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Abstract

Half of the high-risk colorectal cancer families that fulfill the clinical criteria for Lynch syn-

drome lack germline mutations in the mismatch repair (MMR) genes and remain unex-

plained. Genetic testing for hereditary cancers is rapidly evolving due to the introduction of

multigene panels, which may identify more mutations than the old screening methods. The

aim of this study is the use of a Next Generation Sequencing panel in order to find the genes

involved in the cancer predisposition of these families. For this study, 98 patients from these

unexplained families were tested with a multigene panel targeting 94 genes involved in

cancer predisposition. The mutations found were validated by Sanger sequencing and the

segregation was studied when possible. We identified 19 likely pathogenic variants in 18

patients. Out of these, 8 were found in MMR genes (5 in MLH1, 1 in MSH6 and 2 in PMS2).

In addition, 11 mutations were detected in other genes, including high penetrance genes

(APC, SMAD4 and TP53) and moderate penetrance genes (BRIP1, CHEK2, MUTYH,

HNF1A and XPC). Mutations c.1194G>A in SMAD4, c.714_720dup in PMS2, c.2050T>G in

MLH1 and c.1635_1636del in MSH6 were novel. In conclusion, the detection of new patho-

genic mutations in high and moderate penetrance genes could contribute to the explanation

of the heritability of colorectal cancer, changing the individual clinical management. Multi-

gene panel testing is a more effective method to identify germline variants in cancer patients

compared to single-gene approaches and should be therefore included in clinical

laboratories.

Introduction

Hereditary Non-Polyposis Colorectal Cancer (HNPCC) is a familial syndrome with an

increased incidence of colorectal (CRC) and other related cancers [1,2], defined by the

Amsterdam I or II clinical criteria. It is well established that approximately half of HNPCC
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cases are explained by germline mutations in the DNA mismatch repair (MMR) genes, mainly

MLH1,MSH2,MSH6 and PMS2. As a consequence, these cases present MMR pathway defects

and microsatellite instability (MSI) in the tumors, and are referred to as Lynch Syndrome (LS)

[3,4].

The universal screening for LS currently comprises two different stages. Firstly, the immu-

nohistochemistry (IHC) of the MMR proteins and/or the MSI status is studied in the tumor of

every CRC patient, as well as in some endometrial cancers [5,6]. When this result is positive

(MSI/absence of MMR) or if the tumor is not available, patients with a family history of CRC

are then screened for germline mutations in the MMR genes, which was previously performed

by methods such as Denaturation Gradient Gel Electrophoresis (DGGE) or High Resolution

Melting (HRM), followed by Sanger sequencing of samples with altered patterns. Initially, can-

didates for this LS genetic testing were identified based on the Amsterdam criteria [7,8] How-

ever, these algorithms may miss some individuals with LS [9], reason for which the more

lenient Bethesda guidelines were created to identify high-risk families that should undergo

genetic testing. Although all of these are effective screening tools, they may still miss a propor-

tion of patients with LS. It is worth noting that the IHC and MSI tests have lower sensitivity

for detecting MSH6 and PMS2mutation carriers in particular [9], and that the screening of

PMS2 is a challenge due to the high number of pseudogenes.

After this screening, only those families in which a germline pathogenic mutation is found

in one of the MMR genes are diagnosed with Lynch Syndrome. Those cases that show MSI/

MMR defects in the tumor but lack the corresponding germline MMR mutations are classified

as unexplained MMR deficiency, whereas the other half of HNPCC families with no evidence

of MMR deficiency has been designated Familial Colorectal Cancer Type X (FCCTX) [10–13].

FCCTX patients lack germline MMR mutations and their tumors are microsatellite stable

(MSS). The lack of information about the hereditability of cancer risk in all these unexplained

families makes it difficult to carry out an individualized genetic counseling.

Next-generation sequencing (NGS) has revolutionized cancer genomics research, and can

be used to search for Mendelian disease genes in an unbiased manner by sequencing the entire

protein-coding sequence of known predisposition genes [14]. The practice of genetic testing is

rapidly evolving owing to the recent introduction of multigene panels for the diagnosis of

hereditary cancer [15]. Multigene panels can be a cost and time-effective alternative to sequen-

tially testing multiple genes. Virtually all multigene panels include high-penetrance genes that

establish the risk of a particular type of cancer (such as breast or colon), but also many moder-

ate and low-risk genes. This challenges the personalized management of guidelines when a

pathogenic mutation is found, since the phenotypic spectrum and penetrance are less defined

or unknown for the latter [16]. The TruSight Cancer Sequencing Panel has been developed by

Illumina in collaboration with experts in cancer genomics, and targets a set of 94 well-known

cancer-predisposing genes.

The purpose of the present study is the use of multigene panel testing for the diagnosis of

hereditary cancer in individuals from high-risk colorectal cancer families.

Methods

Patient selection

A total of 1204 high-risk CRC families have been referred for genetic counseling and/or gene

testing for Lynch Syndrome at the Cancer Genetic Clinic of Hospital Clinico San Carlos

between the years 2000 and 2016. Among them, 393 families fulfilled the Amsterdam I/II or

Bethesda clinical criteria and were molecularly characterized by the study of MSI and/or

MMR protein expression in the tumor, and the screening of germline MMR gene mutations

NGS gene panel for diagnosis of hereditary CRC
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(MLH1,MSH2,MSH6, PMS2 and EPCAM, located upstream ofMSH2) by HRM followed by

Sanger sequencing [17,18]. Only 141 families in which a pathogenic germline MMR mutation

was found were diagnosed with Lynch Syndrome, while the rest of the families could not be

explained by these single-gene analyses. Other genes such as POLE, POLD1 and NTHL1were

also studied with no positive outcome.

For the present study, we selected 98 patients from those unexplained high-risk CRC fami-

lies for the test of a multigene cancer panel by NGS (Fig 1). The prioritization of the families

was based on the absence of MMR proteins, presence of MSI, lower age at diagnosis or higher

number of cancer patients in the pedigree. AnMLH1mutation carrier was added as a positive

control. Participants were asked to donate 10ml of blood at the time of their initial visit. Per-

sonal and family histories were obtained from the proband and participating relatives, and

cancer diagnoses were confirmed by medical and pathology records. A written informed con-

sent was signed by each participant, and the study was approved wirh an internal code n˚ 16/

204-E_BS by the Clinical Investigation Ethics Committee (CEIC) from the Hospital Clinico

San Carlos.

Genomic DNA extraction

Peripheral-blood genomic DNA was extracted with the MagnaPure Compact extractor

(Roche, Switzerland) according to the manufacturer’s recommended protocol. DNA concen-

tration was measured by Nanodrop (Life Technologies, USA) and Qubit (Life Technologies,

USA). The DNA integrity was evaluated by agarose gel electrophoresis.

Next generation sequencing of multiplex PCR amplicons

The patients were tested with the TruSight Cancer Sequencing Panel, targeting 94 genes

known to play a role in cancer predisposition (S1 Table). The kit includes more than 5,000

highly-optimized probes (80 mer) that cover the genes and that have been constructed against

the human NCBI37/hg19 reference genome. The integrated sample preparation and sequenc-

ing was done following the protocol from Illumina, using the Nextera enrichment method and

as little as 50ng of DNA for the library. The NGS workflow is summarized in Fig 1.

Fig 1. Next generation sequencing workflow using the TruSight cancer sequencing panel.

https://doi.org/10.1371/journal.pone.0203885.g001
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Data analysis

Sequencing data was analyzed by the MySeq Reporter Software. After the demultiplexing and

FASQ file generation, the reads were aligned against theHomo sapiens reference genome hg19

to create the BAM files. The genome analysis software Toolkit was used to perform the variant

calling and generate the VCF files. After this, Variant Studio 3.0 was used for the variant filter-

ing and annotation. Only variants with 95% of exon covered, labeled as “PASS”, with a mini-

mum coverage of 20X and a minor allele frequency (MAF) <0.03 were selected. The variants

present in more than 10 different patients were discarded. Regarding the consequence, we

only considered missense, nonsense, splicing, in frame and frameshift variants.

Copy number variation analysis

In order to look for DNA copy number variations (CNVs), the BAM files obtained by NGS

were analyzed using the Enrichment v3.0.0 app from Illumina’s BaseSpace. Those CNVs

observed with a quality value greater than 4 and a length greater than 10kb were labeled as

“PASS” and selected for further evaluation. Variants present in 4 or more different patients

were discarded. The areas affected by potential variations were then examined by the Database

of Genomic Variants (DGV) [19] and the Integrative Genomics Viewer (IGV) [20]. CNVs

with a frequency above 1% and described by at least two studies were also eliminated. Multi-

plex ligation-dependent probe amplification (MLPA) was finally carried out in samples 786

and 2954 to confirm BRCA2,MSH2 and EPCAM structural variations using SALSA MLPA

probe mixes P045, P003 and P072-B2 (MRC-Holland, Netherlands), according to the manu-

facturer’s protocol.

Confirmation of the variants

All clinically actionable variants identified by NGS were validated by Sanger sequencing on a

3130 Genetic Analyzer, with the BigDye Terminator v3.1 Cycle Sequencing Kit (Thermo

Fisher Scientific, USA). Sequencing data was aligned against the appropriate reference

sequences and analyzed using the Sequencing Analysis Software v5.3.1 (Gene Codes Corp.,

USA). Unconfirmed variants were eliminated from the results.

Annotation and variant classification

Variants were annotated according to nomenclature recommendations from the Human

Genome Variation Society (www.hgvs.org/mutnomen) and further categorized according to

the American College of Medical Genetics and Genomics [21] as: benign (class 1), likely

benign (class 2), uncertain significance (class 3), likely pathogenic (class 4) and pathogenic

(class 5). The following public databases were used for the interpretation of the variants: Clin-

Var (https://www.ncbi.nlm.nih.gov/clinvar/), UMD (http://www.umd.be/), InSight (https://

www.insight-group.org/variants/databases/), COSMIC (https://cancer.sanger.ac.uk/cosmic)

and Ensembl (http://www.ensembl.org/). Last access: April 2018. Four different in silico pro-

grams were used for the damage prediction of missense variants (Sift, Provean, PolyPhen-2

and MutationTaster).

Data accesibility

Sequencing data have been deposited at the NCBI SRA archive with BioProject record

PRJNA474807 and SRA accession SUB4117212.
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Results

Patient samples

Germline DNA was analyzed from 98 patients belonging to high-risk CRC families using the

Illumina TruSight Cancer Sequencing Panel, which targets a set of 94 genes known to play a

role in cancer predisposition. All patients had been previously tested for Lynch Syndrome by

IHC/MSI analyses in the tumor and/or germline MMR single-gene mutation screening, with a

negative result for the latter. Characteristics of the studied cohort are detailed in Table 1. The

studied families were predominantly affected by CRC; however, other malignancies were

observed in some family members, including endometrial, gastric, ovarian, breast, renal and

pancreatic cancers. The mean age at diagnosis was 49.1 years old. Most of the carcinomas had

an MSS phenotype and presence of the MMR proteins in the tumor. Only 11 patients showed

an MSI phenotype, 7 of which had absence of at least one MMR protein (but with no germline

MMR mutations detected). The majority of CRCs were Dukes B or C, and nearly all were left-

sided.

Results from the NGS targeted sequencing

Among the 98 patients, we found 19 pathogenic or likely pathogenic variants in 18 patients

(18.4%), all of which were validated by Sanger sequencing. Table 2 shows the clinical and

molecular features of the patients with these mutations. Out of the 18 patients, 8 had MLH1/

Table 1. Clinical and molecular characteristics of the 98 probands.

Amsterdam I

(N = 31)

Amsterdam II

(N = 22)

Bethesda (N = 45) Total n˚

(N = 98)

Gender

M 14 12 20 46

F 17 10 25 52

Diagnosis age

<50 19 6 31 56

>50 12 16 14 42

Tumor type

CRC 31 18 42 91

Breast 0 0 1 1

Gastric 0 1 1 2

Other tumors 0 3 1 4

MSI result

MSI 6 1 4 11

MSS 19 17 27 63

Unknown 6 4 14 24

IHC result

MMR-presence 21 16 18 55

MMR-absence 4 1 4 9

Unknown 6 5 23 34

MMR gene test

MMR wt 28 21 33 82

Unknown 3 1 12 16

N: number of patients; M: male; F: female; CRC: colorectal cancer; MSI: microsatellite instability; MSS: microsatellite

stable; IHC: immunohistochemistry; MMR: mismatch repair; wt: wild type.

https://doi.org/10.1371/journal.pone.0203885.t001
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MSH6/PMS2mutations and 10 carried non-MMR mutations. Four out of the 8 patients with

MMR mutations had MSI tumors and absence of the corresponding MMR proteins, while

another 3 patients had a discordant tumor screening: one (ID 820) with a frameshift mutation

in PMS2, c.714_720dup (MSI/presence of PMS2), another (ID 7400) with a splicing mutation

inMLH1, c.1731+4A>G (MSS/absence of MLH1/PMS2), and the last (ID 7934) with a mis-

sense mutation inMLH1, c.677G>T (MSI/presence of MLH1/PMS2). Patient ID 555 carried

two MMR variants, one inMLH1 (c.2050T>G, p.Y684D) and another in PMS2 (c.825A>T, p.

Q275H). This patient was diagnosed of CRC at 35 years old, belonged to an Amsterdam I fam-

ily and had an MSI tumor with absence of MLH1/PMS2. In silico studies of both mutations

showed that the PMS2mutation was neutral while the MLH1mutation was predicted to be

highly damaging. On the other hand, all of the 10 families with pathogenic variants in non-

MMR genes showed MSS tumors, and in one of the families (patient ID 1041) we found two

pathogenic variants inMUTYH (Table 2). From the remaining patients, 55 (56.1%) were

revealed to only carry variants of unknown significance (VUS) in 38 different genes (S2

Table), while 25 (25.5%) just carried polymorphisms.

It is worth noting that, in total, only three splicing variants were not validated by Sanger

sequencing (EZH2 c.1947+1G>T, MSH2 c.942+2T>G andMLH1 c.1059-1G>A) and were

eliminated from the data. The CNVs were also analyzed as described in Materials and Methods

(S3 Table). However, potential structural variations were discarded by the study of SNPs in the

corresponding chromosome localization using IGV. It was not possible to analyze some CNVs

Table 2. MMR status in tumors from patients with selected variants identified by the TruSight cancer sequencing panel.

Patient ID Family

Criteria

Cancer

Type

Dx Age MMR status

(MLH1 / MSH2 / MSH6 / PMS2)

Mutations detected by TruSight Cancer Panel

MSI IHC HRM Gene Variant

499 BETH CRC 63 MSS Presence Wild Type BRIP1 c.903del (p.L301FfsTer2)

555 AMS I CRC 35 MSI-H Absence MLH1/PMS2 Wild Type MLH1 c.2050T>G (p.Y684D)

763 AMS I CRC 47 MSS Presence Wild Type CHEK2 c.349A>G (p.R117G)

820 AMS I CRC 44 MSI-H Presence Wild Type PMS2 c.714_720dup (p.F242HfsTer9)

987 AMS I CRC 62 MSS Presence Wild Type SMAD4 c.1194G>A (p.W398Ter)

1041 BETH CRC 60 MSS Presence Wild Type MUTYH c.1187G>A (p.G396D)

c.1227_1228dupGG (p.E410GfsTer43)

1144 AMS I CRC 45 MSI-H Absence MLH1/PMS2 Wild Type MLH1 c.2141G>A (p.W714Ter)

1564 AMS II CRC 58 MSS Presence Wild Type HNF1A c.92G>A (p.G31D)

1652 BETH CRC 62 MSS Presence Wild Type XPC c.1001C>A (p.P334H)

1756 BETH CRC 31 MSI-H Absence MLH1/PMS2 Wild Type MLH1 c.1896+2T>C

1803 AMS II CRC 79 MSS Presence Wild Type MUTYH c.536A>G (p.Y179C)

1936 AMS I CRC 47 MSI-H Absence MSH2/MSH6 Wild Type MSH6 c.1635_1636delAG (p.E546GfsTer16)

2291 AMS I CRC 51 ND ND Wild Type PMS2 c.903G>T (p.K301N)

2456 AMS II Ovary 35 MSS Presence Wild Type TP53 c.783-1G>A

2910 BETH CRC 39 MSS Presence Wild Type APC c.3199C>T (p.Q1067Ter)

3775 AMS I CRC 47 MSS Presence Wild Type MUTYH c.1187G>A (p.G396D)

7400 AMS II CRC 39 MSS Absence

MLH1/PMS2

Wild Type MLH1 c.1731+4A>G

7934 BETH CRC 35 MSI-H Presence ND MLH1 c.677G>T (p.R226L)

BETH: Bethesda; AMS I/II: Amsterdam I and II; CRC: colorectal cancer; Dx Age: age at diagnosis; MMR: mismatch repair; MSS: microsatellite stable; MSI-H:

microsatellite instablility-high; IHC: immunohistochemistry; HRM: high resolution melting (for germline screening); ND: not determined.

https://doi.org/10.1371/journal.pone.0203885.t002
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due to the low coverage or absence of SNPs in the region. Three CNVs affecting BRCA2,

MSH2 and EPCAMwere not confirmed in 2 of the samples (786 and 2954) by MLPA.

Type, prediction and frequency of likely pathogenic mutations by gene

Out of the 19 germline pathogenic or likely pathogenic mutations detected, 8 (42.1%) were

found in MMR genes (5 inMLH1, 1 inMSH6 and 2 in PMS2). The remaining 11 mutations

were detected in other cancer predisposing genes, including BRIP1 (n = 1), CHEK2 (n = 1),

SMAD4 (n = 1),MUTYH (n = 4), HNF1A (n = 1), XPC (n = 1), TP53 (n = 1), and APC (n = 1).

The type, prediction and frequency of all the mutations can be observed in Table 3. Among

them, there were 9 missense, 4 frameshift, 3 stop-gained and 3 splice site variants. All these

variants were rare, and 11 had frequency data not available (NA) in ExAc nor in GnomAD

(Table 3). 15 of these mutations were classified as pathogenic or likely pathogenic by the Clin-

Var and/or InSight databases, following the 5-tier classification system proposed by Plon and

colleagues [22]. In addition, 4 of them did not appear in any of the variant databases men-

tioned earlier, but were considered likely pathogenic due to the type of mutation, in silico pre-

dictions and/or the molecular features of the tumor. These novel variants were: SMAD4
c.1194G>A, PMS2 c.714_720dup, MSH6 c.1635_1636del and MLH1 c.2050T>G.

Segregation studies

Unfortunately, segregation studies could not be performed in most of the families, given the

unavailability of other family members. Among the few families in which the segregation was

Table 3. Pathogenic and likely pathogenic variants by gene identified by the TruSight cancer sequencing panel.

Patient

ID

Family

Criteria

Gene Variant (c.) Variant (p.) Type of Mutation Prediction Database Frequency (ExAC)

499 BETH BRIP1 c.903delG p.Leu301PhefsTer2 Frameshift Pathogenic ClinVar NA

555 AMS I MLH1 c.2050T>G p.Tyr684Asp Missense Likely Pathogenic# Novel NA

763 AMS I CHEK2 c.349A>G p.Arg117Gly Missense Likely Pathogenic ClinVar 0.00013

820 AMS I PMS2 c.714_720dup p.Phe242HisfsTer9 Frameshift Pathogenic Novel NA

987 AMS I SMAD4 c.1194G>A p.Trp398Ter Stop gained Pathogenic Novel† NA

1041 BETH MUTYH c.1187G>A

c.1227_1228dup

p.Gly396Asp

p.Glu410GlyfsTer43

Miss, SP region

Frameshift

Pathogenic�

Pathogenic�
ClinVar, InSiGHT

ClinVar, InSiGHT

0.00280

0.00015¶

1144 AMS I MLH1 c.2141G>A p.Trp714Ter Stop gained Pathogenic ClinVar, InSiGHT NA

1564 AMS II HNF1A c.92G>A p.Gly31Asp Missense Likely pathogenic ClinVar 0.00071

1652 BETH XPC c.1001C>A p.Pro334His Missense Likely pathogenic ClinVar 0.00286

1756 BETH MLH1 c.1896+2T>C - Splice donor Likely pathogenic ClinVar, InSiGHT NA

1803 AMS II MUTYH c.536A>G p.Tyr179Cys Missense Pathogenic� ClinVar, InSiGHT 0.00162

1936 AMS I MSH6 c.1635_1636del p.Glu546GlyfsTer16 Frameshift Pathogenic Novel NA

2291 AMS I PMS2 c.903G>T p.Lys301Asn Miss, SP region Likely Pathogenic ClinVar, InSiGHT 0.000008

2456 AMS II TP53 c.783-1G>A - Splice acceptor Pathogenic ClinVar, IARC TP53 NA

2910 BETH APC c.3199C>T p.Gln1067Ter Stop gained Pathogenic ClinVar, InSiGHT NA

3775 AMS I MUTYH c.1187G>A p.Gly396Asp Miss, SP region Pathogenic� ClinVar, InSiGHT 0.00280

7400 AMS II MLH1 c.1731+4A>G - Splice donor Likely Pathogenic ClinVar, InSiGHT NA

7934 BETH MLH1 c.677G>T p. Arg226Leu Miss, SP region Likely Pathogenic ClinVar, InSiGHT NA

BETH: Bethesda; AMS I/II: Amsterdam I and II; Miss: missense; SP: splicing; NA: not available
#predicted to be probably damaging by in silico tools

�only causal in homozygosis or in co-occurrence with other mutations
†described in COSMIC
¶frequency data from gnomAD exomes.

https://doi.org/10.1371/journal.pone.0203885.t003
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studied is the one with theMLH1 c.2050T>G mutation (ID 555). However, this was not very

informative, since all the affected members were deceased and only healthy relatives could be

tested. Out of the 4 members analyzed, only one carried the variant but was too young to have

developed the disease. On the other hand, in the family of ID 1144 (MLH1 c.2141G>A) 9 rela-

tives were studied, one of whom had developed CRC at the age of 56. As expected, this affected

member was shown to carry the mutation, together with another 5 healthy members who were

all under 60 (3 of them especially young) and will follow the surveillance recommendations of

the Genetic Counseling Unit. For the CHEK2 variant (c.349A>G), only one distant relative

with polyps could be tested and was wild type for the mutation. However, this member also

had a CRC history coming from the other side of the family, so no conclusions can be drawn

from this result. Finally, the son of participant ID 3775 (monoallelic MUTYH c.1187G>A

mutation) was also evaluated with a negative result. Although this member had also been

reported to have some polyps, not much information was available.

Frequency of VUS in cancer susceptibility genes

All the variants found by NGS were analyzed by ClinVar, and those variants classified as class

3 were selected as VUS. Only those VUS with a very low frequency (<0.005) in ExAc are

included in S2 Table. The VUS in cancer genes can be grouped by their functional effect; Fig

2A shows that most of the VUS selected were located in genes involved in DNA repair mecha-

nisms, tumor suppressor genes and proto-oncogenes. Fig 2B shows that the relationship

between the number of patients and the number of variants per patient is inversely propor-

tional: 33 patients had 1 VUS, while only one patient (ID 1008) had 5 VUS, and was curiously

a patient with a strong family history. Eleven patients (IDs 499, 763, 820, 987, 1041, 1144,

1564, 1652, 1936, 3775 and 7934) with VUS also had a concomitant deleterious mutation (data

Fig 2. Class 3 variants found in genes implicated in hereditary cancer and clinical experience. A) Number of rare

VUS (MAF<0.005) per gene or group of genes, in those cancer susceptibility genes with at least 2 filtered VUS. The

different FANC, ERCC and SDH genes were grouped together for simplification. B) Number of unclassified variants

per patient of the study cohort. C) Clinical practice experience with multigene panel study. VUS: variants of unknown

significance.

https://doi.org/10.1371/journal.pone.0203885.g002
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shown in Tables 3 and S2 Table). Among the 55 patients that carried only VUS (56.1%), 31 ful-

filled the Amsterdam I/II clinical criteria.

Discussion

Approximately half of HNPCC families carry a germline, pathogenic mutation in one of the

MMR genes and are thus considered Lynch Syndrome families. The other half does not pres-

ent any evidence of MMR deficiency and the genetic basis underlying their cancer predisposi-

tion remains unknown, reason for which they are called FCCTX [13,23,24]. However,

unexplained families also comprise cases which present MMR defects and/or MSI in the

tumors but lack the corresponding germline MMR mutations. All together, these families rep-

resent a significant number of cases at the Genetic Counseling Units and they are considered a

problem in the clinic. Despite this, the genetic understanding of hereditary CRC syndromes

has grown over the years, leading to an increasing request for genetic testing [25]. The limita-

tion of the old screening methods due to their lower sensitivity and the reduced number of

genes studied has led to the rise of multigene panel testing in oncology [16,26], and given the

advantages of analyzing multiple genes, the benefits of its application in the clinical practice

are obvious [15,27].

In this study, 98 unexplained families were reanalyzed using Illumina’s NGS TruSight Can-

cer Sequencing Panel, which targets 94 genes known to play a role in cancer predisposition.

The panel testing identified 8 MMR mutations in our cohort (5 inMLH1, 1 inMSH6 and 2 in

PMS2), 7 of which were found in patients whose tumors showed an altered MMR status (MSI

and/or absence of MMR). These cases were missed by our prior screening, and are thus a result

from improved testing for these genes. Although these patients represent most of the Lynch-

suspected families included in our study, there were another 6 families that were not resolved.

The panel also allowed the identification of mutations in other well-known CRC high-pene-

trance genes, such asMUTYH (biallelic), APC, SMAD4 and TP53, as well as in moderate-pene-

trance genes likeMUTYH (monoallelic), CHEK2,HNF1A, BRIP1 and XPC. In total, pathogenic

or likely pathogenic mutations were found in 18.4% of our cohort, while high-penetrance muta-

tions represented 12.2% of the studied patients.

Four of the identified variants were novel and had not been previously described in

any of the variant databases checked (ClinVar, InSiGHT and UMD), although SMAD4
c.1194G>A had been reported at somatic level in COSMIC. There is enough evidence to

claim that the 3 deleterious novel variants (SMAD4 c.1194G>A, PMS2 c.714_720dup and

MSH6 c.1635_1636del) are pathogenic, so they will be added to the public databases for

future reference. Regarding the missense variant (MLH1 c.2050T>G), it was present in a

patient whose tumor was MSI with absence of MLH1/PMS2. In addition, in silico studies

showed the change as likely pathogenic. However, the segregation studies performed were

not very informative given the lack of affected living relatives, so more studies are needed in

order to confirm the pathogenicity of this variant.

Among all the non-MMR genes, APC,MUTYH and SMAD4 are well known to be impli-

cated in CRC, specifically in polyposis. It is worth noting that the patient in which the APC
mutation was found had over 30 polyps. However, APC as well as other polyposis-associated

genes had already been screened with no positive results (data not shown). For that reason, the

family was added to our study on the grounds that it fulfilled the Bethesda criteria. Like the

MMR mutations identified, this variant represents a false-negative of previous screenings.

Regarding the biallelic MUTYH carrier, there was no information of the presence of polyps at

the time of patient selection, but a deeper look into the family history revealed that the patient

did present multiple polyps. On the contrary, neither the SMAD4 nor the 2 monoallelic
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MUTYHmutation carriers showed any sign of polyposis to our knowledge. Nevertheless, the

risk that monoallelic MUTYHmutations confer is uncertain, so it is unlikely that they are the

only cause of cancer in the corresponding families [27].

The family that carried the TP53mutation was not a classic Li-Fraumeni family, but did ful-

fill the revised Chompret criteria. It had been classified as an Amsterdam II family because

there was one member affected with ovary cancer and another 3 with CRC at early ages, but

there were also 2 lung cancers within the family and a cousin of the proband had developed a

sarcoma very young.

The remaining genes with pathogenic or likely pathogenic mutations had moderate or less

defined cancer risks. In the first place, the BRIP1 gene encodes a member of the RecQ DEAH

helicase family that interacts with the BRCT repeats of BRCA1. The bound complex is impor-

tant in the normal double-strand DNA break repair and appears to be involved in breast and

ovarian cancer, where it acts as a tumor suppressor [28]. Rafnar et al. showed that women with

BRIP1mutations have an increased risk for ovarian cancer that may be as much as 5 times

higher than the risk in non-carriers [29]. Noteworthy, one of the BRIP1mutations reported by

Rafnar et al. (c.1702_1703delAA, p.N568WfsTer9) was also found in a Spanish CRC patient

[30], and the tumor showed a loss of the wild type allele in both studies. Here we have identi-

fied a different frameshift BRIP1mutation (c.903delG, p.L301FfsTer2) in a patient diagnosed

with CRC at 63 years old. The family fulfilled the Bethesda criteria but was not very informa-

tive due to its reduced size and limited information. Therefore, we still cannot determine the

risk for CRC that BRIP1mutations confer.

Another gene was CHEK2, a tumor suppressor that is activated when DNA is damaged or

when DNA strands break. The c.1100delC mutation of CHEK2 has been confirmed to confer

an increased risk of breast cancer in women unselected by family history [31,32,33]. The life-

time risk of developing breast cancer among women with a CHEK2mutation has been

reported to be approximately 25% [34]. In our cohort, we have found CHEK2 c.349A>G (p.

Arg117Gly), which was considered likely pathogenic by Shoda et al. and proved to produce a

nonfunctional protein both by biochemical and bioinformatics analyses [35]. In addition, their

results suggest that both of these mutations cannot act in a dominant-negative manner and

that tumorigenesis associated with this mutation may be due to haploinsufficiency [35].

We also identified a mutation in XPC, a key component of the XPC complex that plays an

important role in the early steps of global genome nucleotide excision repair and is involved in

damage sensing and DNA binding. The XPCmutation found in our study (c.1001C>A, p.

Pro334His) had been described as pathogenic in ClinVar by Johns Hopkins University. How-

ever, we have identified this mutation for the first time in a CRC patient, who was diagnosed at

the age of 50 and did not have any cancer family history. The patient died soon after the diag-

nosis, not being able to get any additional information. Last but not least, HNF1A is a tran-

scription factor that regulates tissue specific expression of many genes. This gene is implicated

in diabetes and had been described in renal cancer, but its role in CRC is unknown. We are

also describing the mutationHNF1A c.92G>A (p.Gly31Asp) in CRC for the first time.

An increasing number of studies have been published over the past few years addressing the

benefits of NGS panel testing for the diagnosis of hereditary cancers as compared with the tradi-

tional targeted single-gene screenings. While all of them agree on the huge advantages of panel

testing, especially due to its time and cost-efficiency and its higher sensitivity, the only question

that remains open to debate is the selection of genes that should be included [36–40]. Here we

have used a 94-gene panel, which is to our knowledge the highest number of genes reported in

this kind of studies by far. However, this choice was made based on a number of reasons. On

the one hand, we have learned from the Genetic Counseling Unit that there is a relatively fre-

quent overlapping of phenotypes among the different hereditary cancer syndromes [36,37],
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since the tumor spectrum is sometimes wider than expected [27,41] and the information pro-

vided by the family is sometimes incomplete. Therefore, we believe that the best strategy is to

group all the syndromes into one single cancer-predisposing multigene panel, as proposed by

some other groups [27,36], instead of dividing patients based on their phenotypes.

On the other hand, we strongly support the incorporation of lesser-known genes to NGS

panels on a research basis, since the additional cost of adding these genes is minimal [42], and

with the intensity of current research the uncertainty of many emerging genes is likely to be

resolved soon [38]. This means that some variants that are not informative at the moment may

be actionable in the future [38]. In addition, by adding these genes to our panel we are contrib-

uting to the accumulation of international research data, which is the only way to continue

improving our understanding of CRC genetics [39]. For this reason, we also believe it is highly

valuable to include a detailed list of VUS (S2 Table), something that most published studies fail

to do [38]. The number of VUS identified cannot be compared with other studies, though, since

it is associated with the number of genes on the panel [40]. Despite the high number of genes

included in the panel used for the present study, there were some genes that were left out, such

as POLE, POLD1,NTHL1 orMSH3. Although some of them (POLE, POLD1 and NTHL1) had

already been screened in our cohort, this is a limitation of our study. It goes without saying that

we would definitely recommend that future panels used in clinical studies for colorectal cancer

families should include those genes as well, for the same reasons that were discussed above.

The clinical practice experience obtained with this multigene panel is shown in Fig 2C.

Among all the families that were screened only 18.4% were informative, although this group is

underrepresented considering that only unexplained families from previous screenings were

included in the study. Out of these, 66.7% carried likely pathogenic mutations in high-pene-

trance genes and could benefit from a true genetic counseling, taking measures such as reduc-

ing the surveillance in non-carriers, who would avoid the stress attached to the lack of

awareness. Regarding moderate-penetrance genes, a study with a larger number of patients is

needed in order to establish the exact risk they confer. The introduction of NGS panels in the

clinical routine of the hospital will help us with this task. Those patients who were just

informed of VUS (56.1%) would also take advantage of this measure, since the only thing we

can do for now is to keep track of public databases, study the segregation and do functional

studies when recommended in order to improve their genetic counseling in the future. The

remaining patients (25.5%) were informed that no gene had been found to be involved in their

cancer predisposition. Although data regarding lesser-known genes and VUS is highly valu-

able from a research point of view, participants should be always informed about the limited

clinical actionability of testing for genes that are not associated with their phenotype or have

moderate penetrance.

In conclusion, the detection of new pathogenic mutations in high-penetrance genes can

contribute to the explanation of the cancer heritability in our families, changing the individual

clinical management. The NGS panel approach has the advantage of analyzing multiple genes

in multiple samples simultaneously, reducing costs and time and increasing the sensitivity in

comparison to targeted single-gene screenings. Therefore, multigene panels should be

included in clinical laboratories for the screening of all high-risk cancer families regardless of

other analyses in the tumor. The number of genes to be included in these panels is debatable,

though, and should fit the purposes of each study.

Supporting information

S1 Table. List of genes included in the TruSight cancer sequencing panel.

(DOCX)

NGS gene panel for diagnosis of hereditary CRC

PLOS ONE | https://doi.org/10.1371/journal.pone.0203885 September 26, 2018 11 / 14

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0203885.s001
https://doi.org/10.1371/journal.pone.0203885


S2 Table. Variants of unknown significance identified by the TruSight cancer sequencing

panel (Illumina).

(DOCX)

S3 Table. Results from the CNVs analysis.

(XLSX)

Acknowledgments

We are very grateful to the families for their cooperation, and we would also like to acknowl-

edge Alicia Tosar, Isabel Diaz and Paula Diaque for their technical assistance. We acknowledge

Jordi Camps for his advice about the CNVs.

Author Contributions

Conceptualization: Trinidad Caldes.

Formal analysis: Lorena Martin-Morales, Paula Rofes, Victor Lorca, Pedro Perez-Segura.

Funding acquisition: Trinidad Caldes.

Investigation: Paula Rofes.

Methodology: Inmaculada Bando.

Supervision: Eduardo Diaz-Rubio, Patricia Llovet, Pilar Garre.

Writing – original draft: Trinidad Caldes.

Writing – review & editing: Lorena Martin-Morales, Miguel de la Hoya, Vanesa Garcia-Bar-

beran, Trinidad Caldes.

References
1. Lynch HT, Smyrk T, Lynch JF. Overview of natural history, pathology, molecular genetics and manage-

ment of HNPCC (Lynch Syndrome). Int J Cancer, 1996, 69:38–43 https://doi.org/10.1002/(SICI)1097-

0215(19960220)69:1<38::AID-IJC9>3.0.CO;2-X PMID: 8600057

2. Watson P, Lynch HT. Extracolonic cancer in hereditary nonpolyposis colorectal cancer. Cancer, 1993,

71:677–85 PMID: 8431847
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