recent discussion that the refuge potential of deeper reefs is not a univer-

sal trend. Indeed, this could strongly vary according to location, depth and coral species [65,

70], and therefore must be further investigated.

To our knowledge, physiological data regarding oxidative status (e.g. oxidative damage to

biomolecules), between corals of the same species, thriving in different depths, are lacking in

literature. Regarding the calcification process, [45] reported lower calcification rates in the

coral S. pistillata occurring in depths above 50 m. However, no data on key enzymes involved

in this process (e.g. Ca-ATPase and carbonic anhydrase) are available in literature so far. Our

results suggest that there are no differences in coral calcification between depths. In this case,

it is important to note that corals occurring in deep waters analysed in the present study

occurred in shallower depths than those analysed by Mass [45]. Regarding photo-physiological

traits, recent findings [15, 16] show increased chlorophyll concentrations in coral holobionts

occurring in mesophotic depths. Increased concentrations in antenna pigments per photosyn-

thetic units (PSU) have been related to an acclimation mechanism to low-light regimes [71]. In

the present study, as well as in previous works [45, 71], no evidences of acclimation mecha-

nisms (e.g. increased chlorophyll content) in corals occurring in deep habitats were found. It is

important to note that the observed lack of variation in chlorophyll concentration between

depths could be related to the fact that we have only analysed the Chl a concentration, and did

not the total chlorophyll concentration, as performed in the previous studies aforementioned.

Marked differences in reef fish abundance, species richness, trophic groups, size classes and

groups of interest were observed when comparing shallow and deeper reefs in the present

Fig 7. Trophic groups when comparing reef fish assemblages in shallow and deep reefs in northeastern Brazil. Macrocarnivore (MCAR); Mobile invertebrate

feeders (MIF); Omnivores (OMN); Piscivores (PIS); Planktivores (PLK); Sessile Invertebrates Feeders (SIF); Roving Herbivores (ROVH) and Territorialist Herbivores

(TERH).

https://doi.org/10.1371/journal.pone.0203072.g007
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study. For instance, fish abundance was ~2-fold higher and species richness was up to 70%

higher in deeper reefs than in shallow ones. Additionally, larger size classes’ individuals (> 25

cm) were almost uniquely recorded in deeper habitats for some ecologically and economically

important fish groups, such as great herbivores, groupers and snappers. This difference may

be strongly tied to anthropogenic stressors. Similar trends of species size were reported by Bell-

wood [72] in reefs where no fishing activity occurred and this trend could explain the high

impacts that generally occur in the shallow areas. Selective fishing at more accessible shallow

reefs tends to remove some individuals and species more quickly, thus creating imbalances in

these habitats [72]. However, the impact of fishing pressure in target species may be attenuated

in deeper reefs, and these regions may therefore be considered as areas of refuge [73, 74, 75].

As previously demonstrated worldwide [30, 76], we argue that a strong historical spearfish-

ing pressure on shallow coral ecosystems, in addition to other impacts on shallow waters (e.g.
pollution) has modified dramatically reef fish communities in northeastern Brazil. It is impor-

tant mentioning that depth per se could not necessarily have an important influence on reef

fish communities and the observed patterns could be explained by distance from the coast as

well as differences in depth range of some fish species. Additionally, some recent studies have

presented arguments against the “depth refuge hypothesis” and demonstrated a high number

of trash and coral bleaching on deeper reefs, thus refuting the idea that deeper reefs could act

as refugia (Rocha and Pinheiro, personal communication). However, historical global and

local data on fisheries and local ecological knowledge (LEK) data has demonstrated that reef

fish communities in shallow waters could be much more similar with deeper reefs in the past

and that they have severely declined in the last decades [77, 78]. For instance, interviews with

local fishermen from the site evaluated in the present study confirmed this trend for many reef

fish species, especially for Scarus trispinosus, an endemic and endangered parrotfish. This spe-

cies is virtually extinct locally in shallow reefs, but being recorded at high abundance in the last

decades [38].

Conclusions

The renewed interest in deep reef communities occurs at a time when shallow reefs are under-

going unprecedented changes [79, 80]. It is worth noting the potential for these communities

to serve as refugia for critical taxa, such as fish and corals. Also, it is important to note that

sources/sinks for shallow-water coral populations is of increasing interest to both coral reef

ecologists and managers [81]. The potential for deeper waters to protect species from natural

or anthropogenic disturbances is increasingly recognized as pertinent to marine conservation

planning and resource management [26, 27, 82];. In this context, we discuss herein the impor-

tance of including and surveilling deeper reef as “no take zones” in Brazilian Marine Protected

Areas (MPAs), as previously suggested by [83, 84]. The “APA Costa dos Corais” (Coral Coast

MPA), our study site, is the largest Brazilian MPA. However, only its shallow reefs are consid-

ered as “no take zones”, and the lack of strictly protecting areas in deeper reefs could compro-

mise the ecological resilience of these ecosystems.
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Fig 8. Groups of interest and their respective size classes when comparing reef fish assemblages in shallow and

deep reefs in northeastern Brazil. Gray bars = shallow reefs and dark bars = deeper reefs.
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