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A unique role for DNA (hydroxy)methylation in
epigenetic regulation of human inhibitory neurons
Alexey Kozlenkov1,2*, Junhao Li3*, Pasha Apontes1, Yasmin L. Hurd2, William M. Byne1,2,
Eugene V. Koonin4, Michael Wegner5, Eran A. Mukamel3†, Stella Dracheva1,2†

Brain function depends on interaction of diverse cell types whose gene expression and identity are defined, in
part, by epigenetic mechanisms. Neuronal DNA contains two major epigenetic modifications, methylcytosine (mC)
and hydroxymethylcytosine (hmC), yet their cell type–specific landscapes and relationship with gene expression are
poorly understood. We report high-resolution (h)mC analyses, together with transcriptome and histone modification
profiling, in three major cell types in human prefrontal cortex: glutamatergic excitatory neurons, medial ganglionic
eminence–derived g-aminobutyric acid (GABA)ergic inhibitory neurons, and oligodendrocytes. We detected a
unique association between hmC and gene expression in inhibitory neurons that differed significantly from the
pattern in excitatory neurons and oligodendrocytes. We also found that risk loci associated with neuropsychiatric
diseases were enriched near regions of reduced hmC in excitatory neurons and reduced mC in inhibitory neurons.
Our findings indicate differential roles for mC and hmC in regulation of gene expression in different brain cell types,
with implications for the etiology of human brain diseases.
INTRODUCTION
The human brain contains dozens of subtypes of neuronal and glial cells
(1). The identity of brain cell types is established and maintained
through spatiotemporal regulation of gene expression that, in turn, is
defined by cell type–specific epigenomic marks, including DNA
methylation and histone modifications. Cytosine methylation is the
major form of DNA methylation in mammalian cells (2) and is exten-
sively remodeled during development and differs across tissues and cells
(3). In the adult human brain, ~80% of CG and 1.5% of non-CG (CH,
where H = A, T, or C) sites are methylated and can be converted to
hydroxymethylcytosine (hmC) and further demethylated (4–6). In
postmitotic neuronal genomes, non-CG methylcytosine (mCH) and
hmC accumulate to a significantly higher level than in other differen-
tiated tissues (7, 8), which is a distinct feature of the brain’s epigenome
(9–12). However, the genome-wide distribution and function of these
epigenetic marks in specific neuronal and glial cells in the human brain
remain poorly understood.

Single-nucleus DNA methylation sequencing was recently used to
classify neuronal populations in the human andmouse brain, including
multiple subtypes of excitatory and inhibitory neurons with distinct cell
type–specific epigenetic signatures (13). Despite the power of single-cell
sequencing for unbiased identification of cell types, there is currently no
efficient method to examine hmC or specific chromatin modifications
in single neurons with sufficient throughput to investigate cell type–
specific modifications (14, 15). In mouse, fluorescent labeling and af-
finity purification of nuclei from defined neuronal types enable cell
type–specific epigenome and chromatin accessibility profiling (16, 17).
Analysis of nuclear preparations of mouse cerebellum enriched for
granule cells indicated a role for hmC in functional demethylation in this
cell type (18). However, the cell type–specific distribution of hmChas not
been investigated with single-base resolution in the human brain.

Here, we used a flow cytometry–based protocol (19, 20) to isolate
nuclei from the major neuronal and glial populations in the human
adult autopsied prefrontal cortex (PFC). We then used these prepara-
tions for single-base resolution (hydroxy)methylome, transcriptome,
and histonemodification analyses. The joint analysis of thesemultiomics
data uncovered a complex relationship between cell type–specific
epigenomic marks and gene expression and identified a unique role
for hmC in epigenetic regulation of the PFC inhibitory neurons.
RESULTS
Major cell types of the human PFC contain unique
distributions of hmC and mCH
Cell structure is not preserved in frozen autopsy brain specimens;
the nuclei, however, remain intact. We developed a multicolor
fluorescence-activated nuclei sorting (FANS) protocol to isolate the
medial ganglionic eminence (MGE)–derived inhibitory GABAergic
[GABA (g-aminobutyric acid)–mediated] interneurons (MGE-GABA),
excitatory glutamatergic neurons (Glu), and oligodendrocytes (OLIG)
from the autopsied human adult PFC (Fig. 1A and table S1) (10, 19, 20).
The MGE-derived GABA neurons comprise ~60 to 70% of all neo-
cortical GABAergic neurons and contain the parvalbumin (PV)– and
somatostatin (SST)–expressing interneurons (21). OLIG cells are the
major glial cell type in the central nervous system that provides support
and myelin-based insulation to axons (22).

Transcriptional profiles obtained using RNA sequencing (RNA-seq)
of the sorted nuclei were highly consistent among replicates within the
same cell type (r ≥ 0.94) (fig. S1A) and showed higher correlation be-
tween the two neuronal data sets (r = 0.91) compared with Glu versus
OLIG (r = 0.66) or MGE-GABA versus OLIG (r = 0.68) profiles (fig.
S1C). Principal components analysis separated samples from the three
studied cell types, linking 22.8% of the RNA expression variability to
separation of neurons fromOLIGs and 8.3% to neuronal subtype iden-
tity (fig. S1B). Known cell type–specificmarkers were highly enriched in
purified nuclei of the respective populations (for example, SLC17A7,
SATB2, and TBR1 in Glu neurons; SLC32A1, SST, and LHX6 in
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MGE-GABA neurons; PLP1,MBP, andMAG in OLIG cells), whereas
markers of other lineages were depleted, thus validating the identities
of the corresponding populations (fig. S1C). In total, 9068 genes were
differentially expressed (DE) [fold change (FC) ≥ 2, false discovery
rate (FDR) < 0.05] in at least one pairwise comparison between the
cell types (table S2). Notably, DNA methylation–related enzymes
were found to be DE among the cell types (fig. S1D). We found sig-
nificantly higher expression of the methyltransferase DNMT3B in
MGE-GABA neurons. All three TET genes (TET1, TET2, and TET3),
which are involved in hydroxymethylation, were enriched in OLIGs
compared with neuronal subtypes.

We then obtained the genome-wide profiles of total modified
cytosine [tmC = mC + hmC, bisulfite sequencing (BS-seq)] and of
Kozlenkov et al., Sci. Adv. 2018;4 : eaau6190 26 September 2018
methylcytosine [mC, oxidative bisulfite sequencing (OxBS-seq)] (23),
in parallel with histone marks [using chromatin immunoprecipitation se-
quencing (ChIP-seq)] of active enhancer and promoter regions (H3K27ac)
and Polycomb-repressed regions (H3K27me3) (table S3). The level of
hmC was calculated as the difference between the BS and OxBS signals
at sites covered by at least five reads in both data sets. In the CG context,
the genome-wide level of tmCG was ~5% higher in MGE-GABA com-
pared with Glu or OLIG cells (Fig. 1B), in agreement with our previous
findings using HM450K methylation array, reduced-representation bi-
sulfite sequencing assays, and single-nucleus BS-seq data from the hu-
man frontal cortex (13, 19). In contrast with tmCG, there were large
differences in genome-wide levels of hmCG and mCG between the
cell types, with the highest levels of hmCG in Glu (~41%), followed by
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Fig. 1. Unique distributions of hmC and mCH in Glu, MGE-GABA, and OLIG cells from the human PFC. (A) Method for cell type–specific nuclei isolation for tran-
scriptomic and epigenomic analyses. (B) Genome-wide analysis of mC (OxBS) and hmC (BS-OxBS) shows substantial but significantly different levels of hmCG in both neuronal
subtypes (Glu and MGE-GABA) and OLIG. Neurons are enriched in mCH, with a small proportion of hmCH. R1 and R2, biological replicates. (C) Examples of marker genes
expressed in Glu (NEUROD6), MGE-GABA (LHX6), or OLIG (OLIG2) cells, together with their DNA methylation and histone modification profiles. Glu (GLU), glutamatergic
neurons; MGE-GABA (M-GABA), MGE-derived GABAergic interneurons.
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MGE-GABA (~32%) andOLIG (~14%) cells (Fig. 1B). These data show
that, although hmCGandmCG together constitute a relatively constant
fraction of all CG sites, hmCGmay play a distinct role in each cell type.

Unique among differentiated cell types, adult neurons contain abun-
dant DNAmethylation at non-CG genomic positions (mCH), whereas
significantly lower mCH levels are detected in glial cells (9–12).
However, previous studies did not specifically examine mCH in
OLIG cells. We found mCH to be significantly more abundant in neu-
rons comparedwithOLIGs (Fig. 1B). In addition, total CHmethylation
(tmCH) level was consistent with measurements in single neuronal
nuclei (fig. S1E) (13). Our OxBS data also allowed us to investigate
whether a proportion of total mCH modification existed in the form
of hmCH, a question that has remained controversial (9, 18).We found
a small but reliably measurable fraction of hmCH in neuronal cells that
differed betweenGlu (~1.0% of all cytosines) andMGE-GABA (~0.4%)
subtypes. This level of hmCH corresponds to 22% of tmCH methyla-
tion in Glu cells and 8.0% inMGE-GABA cells. By contrast, hmCHwas
not detected in OLIGs (<0.02%).

To examine the relationship between different DNA modifications
and gene expression, we correlated cell type–specific RNA abundance
with each epigenomic mark. Key cell type–specific transcription factors
NEUROD6 (Glu), LHX6 (MGE-GABA), and OLIG2 (OLIG) had
corresponding patterns of expression and epigenomic regulation
(Fig. 1C). Total methylation (tmCG and tmCH) was specifically de-
pleted in the cell type that expressed the gene, whereas extensive
H3K27ac peaks indicated the presence of super-enhancers throughout
the respective gene bodies (24). High levels of the Polycomb-dependent
histonemodification, H3K27me3, as well as mCG andmCH correlated
with repression in the inactive cell types at these loci. Whereas these
patterns exemplify well-known cell type–specific markers with the
strongest differential expression, we hypothesized that thousands of
DE genes detected with RNA-seq (fig. S1C and table S2) may use dis-
tinct epigenetic pathways to regulate expression.

Gene body DNA methylation associates with gene
expression and differential expression across brain
cell types
We first examined DNA methylation in gene bodies, which has been
linked to altered neuronal gene expression following disruption of the
DNAmethylation reader MeCP2 (25). We examined the abundance of
each form ofmethylationwithin gene bodies as a function of expression
(Fig. 2, A and B, and fig. S2, A and C) and differential expression (Fig. 2,
C to E, and fig. S2, B and D). Although Glu neurons had the highest
proportion of hmCG (see Fig. 1B), the range of hmCG levels between
genes with low [transcripts per million (TPM) = 1] and high (TPM =
100) expression was smaller in Glu than in MGE-GABA neurons
(Fig. 2A). In both neuronal subtypes, mCG and hmCG had negative
and positive correlations with gene expression (P < 10−10 for all associa-
tions), respectively, leading to negligible differences in total methylation
(tmCG) over the same range of expression levels. In contrast with CG
methylation, CH methylation in both neuron subtypes was more than
twice as abundant within the gene bodies of low-expressed compared
with actively transcribed genes (Fig. 2B). These data illustrate the
substantial differences in dynamic range for different epigenomicmarks
between the brain cell types.

We next explored whether these associations are equally manifested
in genes with cell type–specific compared with cell type–independent
(non-DE) expression (Fig. 2, B to E, and fig. S2, B and C). Total
non-CG DNA methylation (tmCH) was up to 140% higher in the
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bodies of down-regulated compared with non-DE genes after control-
ling for expression (Fig. 2D). Remarkably, tmCH was also strongly
enriched (up to 80%) within the bodies of genes differentially up-
regulated compared with the other cell type (P < 0.001, Glu cells;
P < 0.05, MGE-GABA cells). These findings reflect a complex, non-
monotonic relationship between gene expression, differential expression,
and tmCH (Fig. 2F) in Glu and MGE-GABA neurons. In contrast with
tmCH, CG methylation (mCG, hmCG, and tmCG) was not related to
DE inGlu cells (Spearmancorrelation r=−0.003,−0.022, and−0.003 and
P = 0.81, 0.057, and 0.79, respectively) (Fig. 2C). MGE-GABA cells did
show amodest increase in mCG (r = 0.12, P < 0.001), but not in hmCG
(r = −0.011, P = 0.32), for Glu-specific genes.

DNA methylation acts in concert with histone modifications (26),
including the Polycomb repression–associated mark H3K27me3. We
observed that Polycombmarks in gene bodies had a similar relationship
to expression as tmCH, with the strongest H3K27me3 signal in low-
expressed genes and in genes that are differentially up- or down-regulated
in Glu orMGE-GABA cells (Fig. 2G). These two epigeneticmarks were
positively correlated across genes in bothneuron types (Fig. 2H;P < 10−10).
These observations indicate that mCH and H3K27me3 support the
specialized identity of neurons and are in line with recent findings in
mouse brain that suggested that the role of mCH is to fine-tune the cell
type–specific transcription of neuronal genes (27).

OLIG cells showed a relationship between gene body DNAmethyl-
ation and gene expression that is similar to that ofMGE-GABAneurons
(fig. S2, C and D). In particular, we found that gene body hmCG in
OLIG cells was strongly modulated by expression, whereas there was
no strong effect of differential expression. These findings indicate that
gene expression in MGE-GABA and OLIG cells is associated with the
conversion of gene bodymCG to hmCG.However, OLIG cells lack sub-
stantial mCH, and we found little or no relationship between mCH
and gene expression in these cells. Notably, using different DNAmeth-
ylation marks in linear regression to model gene expression in each of
the three cell types, we demonstrated that individual marks, hmCG and
mCG, provide a basis for better gene expression predictions compared
to tmCG (fig. S2E). Collectively, our results indicate thatmultiple forms
of gene body DNA methylation are differentially associated with gene
expression in different brain cell types.

Brain cell types differ in association between promoter
epigenetic modifications and gene expression
DNAmethylation at promoters, particularly in those overlapping with
CG islands (CGIs), is known to repress gene expression (28). In
both neuronal subtypes, we found the strongest negative correlation
(FDR < 0.001) between DNAmethylation and expression in the region
downstream of the transcription start site (TSS) within the first 1000
base pairs (bp) of the gene body (fig. S3A). This correlation was notably
stronger and more localized to the TSS for non-CGI–containing pro-
moters compared with CGI-containing promoters. Notably, Glu DE
genes were depleted for CGIs (fig. S3B). Promoters of the Glu-enriched
genes were also more strongly methylated in MGE-GABA compared
with Glu cells; in contrast, we observed little difference in methylation
between Glu and MGE-GABA cells at MGE-GABA–enriched genes
(fig. S3, C and D). Together with the gene body methylation patterns,
these results demonstrate a greater dynamic range of DNAmethylation
in MGE-GABA compared with Glu cells.

In all three cell types, there was a strong positive correlation between
gene expression and the active histone modification H3K27ac at both
non-CGI and CGI promoters (fig. S3E). However, comparing genes
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with the same level of expression, we foundmanymoreH3K27ac peaks
at promoters that overlapped a CGI. Thus, H3K27acmight play amore
important role in the regulation of the expression of CGI-containing
genes.

Brain cell type–specific enhancers have distinct patterns
of hmCG
Distal gene regulatory elements such as enhancers account for a sub-
stantial source of epigenetic diversity between tissues and cell types
and typically have intermediate-to-low levels of DNA methylation
compared to the flanking regions (29). Earlier studies showed that
hmC accumulates at enhancer regions in brain tissue, suggesting that
active DNA demethylation may have a regulatory role (9, 11). We per-
formed H3K27ac ChIP-seq analysis (30) and found 65,645 putative
active enhancers (peaks located >2 kb distal from the nearest TSS)
and 27,899 active promoters (TSS-proximal peaks) across the three cell
types (Fig. 3A). Whereas many active promoters (34.0%) were marked
by H3K27ac in all three cell types (common promoters), the vast
majority (76.8%) of enhancers were specific to a single cell type,
Kozlenkov et al., Sci. Adv. 2018;4 : eaau6190 26 September 2018
confirming the greater diversity of enhancers versus promoters across
tissues and cell types (31).

Focusing on H3K27ac-marked active enhancers, we again found
profound differences in the DNA methylation patterns in different
brain cell types. Although hmCG and mCG were depleted relative to
each cell’s genome-wide background level in the center of enhancers
that were active in all three cell types (common enhancers), hmCG
was depleted at cell type–specific enhancers only in Glu cells [Fig. 3,
B and C (ii), and fig. S4, A and B]. By contrast, MGE-GABA and OLIG
cells retained hmCG at their cell type–specific enhancers at levels nearly
equivalent to the genome-wide background for each cell type [Fig. 3, B
and C (iv and vi), and fig. S4C]. Notably, non-CG hydroxymethylation
(hmCH), but not mCH, was also significantly depleted in Glu-specific
but elevated in MGE-GABA–specific enhancers compared to genome-
wide levels (Fig. 3D).

Compared with cell type–specific active enhancers, inactive
enhancers (regions corresponding to active enhancers in one of the
other two cell types) remain highlymethylated, withmCG and hmCG
levels near the genomic background level. In MGE-GABA and OLIG
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(but not in Glu) cells, the largest hmC differences between active and
inactive enhancers were detected in the ~5-kb-wide flanking regions,
which showed elevated hmC levels in active enhancers compared to
the genome-wide background. These findings reveal distinct cell type–
specific patterns of hmC, with notably high hmC in both CG and
CH contexts in the regions of active MGE-GABA–specific enhancers
[Fig. 3C (iv) and D].

Because cell type specificity of enhancers could be related to their
distance from the TSS, we profiled DNA methylation marks of H3K27ac
peaks situated at 2 to 10 kb, 10 to 50 kb, and >50 kb from the TSS but ob-
served no significant differences in relation to cell specificity (fig. S5).

We next compared DNA methylation between enhancers that are
active in both the adult and early embryo brain and enhancers that
are inactive in early embryo but are activated later on.We accomplished
this by overlapping distalH3K27ac peaks in adult Glu andMGE-GABA
neurons obtained in our study with regions marked as open chromatin
in the fetal brain [post-conceptionweek (PCW) 15 to 17] on the basis of
the recently published Assay for Transposase-Accessible Chromatin
sequencing (ATAC-seq) data (32). We detected a significant overlap
that was larger for common enhancers (78.1% at PCW17) as compared
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with cell type–specific enhancers (37.2 to 42.1% at PCW17) (fig. S6A).
We next examinedDNAmethylationmarks in the overlapping (“early”
enhancers) and nonoverlapping (“late” enhancers) H3K27ac peaks. In
common enhancers, tmCG was significantly lower in early versus late
enhancers (P < 0.01), mainly because of the difference in hmCG
(fig. S6B). Similarly, tmCG was lower in active MGE-GABA–specific
early versus late enhancers (P < 0.05). In contrast, tmCG did not differ
appreciably between active Glu-specific early and late enhancers
(fig. S6C).

Collectively, our data show that the enhancers that are active early in
brain development (before PCW17) have very low DNA methylation
(mC and tmC) in adulthood, with the early common and Glu-specific
(but not MGE-GABA–specific) enhancers also marked by low hmC.
The enhancers that are activated later on (after PCW17) also lose
mCG; however, the late common and MGE-GABA–specific (but not
Glu-specific) enhancers retain a substantial amount of hmCG in the
adult brain. Thus, hmCG in adult active enhancersmight be a signature
of the late developmental activation of these regions. The high level of
hmCG at MGE-GABA–specific enhancers (Fig. 3, B and C) could thus
reflect their relatively late activation compared with Glu enhancers.
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OxBS-Seq data identifies thousands of new differentially
methylated regions
Using our BS-seq data, we identified 202,823 differentially methylated
regions (tmCGDMRs, adjusted for the global level of tmCG in each cell
type; see Materials and Methods) when comparing pairs of cell types
(Fig. 4A and table S4). There was a substantial overlap between tmCG
DMRs and distal H3K27ac peaks, consistent with an active regulatory
role for many DMRs. Notably, tmCG DMRs had a nonuniform
distribution across cell types: There were approximately four times
more regions with low methylation in Glu (Glu DMRs, 54,178) and
OLIG (OLIG DMRs, 64,435) compared to MGE-GABA (MGE-GABA
DMRs, 14,310).Apreponderance ofGlu relative toMGE-GABADMRs
has also been observed in mouse cortical neurons (17) and in human
single-neuron methylomes (13). In both studies, only tmCG was
assessed by BS-seq. We reasoned that this imbalance could reflect the
different roles of mCG and hmCG in each cell type, and called mCG
DMRs using OxBS-seq measurements, while adjusting for the different
global level of mCG in each cell type. We identified thousands of mCG
DMRs, with a greater number in MGE-GABA (40,644) compared to
Glu (9998) neurons (Fig. 4A). Notably, many mCG DMRs were not
tmCGDMRs, highlighting the added value ofOxBSdata and suggesting
that higher hmCG partially compensates for lowmCG in these regions.
More such regions overlapped enhancers in MGE-GABA than in Glu
cells, consistent with a greater role for hmCG in enhancers that are
active in inhibitory neurons. Together, the total number of regions with
differential methylation (mCG or tmCG DMRs) was similar in Glu
(59,995) and MGE-GABA (48,828) cells.
Kozlenkov et al., Sci. Adv. 2018;4 : eaau6190 26 September 2018
We directly compared these DMRs with the published list of DMRs
fromsingle-neuronmethylC-seq in thehuman frontal cortex (13) (fig. S7).
Our results were consistent, with most of the tmCG DMRs from our
study also appearing in the corresponding cell types in single-cell data.
As expected, the single-neuron data revealed additionalDMRs thatmay
represent differences between subtypes of Glu (for example, L2/L3
versus L4) or MGE-GABA (for example, PV+ versus SST+) cells. In
addition, we also identified thousands of new regulatory elements. In
particular, our OxBS-seq analysis identified 34,903 novel DMRs with
lowermCG inMGE-GABAneurons comparedwithGlu neurons. These
mCGDMRs did not overlap tmCGDMRs, indicating that hmCGmight
compensate for the reducedmCG inMGE-GABA cells at these sites. For
this reason, these DMRs might have remained undetected by single-
nucleus BS-seq, which cannot distinguish mC and hmC (13).

Hydroxymethylation marks CGIs near promoters of
expressed cell type–specific genes
To further connect cell type–specific DNAmethylation to gene expression,
we focused onDMRs located near CGIs, in the shore (0 to 2 kb) or shelf (2
to 4 kb) regions, which demonstrate enrichment of tmCGDMRs (Fig. 5A)
and are likely to regulate the nearest gene promoter. The vast majority
(88%) of these regions had lower tmCG in the cell type with higher ex-
pression of the nearest gene (Fig. 5B). However, we found a small group of
genes with tmCG DMRs showing the opposite pattern, that is, higher
tmCG in the more active cell type. These genes include essential cell
type–specific transcription factors as well as key markers of functional
identity of MGE-GABA (DLX2, VAX1, and GAD2; Fig. 5F) and Glu
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(NEUROD2, EMX1, PAX6, BDNF, and SLC17A7/6; Fig. 5G) neurons.
Notably, using our previously published data (9), we found that DNA
methylation is low at these sites in the fetal cortex (20 weeks after con-
ception, Fig. 5C), consistent with the role of these DMRs in develop-
mental regulation. These DMRs had higher hmCG in the active cell
type (Fig. 5D), whereas H3K27me3 was enriched in the body of nearby
genes in the less active cell type (Fig. 5E). These adult neuronal DMRs
likely correspond to a recently described subset of DNA methylation
valleys (DMVs), which, in contrast with most DMVs, demonstrate dif-
ferences in DNA methylation across tissues or cell types and a positive
correlation of DNA methylation with expression of associated genes
(17, 33, 34). Our findings using BS-seq and OxBS-seq reveal that this
DNA methylation is largely composed of hmCG and suggest that
hmCG is a stable epigenetic modification with a distinct function at
CGI-associated regions in a number of neuronal genes. Notably, the
genes associated with hmCG-enriched DMRs include not only early
transcriptional regulators that aremostly active in development (for ex-
ample, PAX6 and DLX2) but also genes that are important for the
function of the mature neuronal subtypes and that are highly expressed
in adult brain in a neuron subtype–specificmanner (for example,GAD2
and SLC17A7/6).
Kozlenkov et al., Sci. Adv. 2018;4 : eaau6190 26 September 2018
Cell type–specific DMRs are enriched in
disease-associated variants
Many candidate disease-related genetic variants identified in genome-
wide association studies (GWAS) fall outside protein-coding regions
and could reflect vulnerable noncoding sites of gene regulation (35).
Using a recently described approach (36), we examined the overlap of
cell type–specific DMRs and enhancers with the top GWAS loci that
were associated with a range of diseases [genome-wide significant
single-nucleotide polymorphisms (SNPs), P < 10−6]. We found signifi-
cant enrichment of cell type–specific tmCG and mCGDMRs as well as
enhancers in the top GWAS loci for a panel of brain-related diseases
(Fig. 4B), but few significant associations with similarly powered non-
brain control GWAS. In particular, MGE-GABA tmCG DMRs were
highly enriched in sites associated with schizophrenia (FDR < 0.001),
consistent with a distinctive role for GABAergic circuitry in this disease
(37). We also detected strong enrichment of MGE-GABA mCG (but
not tmCG)DMRs at epilepsy risk loci (Fig. 4C). By contrast, Glu tmCG
DMRs were enriched at risk loci for Parkinson’s disease. Because our
analysis directly probed tmCG ormCG, we used the difference between
BS-seq andOxBS-seq signals in 1-kb bins to examine the enrichment of
cell type–specific hmCG DMRs (see Materials and Methods). Regions
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with lower hmCG in Glu versusMGE-GABA cells (Glu hmCGDMRs)
were strongly enriched in risk loci for autism, amyotrophic lateral scle-
rosis (ALS), and Parkinson’s disease (Fig. 4D), suggesting that these risk
loci aremarked byhmCG inMGE-GABAcells.We also detected strong
enrichment of active enhancers in all three cell types for many brain
diseases, providing independent validation for the DNA methylation–
based disease associations (Fig. 4E).
DISCUSSION
Amajor challenge in understanding epigenomic regulation of complex
tissues, such as the human brain, is the ambiguity of measurements on
mixed cell types and of assays that conflate multiple epigenomic marks
(that is, total DNA methylation). Our study offers a fine-grained per-
spective on the epigenome of the human brain, specifically focusing on
the PFC, the brain region that is critical for cognition, memory, and ex-
ecutive function and is broadly implicated in neuropsychiatric illness.
We simultaneously analyzed three major PFC cell types (excitatory
glutamatergic neurons, MGE-derived GABAergic interneurons, and
OLIG cells) and two major DNA modifications (mC and hmC), in
parallel with high-resolution transcriptome and histone modification
data. Our analyses show that, although all brain cells share general
features of epigenomic regulation such as the negative correlation of
mCGandmCHwith gene expression (9), the quantitative relationship
between mC, hmC, and RNA expression is significantly different
among Glu neurons, MGE-GABA neurons, and OLIG cells. In partic-
ular, we discovered a unique role for hmC in epigenetic regulation of
the human MGE-GABA neurons in the PFC. The altered function of
these PFC inhibitory interneurons have been previously associated
with several psychiatric and neurological disorders, including
schizophrenia, major depression disorder, autism spectrum disor-
ders, and epilepsy (38, 39).

Our study builds on previous reports that usedwhole-genome, base-
resolution epigenomic assays to examine mouse brain cell types via cell
type purification (17, 18) or single-cell sequencing (13). Compared with
previous purification-based studies, our work offers a comprehensive
multiomics approach and is focused on the human brain. Notably,
whereas the emerging field of single-cell transcriptome and epigenome
sequencing enables unbiased identification of brain cell types (1, 13),
there are currently no efficientmethods formeasuring hmCor chroma-
tin modifications in single cells with sufficient throughput to reliably
assess human neuronal diversity (14, 15).

We found that although the genome-wide level of the totalmCGwas
only slightly different between the cell types (~5% higher in MGE-
GABA versus Glu or OLIG cells), the hmCG content varied markedly
across different brain cells. The highest hmCG levels were found in Glu
neurons (~40%) and the lowest hmCG levels were found in OLIG cells
(~14%). These differences were not readily explained by the differences
in the expression levels of DNA methylation–modifying enzymes
(fig. S1D), suggesting that other regulators of DNA methylation (for
example, cell type–specific DNA binding proteins) might play a pivotal
role in the establishment and maintenance of hmCG patterns (40). We
also detected a significant proportion of hmCH in neuronal cells (1% in
Glu and 0.4% in MGE-GABA). This finding, which strongly suggests a
similar demethylation route for mCH andmCG, has remained contro-
versial (41). In particular, whereas an early work by Lister et al. (9) did
not detect hmCH in themouse brain, a recent study byMellén et al. (18)
reported low but reliably measured hmCH (0.57%) in the mouse cere-
bellar granule cells. Notably, in contrast to Lister et al., who used the
Kozlenkov et al., Sci. Adv. 2018;4 : eaau6190 26 September 2018
Tet-assisted BS-seq method, both Mellén et al. and our group used
OxBS-seq, a complementary technique with potentially different sensi-
tivity and specificity for detecting hmC. Moreover, our study examined
human cortical neurons, which have much higher levels of mCH com-
pared with adult mouse brain tissue (9). Cortical Glu andMGE-GABA
neurons also have significantly more mCH (3.6 to 4.7%, Fig. 1A) than
cerebellar granule cells (0.94%) (18). In addition, we observed distinct
hmCH and hmCG profiles within distal regulatory elements that differ
between MGE-GABA and Glu cells (with unexpected elevation in
MGE-GABA–specific enhancers, Fig. 3D), suggesting that the detected
hmCH patterns are unlikely to be experimental artifacts.

Our multiomics analysis uncovered unique cell type–specific
features of the epigenetic landscape of the human PFC and demon-
strated the role of discrete epigenetic marks in defining the cell specific-
ity of gene expression. We found the distinct hydroxymethylation
signature thatmarksMGE-derivedGABAneurons. Specifically, in gene
bodies, the range of hmCG levels between genes with low and high
expression was significantly higher in MGE-GABA than in Glu cells,
resulting in higher correlation of hmCG with gene expression in inhib-
itory neurons (see Fig. 2A). Similarly, there was a greater dynamic range
of DNA methylation in the promoters of MGE-GABA versus Glu
neurons, especially in promoters without CGIs. Also, compared to
the genome-wide background, we detected notably higher hmC levels
in both CG and CH contexts within regions of active MGE-GABA–
specific versus Glu-specific enhancers (see Fig. 3). On the basis of these
findings and the previously proposed model of mC and hmC changes
during enhancer activation (42), we hypothesize that DNAmethylation
patterns at brain enhancers develop in stages and reflect trajectories of
epigenomic differentiation. In particular, in early development, regions
encompassingbrain enhancers could initially becomehydroxymethylated.
At later stages, cell type–specific enhancers could be defined by de-
methylation, with both hydroxymethylation and demethylation stages
being differentially regulated in different neuronal subpopulations
and/or enhancer subsets.

Our FANS-separated OLIG population consists of OLIG lineage
cells (that is, mature OLIG and OLIG precursors) (20), and there is a
diversity of neuronal subpopulations within the purifiedGlu andMGE-
GABA neurons (1, 13). The remaining diversity of cells within these
purified populations might obscure epigenomic or transcriptomic
signatures of subtypes and is a limitation of our study. In particular,
the diversity of interneurons within our MGE-GABA sample could, at
least in part, explain the hmC signature of MGE-GABA neurons that
we observed. Nevertheless, it appears highly unlikely that these patterns
resulted entirely from regulatory diversity within subpopulations of
MGE-GABA neurons. Had this been the case, we would expect to see
corresponding signatures in the other epigenetic marks, for example,
H3K27ac and mC. Instead, we detected more H3K27ac peaks in Glu
versus MGE-GABA neurons (Fig. 3A) and did not observe differences
in mC levels between the cell types within H3K27ac-marked enhancers
(Fig. 3B). In contrast, hmCwas significantly higher inMGE-GABAver-
sus Glu neurons in these enhancers. Heterogeneity is a confounding
factor for any study of a cell population, including single-cell studies,
which rely on an assumption that all cells within a computationally
defined “cluster” are homogeneous. Future work using a combination
of single-cell andmore refined purification strategies will help to dis-
sect the fine distinctions in cellular regulation among themultitude of
neuronal and glial brain cell types.

Another notable finding of our study is the discovery of a com-
plex relationship between non-CGmethylation and gene expression.
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Although the repressive function of mCH has been reported previously
(9, 17, 19), we found that gene body mCH was robustly associated not
only with absolute levels of gene expression but also with differential
expression. Notably, the relationship of mCHwith differential gene ex-
pression was nonmonotonic. In particular, in agreement with findings
in mouse brain (27), mCH was significantly higher in the bodies of
down-regulated compared with non-DE genes with the same level of
expression. However, mCH was also enriched within the bodies of
genes that were differentially up-regulated compared with the other
neuronal subtype, suggesting thatmCHmight be involved inmaintain-
ing specialized neuronal identities by fine-tuning the expression of spe-
cific genes in each neuronal subtype.

Finally, we found that genetic risk variants for several psychiatric
and neurological disorders (including autism, schizophrenia, and ALS)
are enriched in regions with cell type–specific mC or hmC signatures
(DMRs). This finding allows identification of candidate functional
risk variants and could shed light on the underlying molecular mech-
anisms of these diseases. Notably, many of these DMRs do not overlap
with promoters or enhancers, and their functional roles remain to be
investigated.

It should be emphasized that the cell type–specific patterns re-
ported here could not have been detected in heterogeneous bulk
brain specimens containing multiple cell types that have been
predominantly used in previous studies of DNA methylation in
the human brain (43, 44). Thus, our work provides a rich resource
for future investigations of the human brain in both health andmen-
tal illness, as well as throughout the life span, to establish the genetic
and epigenetic factors shaping the functional diversity of brain cir-
cuit components.
MATERIALS AND METHODS
Human brain samples
Postmortem human brain specimens were obtained from the Brain
Collection of Y.L.H. (table S1) (45, 46). Brain samples used in the study
were from clinically unremarkable adult male Caucasian subjects,
not diagnosed with any neurological or psychiatric condition at
the time of death and with negative toxicology for common drugs
of abuse or for therapeutic agents. Specimens had been collected at
autopsy within 24 hours after death by the personnel of the Depart-
ment of Forensic Medicine (Semmelweis University, Hungary) under
approved local ethical guidelines. The cause of death was determined
by a forensic pathologist. All subjects used in our study died of non–
suicide- and non–drug abuse–related causes, such as accident or car-
diac failure. Immediately after autopsy, brains were cut coronally in
slabs and kept frozen at −70°C. There were no significant differences
in brain pH among specimens. Postmortem intervals for all subjects
were <24 hours. Tissue samples were dissected from dorsolateral
PFC, Brodmann area 9.

Nuclei isolation
The protocol and reagents for the isolation of brain nuclei before the
flow cytometry separation were described previously (10). In short,
~750 mg of tissue was homogenized in lysis buffer, underlaid with high
sucrose buffer, and centrifuged for 1 hour at 24,000 rpm. The nuclear
pellets were resuspended in the antibody-incubation buffer and in-
cubated with primary antibodies for 1.5 hours. A second centrifuga-
tion step was performed, and nuclei were incubated with secondary
antibodies for an additional 1 hour. A FANS method was then used
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to separate nuclei of MGE-GABA neurons, Glu neurons, and OLIG,
similar to the protocol described in our previous publication (10),
with some modifications. Antibodies against brain cell population
markers NeuN, SOX6, and SOX10 were used in the FANS protocol.
NeuN (also known as RNA-binding protein RBFOX3) is a well-
established marker of neuronal nuclei (47). SOX6 is a transcription
factor expressed in MGE-derived GABA neurons during development
and into adulthood (48); the use of anti-SOX6 antibodies (1:1500,
guinea pig polyclonal) (49) to separate the nuclei of MGE-derived
GABA neurons from nuclei of Glu neurons was described by us pre-
viously (10). SOX10 is a transcription factor specifically expressed in
OLIG. The application of anti-SOX10 antibodies (1:300, goat poly-
clonal; R&D Systems, AF2864) to isolate the nuclei of OLIG was de-
scribed by Ernst and colleagues (20). For simultaneous FANS
isolation ofMGE-GABA, Glu, andOLIG nuclei, we usedmousemono-
clonal anti-NeuNphycoerythrin (PE)–conjugated antibodies (Millipore,
FCMAB317PE, 1:1000), donkey anti-guinea pig AX647-conjugated
secondary antibodies (Jackson ImmunoResearch, 1:1500) to detect
SOX6-positive nuclei, and donkey anti-goat AX488-conjugated
secondary antibodies (Life Technologies, A21447, 1:1500) to detect
SOX10-positive nuclei. DNA stain 4′,6-diamidino-2-phenylindole was
used to label intact nuclei.

ChIP and ChIP-seq library construction
The native ChIP protocol using chromatin fragmentation with micro-
coccal nuclease (MNase) was used as described in (50). During nuclei
isolation, buffers were supplemented with protease inhibitors (0.1 mM
benzamidine and 0.1 mM phenylmethylsulfonyl fluoride). Nuclei
(150,000 to 200,000) of each cell type were used per ChIP reaction. Anti-
H3K27ac antibody was from Active Motif (catalog #39133; lot
#31814008; rabbit polyclonal, 3 mg per sample). The antibodies were
prevalidated for specificity using a dot blot assay (AbSurance Histone
H3Antibody Specificity Array Kit,Millipore). ChIP-seq libraries were
preparedwith theNEBNextUltraDNALibrary PrepKit (NewEngland
BioLabs). The resulting libraries were sequenced on a HiSeq 2500
instrument, using a paired-end 50-cycle protocol, to an average of
~40 million read pairs per sample. For each sample, a matching input
control sample obtained from 1 ng of MNase-digested DNA was
prepared and sequenced.

RNA isolation and RNA-seq library construction
Nuclei of cell populations were prepared using the FANS-basedmethod
as described in our previous publications (10, 51). Nuclei were prepared
as described above with the following modifications: During tissue
homogenization, proteinase inhibitors were omitted from the buffers;
instead, during tissue homogenization and nucleus separation, ribonu-
clease (RNase) inhibitors (Recombinant RNase Inhibitor, Clontech)
were added to all buffers (1:40 during tissue lysis and 1:100 during other
steps). Tissue (100 to 200 mg) was used per preparation. Total RNA
was prepared from ~40,000 nuclei per sample, using the PicoPure
RNA Isolation Kit (Thermo Fisher Scientific). RNA-seq libraries
were prepared with the SMARTer Stranded Total RNA-Seq Kit, Pico
Input (Clontech) from 10 ng of RNA. Libraries were sequenced on
HiSeq 2500, using a paired-end 50-cycle protocol, to an average of
~50 million read pairs per sample.

DNA methylation assay
Between 350,000 and 700,000 nuclei of Glu neurons,MGE-GABAneu-
rons, and OLIG were isolated by flow cytometry, as described above.
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High-quality genomic DNA (average fragment length, >20,000 bp) was
isolated using the DNeasy Blood and Tissue Kit (Qiagen) and concen-
trated with a Genomic DNA cleanup kit (Zymo). Genomic DNA (500
ng) was used for BS/OxBS processing and library preparation using the
TrueMethyl Whole Genome kit (CEGX). Libraries were sequenced on
an Illumina HiSeq 2500 system, using a paired-end 100-cycle protocol.
The conversion performance in the oxidation and bisulfite treatment
reactions was assessed using tailed CEGX spike-in control oligonucleo-
tides included in the CEGXprotocol. All samples passed the conversion
quality control criteria suggested by CEGX (see table S3).

Data processing
BS-seq and OxBS-seq reads were trimmed and then mapped to the
bisulfite-converted human hg19 reference genome with bowtie2
(52). The calling of unmethylated and methylated base calls was per-
formed by Methylpy (https://github.com/yupenghe/methylpy) (12).

Bisulfite conversion efficiency for each type of cytosines was esti-
matedwithCEGXspike-in control sequences (table S3). In each sample,
let RC_BS, RmC_BS, andRhmC_BS be the conversion rates (fraction of
bases read as thymine in sequencing) for unmethylated Cs, methylated
Cs, and hydroxymethylated Cs in the BS-seq data, respectively. Simi-
larly, let RC_OxBS, RmC_OxBS, and RhmC_OxBS be the conversion
rates for unmethylated Cs, methylated Cs, and hydroxymethylated Cs
in the OxBS-seq data, respectively. Thus, we have

C′ ¼ RC BS•Cþ RmC BS •mCþ RhmC BS •hmC
mC′ ¼ ð1� RC OxBSÞ •Cþ ð1� RmC OxBSÞ •mC

þ ð1� RhmC OxBSÞ •hmC
hmC′ ¼ ðRC OxBS� RC BSÞ •Cþ ðRmC OxBS �

RmC BSÞ •mCþ ðRhmC OxBS� RhmC BSÞ •hmC

whereC′,mC′, and hmC′ are the observed percentages of unmethylated
Cs, methylated Cs, and hydroxymethylated Cs in a particular region
estimated from the BS-seq and OxBS-seq data, and C, mC, and hmC
are the adjusted levels of unmethylated Cs, methylated Cs, and hydro-
xymethylated Cs, respectively. Nonconversion rate adjustment was
done by solving the system of equations above.

DMRs for total methylation (tmC) and true methylation (mC) were
defined using Dispersion Shrinkage for Sequencing (DSS) (53) with
some modification. Differentially methylated loci (DMLs) were called
using a modified “callDML” function, where the difference of mean
methylation level between the two samples was compared with the
global methylation difference using a Wald test at each CpG site. CpG
sites with FDR-corrected P value less than 0.05 were deemed as DMLs.
DMRs were then called with the “callDMR” function, and we required
eachDMR to contain at least threeDMLs, to have aminimum length of
50 bp, to have an absolute difference of methylation level greater than
0.3 relative to the global methylation difference in the two cell types in
comparison, and to have a detected P value less than 0.05.

Because hmC is indirectly inferred on the basis of the difference be-
tween BS and OxBS signals, DSS and other published DMR calling
methods are not applicable to hmC in our data sets. To call DMRs
for hydroxymethylation (DhMR), the genome was tiled by 1-kb bins.
hmCG levels in these bins were estimated and adjusted for nonconver-
sion rate using both BS-seq and OxBS-seq data. DhMRs were then
defined as bins that have a difference of hmCG levels greater than the
global difference of +0.3 in the two cell types in comparison.

RNA-seq reads were trimmed to remove sequencing adapters and
low-quality sequences using Cutadapt (54) in paired-end mode. The
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first 3 bp that form the 5′ end of read 1 were also removed. Trimmed
reads were then mapped to the hg19 genome and the GENCODE an-
notated transcriptome (V25, coordinates lifted to hg19 with liftOver)
with STAR (Spliced Transcripts Alignment to a Reference) (55). Gene
expression was estimated using RSEM (RNA-Seq by ExpectationMax-
imization) (56), and DE genes were called using edgeR (57) in exact
test mode requiring FDR < 0.05 and FC > 2 (table S2).

ChIP-seq data analysis
FASTQ data files were trimmed to remove adapters and low-quality
reads using Scythe and Sickle software tools (https://github.com/
vsbuffalo/scythe and https://github.com/najoshi/sickle) and aligned
to the hg19 human genome using STAR (55). Non-uniquely mapped
and duplicate reads were removed with SAMtools (58) and Picard
(http://broadinstitute.github.io/picard/). Alignment files were sorted
by read name, and peaks were called using the DFilter software package
(59), with command line parameters based on software suggestions for
each histone mark. For each sample, a matching input control was in-
cluded. For H3K27me3 data sets, the following command line param-
eters were used: “-f=bam -pe -ks=20 -lpval=3 -nonzero”, resulting in
21,000 to 29,000 peaks per sample. For H3K27ac data sets, peaks were
called with DFilter using the following parameters: “-f=bam -pe -ks=60
-lpval=4”. For each cell type, H3K27ac peak lists for replicate samples
were then overlapped using a custom R script, and peaks that were
present in at least half of replicates were preserved for further anal-
ysis (peak numbers: 44,519 in MGE-GABA neurons, 46,580 in Glu
neurons, and 45,963 in OLIG cells). Peaks detected in Glu, MGE-
GABA, and OLIG cells were further overlapped using the bedtools
package (60) to obtain Glu-specific (19,697), MGE-GABA–specific
(16,297), OLIG-specific (26,975), and common (12,549) peaks, as
well as the peaks present in two of three cell types. ChIP-seq enrichment
score in a particular region was defined as log2 (RPM pulldown/RPM
input) (RPM, reads per million).

Enrichment test of DMRs in risk-associated SNP regions from
GWAS data
Analysis of GWAS-associated SNPs in DMRs was adapted from a
recent publication (36) with the following modifications. GWAS
data were obtained from the National Institutes of Health GRASP
(Genome-Wide Repository of Associations Between SNPs and Pheno-
types) database (https://grasp.nhlbi.nih.gov/Overview.aspx). Studies
with labeled phenotype categories in nine brain-related disorders
(ADHD,ALS,Alzheimer’s disease, autism, bipolar disorder, depression,
epilepsy, Parkinson’s disease, and schizophrenia) as well as six nonbrain
diseases (celiac disease, chronic kidney disease, Crohn’s disease, lung
cancer, prostate cancer, and type 1 diabetes) were selected, and only as-
sociated SNPs with reported P values of <10−6 (that is, genome-wide
significant SNPs) were kept for the following analysis. For each disease
category, each SNP was extended to a ±50-kb flanking region, and any
regions overlapping each other were merged. The resulting merged
regions were ranked in ascending order by the smallest P value of the
associated SNPs within the region, and the top 50 regions were defined
as the most significant risk-associated SNP regions. Then, the number
of overlaps between DMRs and these SNP regions was counted. To test
whether the overlaps were enriched or depleted, we compared the ob-
served number of overlaps Xwith the expected number of overlaps Y if
the DMRs were randomly distributed across the genome. Here, Y
should follow a binomial distribution with parameters n and p where
n is the number of DMRs and p is the coverage of the SNP regions in
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the genome.With this, the Z scores for each test were calculated, and the
empirical two-tailed P values were corrected for multiple comparisons
using Benjamini and Hochberg’s FDR method (61).
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