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Abstract

Studies of xenotransplantation from swine have identified porcine viruses as potential barriers to 

clinical trials. The biology of these viruses has not been extensively investigated in the in vivo 

xeno-environment. Enhancement of viral gene expression by viral and cellular factors acting in 

trans has been demonstrated for certain viruses, including bidirectional interactions between 

human herpesviruses and endogenous (HERV) and exogenous (HIV) retroviruses. Both porcine 

cytomegalovirus (PCMV) and porcine endogenous retrovirus (PERV) infections have been 

identified in xenografts from swine. PERV receptors exist on human cells with productive 

infection in vitro in permissive human target cell lines. PCMV is largely species-specific with 

infection restricted to the xenograft in pig-to-baboon transplants. It is unknown whether 

coinfection by PCMV affects the replication of PERV within xenograft tissues which might have 

implications for the risk of retroviral infection in the human host. Methods: We studied a series of 

11 pig-to-baboon kidney xenografts from PERV-positive miniature swine in the presence or 

absence of PCMV infection. PERV replication was not altered in the presence of PCMV 

coinfection (p=0.70). The absence of variation with coinfection was confirmed when PERV 

quantitation was expressed relative to simultaneous cellular GAPDH levels with or without PCMV 

coinfection (p=0.59). PCMV coinfection does not alter replication of PERV in life-supporting 

renal xenotransplantation in vivo in baboons.

Introduction

The development of clinical xenotransplantation using organs from swine has been limited 

by immunologic, metabolic and infectious barriers. Among infectious challenges, both 

porcine cytomegalovirus (PCMV) and porcine endogenous retrovirus (PERV) infections 

have been identified in xenografts from swine1–4. PERV has no apparent adverse impact on 

the porcine host and there are no data to suggest a direct interaction between PERV and 
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PCMV on the virulence or replication of either virus. However, interactions between 

exogenous human retrovirus (human immunodeficiency virus, HIV) and herpesviruses such 

as human cytomegalovirus (HCMV) have been demonstrated in vitro5. Increased replication 

of HIV was observed with HCMV coinfection and was initially attributed to the effects of 

HIV on the status of the host immune system.6–9 This supposition is consistent with clinical 

observations that deployment of highly active antiretroviral therapies (HAART) led to a 

reduction in the incidence of opportunistic infections in AIDS including invasive CMV 

disease while nonresponding individuals remained at risk for CMV infections due to the 

impact of AIDS on CMV-specific CD8+ and CD4+ T lymphocytes in control of CMV 

replication6. However, interest emerged in cofactors that might enhance HIV replication or 

predispose individuals to progression to AIDS, possibly via activation of HIV-infected T 

cells by HCMV. Studies of human CMV-HIV coinfections of H9 cells demonstrated 

enhanced productive CMV and HIV-1 infections5. Thus, the interactions between HIV and 

CMV are bidirectional and occur at the cellular level as well as due to immunosuppressive 

effects.5 Given concerns regarding the potential infection of human recipients of porcine 

xenografts, we hypothesized that a similar interaction might exist between PERV and 

PCMV.

PCMV is largely species-specific with infection restricted to the xenograft in pig-to-baboon 

transplants10–12. PCMV infection causes endothelial activation in cultured cells in vitro and 

in pig vessels in vivo with increased expression of ICAM-1, vascular thrombosis, 

disseminated intravascular coagulation and neutropenia; as a result, PCMV infection 

increases graft rejection and reduces the survival of porcine xenografts in baboon 

recipients11,13–17. PCMV is susceptible to antiviral agents in vitro including ganciclovir18,19. 

In contrast, PERV has no clinical manifestations in swine, and baboon cells lack functional 

PERV-receptors preventing productive infection in xenograft recipients20–24. PERV 

receptors have been identified on human cells and productive infection demonstrated in vitro 

in certain permissive human target cells25–31. PERV is susceptible to antiretroviral agents in 

vitro32,33. Any enhancement of retroviral replication due to herpesviral coinfection might 

alter strategies for infectious disease surveillance or immunosuppressive regimens in 

xenograft recipients. We examined a series of xenografts derived from baboon recipients of 

porcine GalT-KO renal xenotransplants in vivo to determine whether evidence exists of an 

interaction between PERV and PCMV within xenograft kidneys.

Materials and Methods

Animals

Pig kidneys used for life-supporting function were obtained from GalT-KO miniature swine 

and implanted in recipient baboons using tolerance induction protocols14,34–38. Male or 

female recipient baboons (Papio anubis) were purchased from Mannheimer Foundation 

(Homestead, FL). Xenogeneic organs were obtained from GalT-KO miniature swine. Frozen 

biopsy samples from 11 functioning porcine xeno-kidney grafts were derived from pig-to-

baboon xenotransplants at 13.7 days (6 animals, mean p<.05) for PCMV-infected grafts and 

mean of 53.2 days (5 animals) for PCMV uninfected grafts. Samples were analyzed for the 

presence of PCMV and PERV, using real-time PCR. Excised GalT-KO kidney tissue 
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samples were frozen for viral analysis. Details of the preparation of these animals have been 

published previously14. All animals were cared for per guidelines of the Massachusetts 

General Hospital Institutional Animal Care and Use Committee.

Immunosuppression

All recipients received a tolerance induction regimen that included transient T cell and B cell 

depletion37,38. Ten recipients received Rituximab (20 mg/kg IV) prior to transplantation38. 

All recipients received maintenance therapy with 110 mg/kg/day IV mycophenolate mofetil 

(Roche, Nutley, NJ) through an Omniflow 4000 Plus infusion pump (Abbott Laboratories, 

North Chicago, IL) continuously throughout the experiment but tapered after day 30; 

humanized anti-human CD154 mAb (ABI, Novartis, Basel) was administered at 20–25 

mg/kg/day IV every 2–4 days, and methylprednisolone 2 mg/kg IV, starting on day 0 and 

tapered continuously thereafter. One CMV-negative recipient received 100 rads WBI and 

LoCD2 (4 mg/kg/day IV) (rat anti-primate CD2b, Immerge, BioTherapeutics, Charlestown, 

MA) followed by horse anti-thymocyte globulin (50 mg/kg/day IV) (ATG, Pharmacia/

Upjohn, Peapack, NJ) in place of Rituximab prior to transplantation37,38. All recipients 

received a 14-day course of intravenous ganciclovir at 5–10 mg/day as prophylaxis against 

baboon CMV (BCMV) infection19.

Total RNA collection

Total RNA was collected using a two-step method comprised of an initial purification using 

RNA STAT-60 (AMS Biotechnology, Milton Park, Abingdon, UK) followed by RNeasy 

Mini Kit (Qiagen, Germantown, MD). Transplanted kidneys were harvested and 

approximately one half cm3 aliquots were frozen in liquid nitrogen and stored at −80°C. 

Individually, frozen tissue was transferred to frozen mortar and pestle positioned in a liquid 

nitrogen bath. The tissue was cryominced and ground into a course powder, transferred to a 

frozen pre-weighed tube and weighed. Sufficient RNA STAT-60 was added to a bring the 

concentration of ground tissue to RNA STAT-60 to 100mg tissue per ml RNA STAT-60. 

RNA extraction continued using the manufacturer’s Total RNA Protocol. Purification 

continued using the RNeasy Mini Kit per manufacturer’s protocol including on-membrane 

DNase. RNA yield quantified using Nano-Drop ND-1000 (Nano Drop Technologies, 

Wilmington, DE). RNA was stored at −80°C.

Reverse Transcription Reaction

RT reaction was carried out using the Omniscript RT Kit (Qiagen, Germantown, MD) using 

the manufacturer’s protocol. 1992 ng of Total RNA was run in each 12 ul reaction with a 

dilution of 1:625. Each RNA sample was run with, and without RT enzyme. A cocktail of 3 

reverse primers (PERV pol, MHC, GAPDH) were added to a final concentration of 333 nM 

for each primer.

Quantitative Real-Time PCR

Target DNA sequences were quantified by real-time PCR using a Stratagene Mx3005P 

(Agilent Technologies, Cedar Creek, Texas). Sequence-specific primers and TaqMan probe 

were generated for each gene target (Primer Express software, Applied Biosystems, Foster 
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City, CA)(Table 1). Each 25uL PCR reaction included target DNA, 800nM primers 

(InVitrogen-Life Technologies, Grand Island, NY) 200nM TaqMan probe (Applied 

Biosystems-Life Technologies, Grand Island, NY), 20 nM Rox reference and 1× Brilliant III 

Ultra Fast Master Mix (Agilent Technologies, Cedar Creek, Texas). The PCR cycling 

conditions were as follows: 1 cycle at 95°C for 5 min followed by 50 cycles of denaturation 

at 95°C for 10 seconds, and annealing-extension at 60°C for 30 seconds with data collection 

following each extension. Serial dilutions of gel-extracted amplicon cloned into Invitrogen 

TOPO plasmid served as quantifying standards. Target DNA is detected with a linear 

dynamic range of 10 to 106 copies. For quantification of PCMV DNA, 300 ng of xenograft 

pig kidney DNA was run in triplicate. Primers and probes specific for PCMV DNA 

polymerase gene have been shown to have no cross-reactivity with PLHV-112,39.

PERV pol quantitation

10uL of a 1:625 dilution of the reverse transcription (RT) reaction was amplified in a 50 

cycle PERV polymerase quantitative TaqMan PCR in triplicate using a Stratagene MX300P 

real-time thermocycler (Agilent Technologies). 10uL of a 1:25 dilution of the “No RT 

enzyme” control RT reaction was similarly treated. PCR conditions included PERV pol 

forward and reverse primers at 800nM final concentration and PERV pol probe at 200 nM 

final concentration. Brilliant III Ultra Fast master mix (600880 Agilent Technologies) was 

used supplemented to 20 nM with ROX reporter dye (600880 Agilent Technologies) and 

0.04 Units/uL UNG nuclease (N8080096, Life Technologies). Cycling conditions included 1 

cycle of 10 minutes at 50°C followed by one cycle of 10 minutes at 95°C and 50 cycles of 

10 seconds at 95°C followed by 30 seconds at 60°C with data collected at the end of each 

cycle. Assay sensitivity is at least 10 copies/ul. Absolute copies of PERV pol, and of porcine 

MHC-I and porcine GAPDH nucleic acids were measured per nanogram of input cDNA40.

Statistics

Data sets were tested for normality using the Wilcoxin/S Test for Normality and all were 

found to be not significantly different from a normal population, accordingly the Student’s 

T-Test was used when comparing PERV pol expression in PCMV positive and PCMV 

negative xenokidneys.

Results

Xenografts were classified as negative for PCMV (6 animals) if no amplification was 

observed. Xenografts classified as positive for PCMV amplified with superimposable 

amplification plots in triplicate typically with low cycle thresholds as measured at the end of 

each amplification cycle indicative of viral reactivation. The quantitative detection limit for 

this assay was 7 copies and values are expressed as positive or negative.

Nucleic acids were successfully amplified from all reactions containing reverse 

transcriptase. PERV assay sensitivity was at least 10 copies/ul. PERV expression was not 

altered in the presence (3944 +/− 690 copies per nanogram input DNA) or absence (3617 +/

− 460 copies) of PCMV coinfection (p=0.70) (Figure 1A). To control for variability in 

reaction efficiency, ratios of PERV pol to MHC and PERV pol to GAPDH were examined. 
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Control values for GAPDH DNA in kidney tissues did not vary with (2,482,230 +/− 888,506 

or without (1,932,384 +/−665,051 PCMV infection (p=0.63). Thus, in this system using 

porcine renal tissue biopsies, GAPDH was demonstrated to be a useful internal control. The 

absence of variation in PERV replication with PCMV coinfection was confirmed when 

PERV quantitation was expressed as a ratio to GAPDH with or without PCMV coinfection 

(p=0.59). By contrast, porcine MHC-I RNA (cDNA) tended to increase with PCMV 

infection of xenograft tissue (more than three-fold, Figure 1B) and therefore was not a useful 

internal control for PERV quantitation (Figure 1B) (p=0.12).

Discussion

Inbred miniature swine studied as xenograft donors all express PERV A, B and C (and AC 

recombinants) in vitro and in vivo. While PCMV has diverse effects in vitro and in vivo, 

these studies demonstrated the absence of enhancement of PERV expression during co-

infection by PCMV in vivo. The mechanisms underlying the permissive effect of CMV 

infection on HIV replication remain to be elucidated. Limitations of the study might include 

a modest number of samples tested which was necessitated by the desire to use animals 

undergoing uniform immunosuppression. Prior studies of herpesvirus-retrovirus interactions 

have been performed with high titer viral infections in vitro with an increased likelihood that 

cellular coinfection exists. However, given the diverse systemic effects of CMV infection, it 

is possible that the effects of viral interactions would be observed even if cellular coinfection 

did not occur within the xenograft. Such interactions were not observed in vivo. Despite 

these observations, as PERV receptors are defective in nonhuman primates, clinical 

infectious risk cannot be readily assessed in this model. Interestingly, the selection of 

internal controls for amplification reactions was critical given that MHC expression was 

increased by over three-fold in the animals with PCMV infection and could not be used as 

an internal reaction control for these studies15. This may reflect either specific or nonspecific 

stimulation of MHC transcription by infection. CMV infection in vivo tends to provoke 

allograft rejection as well as xenograft rejection, possibly via T-cell priming and endothelial 

activation11,13–15,41–46. Similar variation was not observed for GAPDH amplification and 

therefore the ratio of PERV-pol expression to GAPDH ratio serves as a useful control for 

input cellular nucleic acids.

Enhancement of viral gene expression by viral and cellular factors acting in trans has been 

demonstrated in various systems including bidirectional interactions between herpesviruses 

and endogenous (HERV) and exogenous (HIV, HTLV-1, Visna) retroviruses47–52. Human 

endogenous retroviral (HERV-W) elements, including elements lacking regulatory LTRs, are 

expressed in cell-specific patterns which can be modulated by environmental influences 

including placental development, as well as with herpes simplex virus 1 (HSV-1) or 

influenza A/WSN/33 viruses. LTR-directed transcription of the human endogenous 

retrovirus K can be induced by HSV-1 infection immediate early protein, ICP0 (KWUN) 

and by EBV infection53,54. LTR-directed transcription of the HERV-W is induced by HSV-1 

infection. HSV-1 Us11 protein is involved in post-transcriptional trans-regulation of 

retroviral glycoprotein expression in HIV and HTLV-1.
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In vitro, like CMV, Herpes simplex virus type 1 functions as a trans-activator of HIV55–59. 

Epstein-Barr virus gene product BMLF-1 functions as trans-activators of promotors derived 

from simian virus 40, adenovirus, and herpes simplex virus48,51,59–61. Of interest, HIV-

related gene products or cellular factors induced by HIV-1 infection also causes trans-

activation of CMV expression in vitro. Studies of the cellular trans-activation of viral 

replication have been performed in permissive target cell lines (H9) and may not extrapolate 

to in vivo conditions. Like human CMV infection, PCMV has been shown to increase the 

risk for xenograft rejection and graft loss and has diverse effects on intracellular processes 

and host immunity14,15,62. However, in the present study in vivo, PERV, an endogenous 

retrovirus, does not have a similar bi-directional relationship with PCMV in porcine 

xenografts in immunosuppressed baboons. In this study, a uniform immunosuppressive 

regimen was used for xenotransplantation. As we and others have demonstrated, the specific 

immunosuppressive regimen (as well as graft rejection or inflammation) is important relative 

to the activation of replication of porcine herpesviruses (PCMV and porcine lymphotropic 

herpesviruses, PLHV)11,12,14,21,39,63. Data on the impacts of specific immunosuppressive 

regimens or the organ transplanted on PERV replication are incomplete and merit study21. 

Preclinical studies in nonhuman primates provides a valuable model for infectious and 

immunological effects of xenotransplantation.
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Figure 1. 
A. Absolute values of PERV nucleic acids were measured per nanogram of input cDNA in 

porcine renal xenograft biopsies. PERV expression was not altered in the presence or 

absence of PCMV coinfection (p=0.70). The absence of variation with coinfection was 

confirmed when PERV quantitation was expressed as a ratio to GAPDH with or without 

PCMV coinfection (p=0.59). Control values for GAPDH DNA did not vary with PCMV 

infection (p=0.723). B. MHC RNA (cDNA) tended to increase with PCMV infection of 

xenograft tissue and therefore was not a useful internal control for PERV quantitation 

(p=0.12).
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Table 1

PCR Primers and Probe Sequences

PCMV forward primer 5′-GTTCTGGGATTCCGAGGTTG-3′

PCMV reverse primer 5′-ACTTCGTCGCAGCTCATCTGA-3’

PCMV probe 5′-FAM-CAGGGCGGCGGTCGAGCTC-TAMRA-3′

PERV pol forward primer 5’ AGC TCC GGG AGG CCT ACT C 3’

PERV pol reverse primer 5’ ACA GCC GTT GGT GTG GTC A 3’

PERV pol probe 5’ FAM-CCA CCG TGC AGG AAA CCT CGA GAC T-TAMRA 3’

pMHC-I forward primer 5’ GCC CTG GGC TTC TAC CCT AA 3’

pMHC-I reverse primer 5’ TCT CAG GGT GAG TGG CTC 3’

pMHC-I probe 5’ FAM- CCA GGA CCA GAG CCA GGA CAT GGA GCT CGT T-TAMRA 3’

pGAPDH forward primer 5’ TCA ACG ACC ACT TCG TCA AGC 3’

pGAPDH reverse primer 5’ GGA TGG AAA CTG GAA GTC AGG AGA 3’

pGAPDH probe 5’ FAM-TCT CTC CTC CTC GCG TGC TCT TGC T-TAMRA 3’

Xenotransplantation. Author manuscript; available in PMC 2019 September 01.


	Abstract
	Introduction
	Materials and Methods
	Animals
	Immunosuppression
	Total RNA collection
	Reverse Transcription Reaction
	Quantitative Real-Time PCR
	PERV pol quantitation
	Statistics

	Results
	Discussion
	References
	Figure 1
	Table 1

