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Abstract

Early life adversity (ELA) is associated with poorer health in adulthood, an association explained, 

at least in part, by increased engagement in health-risk behaviors (HRBs). In this review, we make 

the case that ELA influences brain development in ways that increase the likelihood of engaging in 

HRBs. We argue that ELA alters neural circuitry underpinning cognitive control as well as 

emotional processing, including networks involved in processing threat and reward. These neural 

changes are associated psychologically and behaviorally with heightened emotional reactivity, 

blunted reward responsivity, poorer emotion regulation, and greater delay discounting. We then 

demonstrate that these adaptations to ELA are associated with an increased risk of smoking 

cigarettes, drinking alcohol, and eating high-fat, high-sugar foods. Furthermore, we explore how 

HRBs affect the brain in ways that reinforce addiction and further explain clustering of HRBs.
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Introduction

Early life adversity (ELA) involves exposure to environmental circumstances during 

childhood or adolescence that are likely to require significant psychological, behavioral, or 

neurobiological adaptation by an average child and that represent a deviation from the 

expected environment.1 A wide range of experiences meet this definition of ELA, ranging 

from physical, emotional, and sexual abuse, to prolonged emotional or physical neglect, to 

chronic material deprivation association with poverty. Exposure to ELA is common. 

Population-based studies indicate that 40–50% of children both in the U.S. and cross-

nationally will experience some form of ELA.2–4 In addition to being common, ELA is 

strongly associated with morbidity and mortality. Greater exposure to ELA is associated 

with elevated risk of a wide range of mental and physical health outcomes across the 

lifespan, including depression, anxiety, substance abuse, cardiovascular disease, cancer, type 

2 diabetes, respiratory diseases, chronic pain, gastrointestinal and metabolic disorders, and 

neurological and musculoskeletal problems,4–14 as well as premature mortality.15,16 The 

mechanisms underlying these associations remain poorly understood, although evidence is 

accumulating that ELA influences mental health by altering the developing brain in ways 

that contribute to the onset of psychopathology,1,17,18 and interest is increasing in the neural 

mechanisms underlying the links between ELA and physical health.19,20 In this review, we 

advance a conceptual model arguing that altered patterns of brain development among 

children exposed to ELA might contribute to the onset of chronic diseases, in part by 

increasing the tendency to engage in health-risk behaviors (HRBs).

The burden of chronic disease

A recent analysis of the National Health Interview Survey data revealed that 50% of adults 

had at least one chronic disease and 25% had two or more of the ten leading causes of death 

and disability in the U.S.21 Social determinants and socially patterned HRBs including 

tobacco and alcohol use, unhealthful eating patterns, and physical inactivity drive the 

chronic disease burden observed in the U.S.21–26 Often initiated during childhood, 

adolescence, and early adulthood, these highly prevalent HRBs are known to cluster within 

individuals and populations.27–29 For example, a population-based study indicated that more 

than half of U.S. adults report engaging in two or more HRBs, including smoking cigarettes, 

engaging in risky drinking, being physical inactive, and being overweight.30 Compared to 

those in the general population, those who are dependent on alcohol are three times more 

likely to be smokers and those who are dependent on tobacco are four times more likely to 

be dependent on alcohol.31 Exposure to ELA is associated with a clustering of health risks, 

with increasing exposure related to an increasing number of HRBs.32 Given that the 

presence of multiple HRBs can have an interactive effects on chronic disease occurrence,
33–35 this clustering increases the burden of chronic disease in vulnerable populations, such 

as those exposed to ELA. As noted above, multiple epidemiological studies have 

documented an association between ELA and elevated risk of chronic diseases such as 

cardiovascular disease,36–38 cancer,39–42 diabetes,36,37 and premature mortality.15,16 We 

argue that these associations are explained, at least in part, by increased vulnerability to 

engage in HRBs conferred by ELA. Indeed, ELA is associated with a greater likelihood of 
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smoking cigarettes,32,43,44 abusing alcohol and drugs,32,45–47 eating a poor diet,48 and being 

obese.32,49

Given the prevalence of chronic diseases, a greater understanding of the mechanisms linking 

ELA to HRBs and risk for chronic disease has the potential to make a significant 

contribution to public health by highlighting novel targets for intervention. Building on 

existing theoretical perspectives,50–52 systematic reviews,53–55 meta-analyses,53 and 

observational studies of ELA and health across the lifespan,40,56 we posit that ELA affects 

brain development in ways that predispose people to engage in HRBs. The three HRBs that 

we focus on are: (1) smoking cigarettes and nicotine dependence; (2) drinking alcohol 

heavily and alcohol use disorders; and (3) eating an energy-dense diet high in sugar and fat 

as well as excessive food consumption.57 Because light to moderate alcohol use is associated 

with improved health outcomes for certain chronic diseases, such as cardiovascular disease,
58,59 we focus on excessive alcohol consumption as a risk factor for chronic diseases. 

According to the U.S. Department of Health and Human Services and the U.S. Department 

of Agriculture, moderate alcohol use among adults of legal drinking age is defined as one 

drink per day for women and two drinks per day for men.57 Excessive alcohol consumption 

among women of legal drinking age is defined as 4 or more drinks within 2 hours (binge 

drinking), 4 or more drinks on any day, and 8 or more drinks per week.57 Excessive alcohol 

consumption among men of legal drinking age is defined as 5 or more drinks for men within 

about 2 hours (binge drinking), 5 or more drinks on any day, and 15 or more drinks per 

week.57 Regarding food intake, excessive food intake is defined as excessive caloric intake 

relative to calories expended.57 The reason we focus on excessive food intake and the 

consumption of energy-dense foods such as those high in sugar and fat is because both types 

of eating behaviors appear to be driven by reward processes.60 Although these neural 

processes evolved when such foods were scarce, in the modern context, such foods have 

become abundant. Thus, the drive to consume energy-dense foods and to eat beyond 

immediate need has become maladaptive and excessive caloric intake has contributed to an 

epidemic of obesity.60 Given that certain types of eating behaviors such as those that we 

focus on in the paper closely fits an addiction model60,61 and that ELA is associated with 

eating a poor diet48 as well as obesity,32,49 we focus on unhealthy eating behavior as a 

pathway to obesity despite the fact that physical inactivity as well as other factors also 

contribute to obesity. Because obesity is often used as a proxy for eating behavior, in this 

paper, the neurobiological evidence that we present includes both eating behaviors as well as 

differences between obese vs. non-obese populations. In delineating our conceptual model, 

we first articulate a model of the neurodevelopmental mechanisms linking ELA with HRBs. 

Next, we review existing evidence of how ELA influences these neurodevelopmental 

processes and discuss how these neural adaptations are associated with psychological and 

behavioral factors that may increase the likelihood of engaging in HRBs. We end by 

pointing to directions for future research on the neural mechanisms underlying chronic 

disease risk following early-life adversity.

Neural adaptations following early life adversity

We posit that adverse early life environments influence brain and behavioral development in 

ways that are adaptive in the short term by promoting survival62 but are maladaptive in the 
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long term to physical health. Below, we focus on three neural networks that are influenced 

by ELA and have relevance to HRBs. These neural networks include the salience network 

and prefrontal–amygdala circuits involved in detecting and responding to threat, the 

frontostriatal reward-processing network, and the frontoparietal network involved in 

cognitive control. For each of these neural networks, we discuss how altered function 

following ELA reflects both adaptations and trade-offs.

Threat detection processes

In threatening environments, the ability to quickly identify threats and rapidly mobilize 

behavioral responses that promote safety likely promotes survival.62 Thus, exposure to 

threatening environments, especially early in development, should lead to neural adaptations 

that enhance threat detection. Indeed, existing evidence suggests that children exposed to 

forms of ELA characterized by threat (e.g., exposure to violence) exhibit heightened neural 

response to signals of threat, particularly in the amygdala and other nodes of the salience 

network.63–66 Although these adaptations likely help children avoid danger, they come at a 

cost. For example, specificity is traded for sensitivity, leading to higher emotional reactivity 

to a wide range of potential threats and more false alarms among children raised in 

threatening environments.63

Reward-related processes

Multiple forms of ELA, particularly experiences of neglect and caregiver deprivation, are 

associated with blunted responsivity to reward.67–71 Perhaps counterintuitively, blunted 

reward responsivity can actually induce reward-seeking behavior,72,73 potentially because 

more intense rewards are needed to feel pleasure. In deprived environments, reward seeking 

is likely adaptive, particularly if resources are scarce and reward seeking helps secure 

resources. Unfortunately, enhanced reward seeking also increases susceptibility to substance 

use and pursuit of other highly rewarding stimuli (e.g., high-sugar, high-fat foods)—rewards 

in the modern environment that co-opt evolved reward pathways.

Cognitive control

Some forms of ELA, in particular, deprivation-related experiences, are associated with 

alterations in the frontoparietal executive control network,17,74–76 which has implications for 

decision-making as well as threat- and reward-related processes. Impairments in the 

executive control network lead to a shift from reflective responding that is flexible and goal-

directed to reflexive responding that is inflexible and stimulus–response driven.77 These 

impairments can make it more difficult to regulate emotions66,78 and delay immediate 

gratification despite long-term consequences. Although reflexive responding may be 

adaptive in an adverse environment when it is advantageous to be able to rapidly respond to 

aversive and appetitive cues, the shift away from reflective responding may make it more 

difficult to make goal-directed decisions that focus on long-term benefits over short-term 

rewards.

Existing work on ELA, HRBs, and chronic disease has largely relied on a cumulative risk 

model.32,79 This approach tallies the number of adversities experienced to create a risk 

score. For example, a child who experienced physical abuse, sexual abuse, and domestic 
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violence would have a risk score of three; a child who experienced food insecurity, neglect, 

and parental loss would also have a risk score of three. The cumulative risk approach has 

been useful for highlighting the public health significance of ELA, and risk scores can be 

used as a screening tool to identify children in greatest need of intervention.80 However, 

such an approach implicitly assumes that all forms of adversity influence health outcomes 

through the same neurodevelopmental pathways outlined in the paper. Increasing evidence 

indicates that the neurodevelopmental consequences of different forms of adversity are at 

least partially distinct. Indeed, a recent conceptual model distinguishes between experiences 

of threat that reflect harm or threat of harm to the child (e.g., exposure to violence) and 

experiences of deprivation that reflect an absence of some type of expected social or 

cognitive input during development (e.g., an absence of cognitive or social stimulation 

resulting from neglect or parental unavailability).17,18,80 Research evaluating the 

neurodevelopmental mechanisms that are shared versus distinct across these dimensions of 

adversity is ongoing and this approach has yet to be applied to work examining ELA and 

HRBs. To stimulate progress in the search for mechanisms linking ELA and physical health 

outcomes, we highlight throughout our review whether empirical studies focused on 

adversities characterized by threat, deprivation, or a risk score.

Psychological and behavioral consequences of neural adaptations

Below, we review evidence for the associations of ELA with threat-related, reward-related, 

and cognitive control processes. We propose that there are four primary psychological and 

behavioral consequences of these neural adaptations to ELA that have relevance for health 

risk: increased emotional reactivity, blunted reward responsivity, difficulties with emotion 

regulation, and increased delay discounting. Drawing upon experimental studies in animals 

and observational studies in humans, we explore how these neurobiological, psychological, 

and behavioral adaptations to ELA might increase engagement in HRBs. We propose that 

these adaptations increase the tendency for those exposed to ELA to smoke cigarettes, drink 

alcohol, and overeat highly palatable foods, leading to obesity. Understanding these 

pathways might provide novel targets for chronic disease prevention efforts.

Early life adversity and emotional reactivity

Children exposed to adversity characterized by both threat and deprivation exhibit greater 

sensitivity to signals of threat both behaviorally and neurobiologically. Behaviorally, 

children exposed to violence identify facial expressions of anger faster and with less 

perceptual information and have greater difficulty disengaging from threat cues81–85 

compared to typically developing children. At the neural level, adversity experiences 

characterized by both threat and deprivation have been associated with greater amygdala 

reactivity in response to signals of threat, such as fearful faces or negative emotional images.
63–66,86–89 This effect is present in childhood64,65,86 and persists through adolescence66,86 

into adulthood.87,88 A recent meta-analysis confirms that childhood maltreatment, including 

abuse and neglect, is associated with greater amygdala reactivity to threat.63 Amygdala 

reactivity to threat increases in a dose-response manner based on the severity of threat and 

deprivation.66,86
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Greater amygdala reactivity to threat may result in greater emotional reactivity, or the 

tendency to experience frequent and intense emotional arousal and responses to 

environmental events90 and research has demonstrated a robust link between ELA and 

heightened emotional reactivity.62 This association has been found across multiple 

measurement methods—from self-reported emotional reactivity91 to cardiovascular 

responses92,93 and amygdala reactivity.90 Children exposed to adversity characterized by 

threat (e.g., abuse) are not only more emotionally reactive to facial signals of threat (e.g., 

expression of anger), but also show heightened amygdala reactivity to a wide range of 

negative and neutral stimuli,66,94,95 indicating increased neural sensitivity to a wider range 

of environmental cues. Amygdala hyperreactivity does not simply reflect concurrent 

psychopathology as this effect is observed in those exposed to abuse even after adjustment 

for the presence of psychopathology.66,95

Emotional reactivity and health-risk behaviors

Nicotine—Given the anxiolytic96 and antidepressive97 effects of nicotine, it is not 

surprising that the primary reason smokers report smoking is to reduce distress.98 Smoking 

initiation is predicted by a tendency to experience negative emotions98 and the perception 

that smoking is a good way to control negative emotions predicts smoking maintenance and 

escalation.99 Therefore, those exposed to ELA who have a tendency to experience strong 

negative emotions may smoke in order to reduce distress. Neural evidence supports the 

notion that nicotine is effective at reducing emotional reactivity. In one study, amygdala 

activation was lower in response to negative stimuli in smokers compared to non-smokers 

and an exploratory analysis among smokers revealed that higher carbon monoxide levels 

(indicative of smoking) predicted lower amygdala activation.100 This finding suggests that 

amygdala reactivity is reduced by smoking, providing neural evidence that nicotine helps 

people cope with negative emotions.

Alcohol—Given the anxiolytic properties of alcohol,101 those exposed to childhood 

adversity may use alcohol in order to decrease emotional reactivity.102 Although extensive 

evidence shows that multiple forms of ELA predicts higher amygdala response to signal of 

threat, in those exposed to ELA (assessed using a risk score) with alcohol dependence the 

opposite pattern occurs: signals of threat are associated with lower amygdala response 

compared to those exposed to ELA without alcohol dependence.102 In social drinkers, 

intravenously administered alcohol attenuates amygdala response to fearful faces while 

activating striatal reward circuits,103 providing further evidence that alcohol decreases 

threat-related emotional reactivity. These findings suggest that alcohol dampens emotional 

reactivity at the neural level, which provides an explanation for why those exposed to ELA 

may use and even abuse alcohol. However, more research is needed to elucidate the neural 

mechanism underlying the association between ELA with both tobacco and alcohol use and 

whether greater emotional reactivity mediates this link.

Food—Childhood maltreatment predicts a greater likelihood of obesity in adulthood104,105 

and this relationship is partially explained by using food to cope with stress.49 This finding 

suggests that those with higher emotional reactivity due to ELA may be more likely to 

overeat in order to deal with difficult emotions. ELA is associated not only with greater 
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emotional reactivity, but also heightened perceptions of stress in response to daily events and 

hassles.106,107 Although findings are mixed,108 perceptions of stress are associated with 

greater consumption of energy dense foods, such as those high in sugar and fat.109,110 In a 

cross-sectional study, people who reported greater perceived stress had a higher fat diet.109 

People eat more calories and more fat on days when they experience greater levels of 

perceived stress than on days when they are less stressed.110 Thus, ELA may increase 

perceptions of stress and, in order to cope, lead to the consumption of foods high in sugar 

and fat. Furthermore, amygdala activation may increase the reward value of certain foods. In 

an animal model, inactivation of the amygdala is associated with reduced fat intake, 

presumably by reducing its hedonic value.111 Stress and reward pathways are integrally 

linked in ways that likely facilitate reward-seeking behaviors when experiencing strong 

emotions.

Early life adversity and reward responsivity

Behavioral and neurobiological studies indicate that ELA leads to blunted reward 

responsivity (i.e. lower neural response to reward in reward-processing brain regions such as 

the ventral striatum (VS)), an effect that persists across the lifespan.67–70 Behaviorally, those 

exposed to childhood maltreatment (either abuse or neglect) rate monetary reward-predicting 

cues less positively in adulthood compared with healthy controls,67 and children who 

experience material deprivation in the form of food insecurity exhibit poor performance on 

tasks assessing reward responsivity.112 Neurobiologically, the VS plays a prominent role in 

reward processing. In adolescents69 and in adults,68 exposure to adversity—particularly 

deprivation involving neglect—is associated with lower VS reactivity in response to reward 

and the effect is stronger if exposure occurs earlier in development.68 The VS shows blunted 

responsivity to reward as well as a lack of sensitivity to differing reward values in 

adolescents who experienced early maternal deprivation.70 Furthermore, blunted reward 

responsivity in the VS predicts depression following emotional neglect.69 As also shown 

with blunted reactivity of the VS, lower dopamine D2 receptor (D2R) availability leads to a 

blunted reward response113 and is also affected by early deprivation in animal models.114 

For example, rodents exposed to maternal separation demonstrate decreased expression of 

D2Rs compared with control rats.114 Thus, evidence suggests that adversity characterized by 

deprivation dampens responsivity to rewards both behaviorally and neurobiologically and 

may increase the likelihood of using substances like nicotine, alcohol, and highly palatable 

foods to overcome blunted reward responsivity.

Blunted reward responsivity and health-risk behaviors

Nicotine—Anhedonia—or difficulty experiencing pleasure—is associated with blunted 

neural response to reward.115 Furthermore, anhedonia is higher in adolescents who have 

smoked a cigarette in the past month compared to those who have not, suggesting that 

anhedonia could be involved in smoking initiation.116 Furthermore, at age 15, anhedonia is a 

strong predictor of smoking escalation over the next 1.5 years.116 This effect is present even 

when controlling for other depressive symptoms, suggesting that smoking escalation may be 

specifically related to blunted experience of reward.116 Moreover, smokers show lower 

neural responses in the VS when anticipating reward compared to non-smokers and, among 

smokers, lower VS activation predicts greater smoking frequency.117 The prior study 
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included young and generally light smokers who had not smoked for long, which suggests 

that lower responsivity of the reward system may increase the likelihood of early nicotine 

use as well as the severity of nicotine dependence. Given that nicotine is a potent modulator 

of the reward system because it stimulates mesolimbic dopamine release,118 nicotine may 

counteract blunted reward responsivity in those exposed to ELA.

Alcohol—For those exposed to ELA, lower VS responsivity to reward predicts higher risk 

for anhedonia, which is associated with problematic alcohol use through substance-related 

coping.119 As previously mentioned, early deprivation in an animal model lowers D2R 

availability,114 which is associated with a blunted reward response.113 Lower D2R 

availability may be associated with greater vulnerability to alcohol abuse. As evidence of a 

causal role of D2Rs in alcohol use, upregulation of D2Rs in the VS reduces alcohol intake in 

rats previously trained to self-administer.120 Thus, those exposed to ELA may be 

particularly vulnerable to alcohol abuse due to blunted reward responsivity.

Food—Obesity is associated with lower striatal D2R availability, such that a higher body 

mass index (BMI) predicts lower receptor availability.121 Given the relationship between 

ELA and lower D2R availability, one of the neural mechanisms linking ELA to obesity may 

be via blunted reward responsivity. Specifically, lower D2R availability may lead to 

compensatory overconsumption of food in order to overcome blunted reward responses.121 

Furthermore, stress modulates the effect of D2R availability on eating behavior such that 

lower availability of D2Rs increases the likelihood that someone will eat if emotionally 

stressed.122 Thus, a combination of high-perceived stress and stress reactivity with low 

responsivity to reward may make those exposed to ELA particularly vulnerable to overeating 

as a coping mechanism to deal with stress. However, experimental studies are needed in 

order to establish a causal link between blunted reward responsivity and overeating.

Early life adversity and emotion regulation

Emotion regulation involves the ability to recognize emotions and use effective strategies to 

modulate the expression or experience of an emotion. Emotion regulation occurs through 

numerous processes acting at multiple points in the generation, expression, and experience 

of emotion.123 Connectivity between the prefrontal cortex (PFC) and amygdala play a 

critical role in emotion regulation. Whereas the amygdala detects and responds to threats 

from the environment, the PFC modulates activity in the amygdala in order to alter the 

experience of emotion.78 Regions in the medial PFC are involved in forms of emotion 

regulation that are automatic or implicit, such as habituation or extinction of fear responses,
124 whereas regions in the dorsolateral and ventrolateral PFC are involved in more effortful 

forms of emotion regulation, including cognitive reappraisal.125 Successful emotion 

regulation is associated with greater functional coupling of the PFC and amygdala.126 

Exposure to ELA, particularly experiences of abuse and violence that are characterized by 

threat, is associated with poor emotion regulation ability across numerous studies.91,127,128 

This pattern is likely explained by alterations in prefrontal–amygdala connectivity following 

ELA. Multiple studies have shown that adversity involving threat is associated with reduced 

prefrontal–amygdala connectivity at rest.129,130 In studies focused on effortful forms of 

emotion regulation, children exposed to threat-related early adversity require greater PFC 

Duffy et al. Page 8

Ann N Y Acad Sci. Author manuscript; available in PMC 2019 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



activation to successfully modulate amygdala responses to negative cues than children never 

exposed to adversity.66

Emotion regulation and health-risk behaviors

Nicotine—In a conceptual model, the need to regulate negative emotions is proposed as a 

contributing factor in smoking initiation.131 Furthermore, neural evidence links the 

regulation of emotions to the regulation of cravings.132 In smokers, less successful down-

regulation of craving is associated with lower activation in the PFC and regions associated 

with regulating emotion and higher activation in limbic regions associated with craving.132 

This finding shows that the neural activation patterns underlying emotion regulation are 

similar to those underlying regulation of cravings. Although causal evidence is still lacking, 

we speculate that ELA may hinder the ability to regulate cravings through its effect on 

emotion regulation, leading to greater difficulty regulating cravings and a greater propensity 

for addiction. However, experimental studies are needed in order to draw clear causal 

conclusions.

Alcohol—One of the primary motives for drinking alcohol is to cope with negative 

emotions.133 Thus, poor emotion regulation skills may predispose people to rely on alcohol 

to cope. Indeed, meta-analytic evidence indicates greater difficulties with emotion regulation 

among people who abuse alcohol.134 In a group with alcohol dependence, poorer ability to 

regulate emotions after undergoing cognitive behavioral therapy predicted higher alcohol use 

at the three-months follow-up even after controlling for potential confounds such as 

symptom severity, number of comorbid disorders, cognitive capacities, and negative affect.
135 This study suggests the need to target emotion regulation skills as a way to lessen 

alcohol use and prevent relapse in those with alcohol use disorders. Given that ELA is 

associated with difficulties regulating emotions and differences in prefrontal–amygdala 

circuitry and these same differences in prefrontal–amygdala circuitry have been proposed to 

underlie substance use disorders,136 this may be a psychological and neurobiological 

mechanism by which ELA increases the likelihood of abusing alcohol.

Food—Emotion regulation plays a central role in obesity.137 In toddlers, poor emotion 

regulation skills prospectively predict higher BMI, even after controlling for baseline BMI 

and behavioral problems.138 This relationship may be explained by emotional eating to cope 

with negative emotions.139 In a sample of obese 10- to 16-year-olds, maternal rejection was 

associated with increased emotional eating, which was mediated by maladaptive emotion 

regulation strategies.139 In another study, emotional dysregulation mediated the relationship 

between childhood trauma (i.e., threat) and obesity.140 Reduced activation in the PFC may 

be the neural substrate for this effect. Indeed, research shows that obesity is associated with 

lower activation in the left dorsolateral prefrontal cortex (DLPFC) following a meal141 and 

higher BMIs predict lower metabolic activity in the PFC.142 Furthermore, lower baseline 

metabolism in the PFC is associated with poorer executive function.142 Therefore, ELA may 

lead to obesity through its influences on emotion regulation, which may increase the 

likelihood of using food to regulate negative emotions.

Duffy et al. Page 9

Ann N Y Acad Sci. Author manuscript; available in PMC 2019 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Early life adversity and delay discounting

Delay discounting is the tendency to choose smaller sooner rewards over larger later 

rewards. ELA characterized by both threat and deprivation is associated with higher delay 

discounting rates.143–145 For example, childhood abuse145 as well as low socioeconomic 

status (SES)143,144 both predict a tendency to choose immediate rewards. This psychological 

orientation to the present likely exists because the future is more uncertain under conditions 

of threat and deprivation. As evidence of this, mortality cues increase preference for 

immediate rewards for those who grew up poor, but not for those who grew up wealthy.146 

The context associated with low SES may perpetuate a decision-making style of choosing 

immediate rewards despite long-term consequences, which may contribute to the SES 

gradient in health behaviors.147

At a neural level, greater delay discounting is related to lower activation in the DLPFC when 

selecting smaller sooner rewards over larger later rewards.148 Causal evidence that activation 

in the DLPFC affects delay discounting comes from a neurostimulation study.149 While 

increased activation enhances preference for larger later rewards, decreased activation 

enhances preference for smaller sooner rewards.149 Although ELA has not been specifically 

tied to this neural pattern of activation, behavioral evidence indicates an association between 

ELA and delay discounting, and we speculate that the DLPFC may be a neural pathway for 

this effect.

Delay discounting and health-risk behaviors

Nicotine—Extensive evidence links smoking with greater delay discounting in 

adolescents150,151 and adults.152–158 A longitudinal study tested whether delay discounting 

is a cause or consequence of smoking and found that baseline delay discounting increased 

the odds of smoking uptake, but smoking did not significantly impact delay discounting.159 

However, other studies have found that smoking is associated with increased delay 

discounting,157,160,161 evidence we review later in the paper. In addition to smoking 

initiation, when attempting to quit smoking, delay discounting predicts poorer treatment 

response162,163 and higher likelihood of relapse.163 Smokers have the psychological as well 

as the neurobiological profile of greater delay discounters given that decreased activation in 

the DLPFC predicts increased cigarette craving132 and heavier nicotine dependence.164 

Although causal evidence is still needed ELA may increase smoking and the severity of 

nicotine addiction through delay discounting.

Alcohol—People who abuse alcohol show higher rates of delay discounting compared to 

healthy controls.165 Furthermore, those with alcohol abuse show neural patterns associated 

with delay discounting. Specifically, more severe alcohol dependence predicts lower 

activation of the DLPFC and higher activation of the ventromedial PFC when making 

impulsive reward decisions in a delayed discounting task.166 Given the role of lower DLPFC 

activation on delay discounting, the fact that alcohol dependence predicts lower DLPFC 

activation suggests that this may reflect a predisposing neural vulnerability for alcoholism. 

However, given the cross-sectional design of this study, causality cannot be determined.
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Food—Compared with healthy-weight women, obese women show greater delay 

discounting,167 which may be driven by neural differences associated with obesity. 

Compared to healthy-weight controls, obese people show significantly reduced DLPFC 

activation in response to food cues.168 In another study, less activation in executive function 

brain regions during a delay discounting task predicted greater weight gain 1–3 years later in 

obese women.169 Thus, delay discounting associated with lower activation in the DLPFC 

may contribute to compulsive eating in obesity, but more causal evidence is still needed.

Reciprocal effects of behaviors on the brain

So far, we have discussed how ELA is associated with psychological and neurobiological 

vulnerabilities that increase the likelihood of smoking cigarettes, drinking alcohol, and 

eating high-sugar, high-fat foods. These behaviors, however, can also influence the brain. As 

the use of drugs and alcohol progresses from initiation to maintenance, frontostriatal reward-

processing circuits are downregulated while amygdala circuits are upregulated, with these 

neuroadaptations of addiction primarily affecting the amygdala, striatum, and PFC.170,171 

Thus, smoking, drinking, and eating highly palatable foods affect the same brain regions that 

predict whether someone engages in these behaviors in the first place. Below, we discuss 

how smoking, drinking, and eating highly palatable food further heighten emotional 

reactivity, blunt reward responsivity, hinder emotion regulation, and increase delay 

discounting.

Emotional reactivity

Although drugs and alcohol are initially sought for their positive effects, over time, they are 

taken to avoid negative consequences such as withdrawal.171,172 During abstinence, 

addictive substances increase emotional reactivity by recruiting an amygdala-driven anti-

reward system that leads to aversive states.171,172 Nicotine abstinence, alcohol withdrawal, 

and intermittent consumption of highly palatable foods induce a negative emotional state 

that perpetuates intense cravings.171,173 Although withdrawal effects for nicotine and 

alcohol are well-studied, the negative emotional state due to restriction of highly palatable 

foods has not been as extensively researched, particularly in humans.171,173 However, one 

study demonstrated that after switching from a high-fat to a low-fat diet, participants 

reported greater anger and hostility than those who continued to eat the high-fat diet.174 

Thus, intake of addictive substances leads to increased negative emotional states in the 

absence of the substance.

Reward responsivity

Drugs and alcohol increase feelings of reward in the short term but decrease it in the long 

term.175–179 This happens because drugs stimulate reward circuitry so intensely that 

populations of D2Rs in the striatum downregulate, resulting in the need for higher intake to 

experience the same degree of reward.72 Thus, addictive substances lead to further blunting 

of the reward response,180 particularly in the VS. Nicotine withdrawal is associated with 

decreased striatal dopamine release181 and blunted reward responsivity, which predicts an 

increased likelihood of relapse.176 Eating highly palatable foods predicts blunted reward 

responsivity as well. In rodents, regular intake of high-fat and high-sugar foods leads to 
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downregulation of postsynaptic D2 receptors.177–179 In humans, weight gain over a six-

month period is predicted by a reduction in striatal response to palatable food consumption 

over this same time period.182 This finding suggests that overeating may downregulate 

reward responsivity to palatable foods, inducing blunted reward responses as have been 

observed with other substances of abuse.175

Emotion regulation

Less evidence exists to suggest that smoking cigarettes, drinking alcohol, and eating highly 

palatable foods influence emotion regulation and the brain regions involved. Nicotine 

abstinence, alcohol withdrawal, and high-sugar, high-fat food restriction increase the 

tendency to experience negative emotions and people may attempt to regulate emotions by 

giving in to cravings. Using substances or food to regulate negative emotions can produce 

self-control failure in other domains.183 While difficulties regulating emotions may lead 

people to cope by smoking, drinking, and eating, these behaviors may ultimately induce 

more negative emotions, further perpetuating negative coping strategies.

Delay discounting

Delay discounting is both a cause and consequence of substance use.184,185 While higher 

delay discounting predicts a greater likelihood of engaging in multiple HRBs,186 in animal 

models, nicotine160 and ethanol187 both increase delay discounting. Nicotine produces a 

long-lasting but eventually reversible effect on delay discounting160 and alcohol use 

increases delay discounting.187 In human studies, adolescents exposed to nicotine prenatally 

exhibit weaker responsivity in anticipation of reward161 and children of smokers discount 

delayed rewards more than children of non-smokers.157 Although it is difficult to know 

whether those exposed to nicotine are different from those not exposed in critical ways that 

explain this relationship, these findings provide tentative evidence that nicotine exposure 

may increase delay discounting. As further evidence, adult smokers discount delays at a 

higher rate than adolescent smokers, which might suggest that, over time, nicotine increases 

delay discounting,188 especially given that this result is opposite of what might be expected 

based on the fact that younger people tend to exhibit higher delay discounting than older 

people.189

While few meta-analyses have been conducted, one meta-analysis on the relationship 

between delay discounting and addictive behaviors found an overall medium effect size with 

acceptable heterogeneity between studies.190 Another meta-analysis showed that greater 

delay discounting is associated with more severe addictive behaviors, with comparable effect 

sizes found across different types of addictive behaviors.191 Furthermore, evidence across 

studies suggests that delay discounting predisposes people to addictions rather than the 

reverse causal direction.190 Finally, in a meta-analysis on inhibitory control and obesity, 

inhibitory control is significantly impaired in obese adults and children and lower PFC 

activity is associated with poorer inhibitory control as well as higher BMIs.192 Thus, 

although delay discounting is a stronger predictor of HRBs, it is also an outcome and future 

research should focus on understanding this reciprocal relationship.
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In sum, the psychological and neural causes and consequences of smoking cigarettes, 

drinking alcohol, and eating high-sugar, high-fat foods have substantial overlap and these 

behaviors affect the brain in ways that reinforce alcohol and drug abuse and further explain 

the clustering of HRBs. In fact, cross-sensitization—whereby one addictive substance leads 

to taking another—occurs for these behaviors. For example, in rats, access to sugar followed 

by forced abstinence enhances alcohol intake,193 suggesting that sugar consumption could 

be a gateway to alcohol use. Thus, the common psychological and neurobiological 

mechanisms underlying HRBs as well as the effect of these behaviors on emotional 

reactivity, reward responsivity, emotion regulation, and delay discounting likely explain 

clustering of HRBs.

Discussion

ELA is associated with higher risk for a range of chronic disease and an increased likelihood 

of smoking cigarettes, drinking alcohol, and eating high-sugar, high-fat foods, leading to 

obesity. We present a model arguing that neurodevelopmental mechanisms involving 

heightened emotional reactivity, blunted reward responsivity, poor emotion regulation, and 

increased delay discounting are key pathways that explain the greater tendency to engage in 

HRBs and, ultimately, increased risk of chronic diseases associated with ELA. We focus on 

three HRBs that share underlying neurobiological mechanisms,194 although, other HRBs 

associated with ELA are worth noting, such as risky sexual behavior195 as well as sleep 

difficulties,196 which may further increase the burden of chronic diseases. Furthermore, due 

to parallels with addiction, we have focused on eating high sugar and high fat foods as well 

as excessive food consumption as a pathway to obesity, however, ELA has also been 

associated with physical inactivity, which likely also contributes to the link between ELA 

and obesity.32

We have focused on how psychological, behavioral, and neurobiological adaptations to ELA 

confer vulnerability across a broad range of HRBs. The reason for the broad focus is to 

emphasize the shared mechanisms underlying these HRBs. In this way, emotional reactivity, 

reward responsivity, emotion regulation, and delay discounting can be considered trans-

disease processes,197 which help explain the clustering of HRBs within individuals. These 

psychological and neurobiological processes underlie each phase of the progression to 

addiction—initiation, maintenance, and relapse. Furthermore, nicotine, alcohol, and highly 

palatable foods themselves lead to further psychological and neural changes that intensify 

vulnerability to addiction, resulting in a positive feedback loop.

Previous reviews have considered how low SES affects health behaviors through 

psychological mechanisms,147 how ELA affects health and health behaviors through 

neuroimmune processes,20 and how lower SES affects health through neurobiological 

pathways.198 However, our paper takes a broader approach than previous reviews, focusing 

on how multiple forms of ELA might influence HRBs that are involved in the etiology of a 

wide range of chronic diseases through a set of interrelated psychological and 

neurobiological processes that are strongly influenced by exposure to adversity in childhood. 

We situate these psychological and neurobiological changes within an evolutionary 

framework. In doing so, we consider how adverse early life environments influence brain 
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and behavioral development in ways that are adaptive in the short term by promoting 

survival but are maladaptive in the long term to physical health.

Given that the evidence we present in this paper is largely based on observational studies and 

cross-sectional or short-term longitudinal designs, longitudinal studies that track participants 

from childhood into adulthood are needed to provide stronger evidence for the proposed 

mechanisms, and experimental studies are needed in order to establish causal relationships. 

In particular, causal evidence is still lacking for the psychological and neurobiological 

mechanisms underlying HRBs. While the evidence is compelling that ELA influences brain 

development in ways that predispose people to engage in HRBs, an alternative pathway by 

which early life environments may influence HRBs is through modeling of parent HRBs and 

adopting the social norms of the broader community. Parental smoking,199 drinking,200 and 

obesity201 predict the smoking, drinking, and obesity of their offspring. Therefore, HRBs 

may be transmitted intergenerationally through modeling of parent behavior. It is well-

established that the constraints of low SES make it difficult to afford a high-quality diet, and 

that people growing up in households with low SES are more likely to eat a diet high in 

sugar and fat.202 Therefore, children exposed to ELA may also have parents and 

communities who are more likely to engage in HRBs. Although this pathway is not mutually 

exclusive from the pathways in our conceptual model given that the social norms in adverse 

environments may be different for the reasons that we propose, it is important to consider 

this alternative pathway as it may be confounded with the proposed pathways. In order to 

control for potential confounds that are present in human studies, future studies should use 

experimental models to test whether our proposed psychological and neural mechanisms 

explain the relationship between ELA and HRBs.

Given that some of the links in our conceptual model are still tentative, the model should be 

considered a theoretical perspective from which hypotheses can be generated and tested. We 

hope that our conceptual model advances the literature by providing an organizing 

framework for how ELA may affect health-risk behaviors. Furthermore, because the 

relationships between neural circuitry and HRBs are almost certainly bidirectional, more 

research is needed to determine which direction is stronger. Until further research is 

conducted, it remains possible that the reverse causal direction (i.e. that HRBs alter neural 

circuitry) is stronger than the direction on which our paper focuses. Given the lack of studies 

as well as meta-analyses, for now, the consistency of findings, moderators of effects, and 

overall effect sizes remain largely unknown, highlighting a need for more quantitative 

assessments of the link between psychological factors, neurobiological circuits, and HRBs. 

Furthermore, those exposed to ELA may initiate smoking and drinking at a younger age 

during critical neurodevelopmental periods that may increase the likelihood of addiction in 

adulthood203,204 or lead to more severe addictions in adulthood.205 More research is needed 

to understand how and why ELA may lead to earlier initiation of smoking and drinking and 

how this might affect the brain in ways that lead to more intractable addictions.

Some researchers contend that initiation of substance use is more associated with 

vulnerability factors (i.e. psychopathology, SES, stressful life events) and that transition to 

addiction is more associated with neurobiological factors.206 However, in this paper, we 

argue that environmental risk factors (i.e., ELA) directly influence neurobiological 
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development in ways that contribute to HRBs. In line with others who have called for a need 

to focus on the social and environmental context leading to substance abuse,207 we argue 

that a neuroscience perspective on the link between ELA and HRBs suggests that this is a 

social justice issue: under this perspective, engaging in HRBs becomes not a question of 

choice, but a question of development. Vulnerable people do not simply “choose” to engage 

in HRBs because they do not know that these behaviors are harmful, but rather, their early 

environmental experiences influence psychological and neurobiological development in 

ways that make it more difficult to regulate negative emotions and delay immediate rewards. 

These psychological and neurobiological vulnerabilities explain why intractable cases of 

addiction remain even as policy changes have been implemented and social norms have 

shifted. Thus, chronic disease prevention should focus not only on HRBs, but also on which 

populations are most vulnerable to engaging in these behaviors due to environmental, 

psychological, and neurobiological vulnerabilities. Furthermore, future research should 

focus on how to mitigate neurobiological vulnerabilities in cases of smoking, heavy alcohol 

use, and excessive food intake that cannot be remedied with existing methods and 

treatments.

Our conceptual model fits well within the purview of health neuroscience, a new field that 

aims to understand how the brain affects and is affected by physical health.208 Health 

neuroscience merges well-studied top-down processes (e.g. how the brain affects behavior) 

with less researched bottom-up processes (e.g. how behavior affects the brain). Given the 

interest of health neuroscience in explaining health with bidirectional brain-behavior 

relationships, our conceptual model advances the field by providing a framework for how 

early environmental experiences shape psychological and neurobiological factors that 

influence and are affected by HRBs. These bidirectional relationships facilitate a positive 

feedback loop in which preexisting vulnerabilities are intensified by nicotine and alcohol use 

as well as excessive food intake.

Future directions

A critical next step for research on adversity is to determine whether sensitive periods exist 

when exposure to adversity is more strongly related to certain psychological or 

neurobiological processes when it is experienced during a particular developmental period. 

Sensitive periods are challenging to study because they require precise information about the 

timing of exposure to adversity. In retrospective studies, obtaining accurate information on 

the timing of exposure is difficult and these reports are associated with substantial recall 

biases.209 As a result, most research on ELA does not even report the age of exposure for 

their sample. Most of what we know about sensitive periods comes from studies of children 

who have grown up in institutional settings since it is straightforward to determine the 

precise period of time during which a child lived in the institution. Studies of institutional 

rearing have identified sensitive periods in the first two years of life for the development of a 

secure attachment relationship to a caregiver210 and for the development of the 

hypothalamic–pituitary–adrenal (HPA) axis.66 However, research on sensitive periods of 

emotional and social development remains in its infancy, and sensitive periods for the 

psychological and neurobiological processes that are the focus of our review are largely 

unknown. Future research should identify sensitive periods for which exposure to adversity 
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has the greatest impact on the psychological and neurobiological mechanisms that are the 

focus of our conceptual model.

Furthermore, future research should examine whether different types of adversities have 

differential influences on HRBs and the psychological and neurobiological processes that 

mediate these associations. Evidence is accumulating that different types of adversities have 

at least partially distinct associations with brain development. Threat and deprivation are two 

dimensions of ELA that provide a framework for conceptualizing the neural impact of these 

experiences.17,18 While both types of experiences appear to influence the salience of 

negative emotional cues (e.g., heightened amygdala reactivity, fronto–amygdala 

connectivity),63,66,211 distinct patterns of neural development have been associated with 

threat and deprivation in the domains of reward processing in the frontostriatal network and 

cognitive control in the frontoparietal network,75,76,112 and threat is uniquely associated 

with some aspects of threat-related information processing and neural correlates.81,83,212,213 

Although threat and deprivation may influence neural development in different ways, they 

still may lead to the same downstream health outcomes. For example, high amygdala 

reactivity paired with low VS reactivity comprises a distinct neural phenotype of alcohol use 

disorders, in which alcohol use is particularly likely following exposure to stress.214 

Experiences of deprivation may be more likely to lead to blunted VS reactivity to reward 

than experiences of threat,112 while both types of ELA can produce a pattern of heightened 

amygdala reactivity to threat.63,86,94,95 Both threat and deprivation exposures could disrupt 

the balance between amygdala and VS activation, leading to the high amygdala–low VS 

phenotype associated with increased risk of using alcohol to cope with negative emotions.214 

Future research should consider the ways in which different types of early life adversities 

affect the brain in ways that confer general versus unique vulnerabilities to HRBs.
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Figure 1. 
Conceptual diagram of the psychological processes affected by early life adversity and their 

underlying neural substrates. We highlight the role of the amygdala in emotional reactivity, 

the ventral and dorsal striatum in reward responsivity, prefrontal–amygdala connectivity in 

emotion regulation, and prefrontal–ventral striatum connectivity in delay discounting.

Duffy et al. Page 27

Ann N Y Acad Sci. Author manuscript; available in PMC 2019 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. 
The effect of two dimensions of early life adversity (ELA)—threat and deprivation—on 

brain development. Neural adaptations to ELA affect emotion, reward, and cognitive 

networks. These neural adaptations affect four psychological processes that have 

downstream consequences for health-risk behaviors. Smoking cigarettes, drinking alcohol, 

and overeating highly palatable foods further heighten emotional reactivity, hinder emotion 

regulation, increase delay discounting, and blunt reward responsivity, leading to a positive 

feedback loop for addictive behaviors.
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